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Abstract. We count the number of the isomorphic classes of basic hom-orthogonal
partial tilting modules for an arbitrary Dynkin quiver. This number is independent on
the choice of an orientation of arrows, and the number for An or Dn-type can be expressed
as a special value of a hypergeometric function. As a consequence of our theorem, we
obtain a minimum value of the number of basic relative invariants of corresponding
regular prehomogeneous vector spaces.

Introduction

Let Q = (Q0, Q1) be a Dynkin quiver having n vertices (i.e., its base graph is one of
Dynkin diagrams of type An with n ≥ 1, Dn with n ≥ 4, or En with n = 6, 7, 8), where Q0,
Q1 is the set of vertices, arrows of Q, respectively. We denote by Λ = KQ its path algebra
over an algebraically closed field K of characteristic zero, and by modΛ the category of
finitely generated right Λ-modules.

Let X ∼=
⊕s

k=1mkXk be the decomposition of X ∈ modΛ into indecomposable direct
summands, where mkXk means the direct sum of mk copies of Xk, and the Xk’s are
pairwise non-isomorphic. Then X is called basic if mk = 1 for all indices k. We call X
to be hom-orthogonal if HomΛ(Xi, Xj) = 0 for all i 6= j. This notion is equivalent to that
X is locally semi-simple in the sense of Shmelkin [8] when Q is a Dynkin quiver. In the
case where X is indecomposable, we will say that X itself is hom-orthogonal. Since Λ is
hereditary, we say thatX ∈ modΛ is a partial tilting module if it satisfies Ext1Λ(X,X) = 0.

Each X ∈ modΛ with dimension vector d = dimX can be regarded as a representa-
tion of Q; that is, a point of the variety Rep(Q,d) that consists of representations with
dimension vector d = (d(i))i∈Q0 ∈ Zn

≥0. Then the direct product GL(d) =
∏

i∈Q0
GL(d(i))

acts naturally on Rep(Q, d); see, for example, [3, §2]. Since Λ is representation-finite,
Rep(Q,d) has a unique dense GL(d)-orbit; thus (GL(d), Rep(Q,d)) is a prehomoge-
neous vector space (abbreviated PV). It follows from the Artin–Voigt theorem [3, Theo-
rem 4.3] that the condition that X is a partial tilting module can be interpreted to that
the GL(d)-orbit containing X is dense in Rep(Q,d); On the other hand, the condition
that X is hom-orthogonal corresponds to that the isotropy subgroup (or, stabilizer) at
X ∈ Rep(Q,d) is reductive. Therefore we are interested in hom-orthogonal partial tilting
Λ-modules, because they correspond to generic points of regular PVs associated with Q;
see [5, Theorem 2.28].

In this paper, we count up the number of the isomorphic classes of basic hom-orthogonal
partial tilting Λ-modules for an arbitrary Dynkin quiver Q. In other words, this is nothing

The detailed version of this paper has been submitted for publication elsewhere.
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e(n, s) n = 6 7 8
s = 1 36 63 120

2 108 315 945
3 72 336 1575
4 0 63 675

e0(n, s) n = 6 7 8
s = 1 7 16 44

2 35 120 462
3 35 170 924
4 0 40 462

Table 0.1. The values of e(n, s) and e0(n, s)

but essentially counting the number of regular PVs associated with. Our main theorem
is the following:

Theorem 0.1. Let Q be a quiver of type An with n ≥ 1 (resp. Dn with n ≥ 4, En with
n = 6, 7, 8). Then the number a(n, s) (resp. d(n, s), e(n, s)) of the isomorphic classes of
basic hom-orthogonal tilting KQ-modules having s pairwise non-isomorphic indecompos-
able direct summands is given explicitely by the following:

a(n, s) =
(n+ 1)!

s! (s+ 1)! (n+ 1− 2s)!
(0.1)

= Cs · ( n+1
2s )(0.2)

if 1 ≤ s ≤ (n + 1)/2, and a(n, s) = 0 if otherwise. Here Cs = ( 2s
s ) /(s + 1) denotes the

s-th Catalan number.

d(n, s) =
(n− 1)!

(s!)2 (n+ 2− 2s)!
·
{
s2(s− 1) + n(n+ 1− 2s)(n+ 2− 2s)

}
if 1 ≤ s ≤ (n + 2)/2, and d(n, s) = 0 if otherwise. The values of e(n, s) for 1 ≤ s ≤
(n+ 1)/2 are given in Table 0.1, and we have e(n, s) = 0 if otherwise.

Our approach to this theorem, which was inspired by Seidel’s paper [7], is based on
an observation of perpendicular categories introduced by Schofield [6]. Here we point
out that the totality of a(n, s) or d(n, s) for fixed n can be expressed as a special value
of a hypergeometric function. As mentioned in Remark 2.4, the formula (0.2) has a
combinatorial interpretation.

According to Happel [4], if a Λ-module corresponding to a point contained in the dense
orbit of a PV (GL(d), Rep(Q, d)) has s pairwise non-isomorphic indecomposable direct
summands, then the PV has exactly n − s basic relative invariants. Thus we obtain a
consequence of Theorem 0.1.

Corollary 0.2. Each regular PV associated with a quiver of type An (resp. Dn, E6, E7,
and E8) has at least (n− 1)/2 (resp. (n− 2)/2, 3, 3, and 4) basic relative invariants.

We say that X ∈ modΛ is sincere if its dimension vector dimX does not have zero en-
try. Sincere modules are fairly interesting to the theory of PVs, because (GL(d), Rep(Q,d))
with non-sincere dimension can be regarded as a direct sum of at least two PVs associated
with proper subgraphs of Q. So we have counted them:

Theorem 0.3. Let Q be a quiver of type An with n ≥ 1 (resp. Dn with n ≥ 4, En with
n = 6, 7, 8). Then the number a0(n, s) (resp. d0(n, s), e0(n, s)) of the isomorphic classes
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of basic sincere hom-orthogonal tilting KQ-modules having s pairwise non-isomorphic in-
decomposables is given explicitely by the following:

a0(n, s) =
(n− 1)!

s! (s− 1)! (n+ 1− 2s)!
= Cs−1 ·

(
n−1
2s−2

)
(0.3)

if 1 ≤ s ≤ (n+ 1)/2, and a0(n, s) = 0 if otherwise.

d0(n, s) =
(n− 2)!

s! (s− 1)! (n+ 2− 2s)!

×
{
n(n− 1− 2s)(n− 2s) + 2n(n− 2) + (s− 1)(s2 − 9s+ 4)

}
if 1 ≤ s ≤ (n + 2)/2, and d0(n, s) = 0 if otherwise. The values of e0(n, s) for 1 ≤ s ≤
(n+ 1)/2 are given in Table 0.1, and we have e0(n, s) = 0 if otherwise.

Now we will exceptionally define some values of a(m, t) for simplicity:

a(m, −1) = 0, a(m, 0) = 1, and a(l, t) = 0 for l ≤ 0 and t 6= 0.

Then we can express d(n, s), a0(n, s), and d0(n, s) as the following simpler forms:

d(n, s) = (n− 1) · a(n− 3, s− 2) + (s+ 1) · a(n− 1, s),(0.4)

a0(n, s) = a(n− 2, s− 1),

d0(n, s) = (s− 1) · a(n− 3, s− 2) + (n− 2) · a(n− 3, s− 1).(0.5)

As will be mentioned in §1, the numbers presented in Theorems 0.1 and 0.3 are inde-
pendent on the choice of an orientation of arrows of Q. Thus we may assume that its
arrows are conveniently oriented.

1. Preliminaries

Let Q be a Dynkin quiver having n vertices, Λ = KQ its path algebra. For an inde-
composable Λ-module M , its right perpendicular category M⊥ is defined by

M⊥ = {X ∈ modΛ; HomΛ(M,X) = 0 and Ext1Λ(M,X) = 0}.
The left perpendicular category ⊥M is also defined similarly. To investigate hom-orthogonal
partial tilting modules (or, regular PVs), we are interested in their intersection PerM =
⊥M ∩ M⊥; we will simply call it the perpendicular category of M . Now we recall the
Ringel form, which is defied on the Grothendieck group K0(Λ) ∼= Zn:

〈dimX, dimY 〉 = dimHomΛ(X, Y )− dimExt1Λ(X,Y )

= t(dimX) ·RQ · (dimY )

for X, Y ∈ modΛ, where RQ = (rij)i,j∈Q0 is the representation matrix with respect to the
basis e1, e2, . . . , en of K0(Λ) ∼= Zn (here we put ek = dimS(k), which is the dimension
vector of a simple module corresponding to a vertex k ∈ Q0). This is defined as rii = 1
for all i ∈ Q0; rij = −1 if there exists an arrow i → j in Q; and rij = 0 if otherwise.

Lemma 1.1. For indecomposable Λ-modules X and Y , we have 〈dimX, dimY 〉 = 0 if
and only if HomΛ(X, Y ) = 0 and Ext1Λ(X, Y ) = 0.
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Now we will show that the numbers that are presented in our theorems do not depend
on the choice of an orientation of arrows of Q. To do this, we need the following lemma:

Lemma 1.2. For any sink a ∈ Q0 and any Λ-module M , if HomΛ(S(a),M) = 0 and
Ext1Λ(M,S(a)) = 0, then we have HomΛ(P (tα),M) = 0 for any arrow α : tα → a in Q.

Let σ = σa be the reflection functor (with the APR-tilting module T , see [2, VII Theo-
rem 5.3]) at a sink a ∈ Q0, and Q′ the quiver obtained by reversing all arrows connecting
with a in Q. For a basic hom-orthogonal partial tilting Λ-module X ∼=

⊕s
k=1Xk, we

define a Λ′-module as follows (here we put Λ′ = KQ′):

σX := S(a)Λ′ ⊕ σX2 ⊕ · · · ⊕ σXs

if X has a direct summand (say, X1) isomorphic to the simple module S(a)Λ; and

σX := σX1 ⊕ σX2 ⊕ · · · ⊕ σXs

if X does not, where we put σXk = HomΛ(T,Xk) for each indecomposable Xk. Let R,
R′ be the set of the isomorphic classes of basic hom-orthogonal partial tilting Λ-modules,
Λ′-modules, having exactly s indecomposable direct summands, respectively. Then we
have the following:

Proposition 1.3. For a basic hom-orthogonal partial tilting Λ-module X having s inde-
composable direct summands, so is Λ′-module σX. The correspondence [X] 7→ [σX] gives
a bijection from R to R′. In particular, the numbers that are presented in Theorem 0.1
do not depend on the choice of an orientation of arrows.

Proof. Let RQ, RQ′ be the representation matrix of the Ringel form of Λ, Λ′, respectively.
Let r = ra be the simple reflection on Zn corresponding to the vertex a (we also denote by
the same r its representation matrix). Then we have RQ′ = tr ·RQ · r. On the other hand,
we have dimσXk = r ·(dimXk) for Xk that is not isomorphic to S(a)Λ, and r(ea) = −ea.
Hence, by calculating with the Ringel form (recall Lemma 1.1), we see that σX is also
a basic hom-orthogonal partial tilting Λ′-module. This correspondence [X] 7→ [σX] is
obviously a bijection. �

Next we define two subsets of R as follows:

R1 =
{
[X] ∈ R; X is sincere, but σX is not sincere

}
,

R2 =
{
[X] ∈ R; X is not sincere, but σX is sincere

}
.

It follows from Lemma 1.2 that the condition “sincere” implies that any representative of
each class of R1 or R2 does not have a direct summand isomorphic to the simple module
S(a)Λ.

Proposition 1.4. We have ]R1 = ]R2. In particular, the numbers for sincere modules
that are presented in Theorem 0.3 do not depend on the choice of an orientation of arrows.

Proof. Take the isomorphic class [X] ∈ R1 and let X ∼=
⊕s

k=1Xk be its indecomposable
decomposition. Then, since σX is not sincere, only the a-th entry of dimσX = r·(dimX)
is zero. Hence so is the a-th entry of each r(αk), where we put αk = dimXk. On
the other hand, since σX is a basic hom-orthogonal partial tilting Λ′-module, we have
tr(αi)·RQ′ ·r(αj) = 0 for any pair of distinct indices. Then we see that tr(αi)·RQ ·r(αj) =
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0, because RQ and RQ′ are identical other than the a-th row and the a-th column. Let X̃
be a Λ-module corresponding to the sum of positive roots

∑s
k=1 r(αk); this is not sincere,

but σX̃ is sincere. Thus we see that the correspondence [X] 7→ [X̃] gives a bijection from
R1 to R2. �

2. An-type

Let Q be the equi-oriented quiver
1◦ −→ 2◦ −→ · · · −→ n◦ of An-type. In the following,

we will sometimes consider the corresponding things of “A0-type” or “A−1-type” to be
trivial for simplicity; for example, “An−2×A−1-type” means just “An−2-type”, and so on.

Proposition 2.1. For each k = 1, 2, . . . , n, the perpendicular category Per I(k) is equiv-
alent to the module category of a path algebra of type Ak−2 × An−1−k.

Proposition 2.2. Let n and s be positive integers. The number a(n, s) satisfies the
following recurrence formula:

(2.1) a(n, s) = a(n− 1, s) +
s−1∑
t=0

n−2∑
m=−1

a(m, t) · a(n− 3−m, s− 1− t).

Proof. Let X =
⊕s

j=1Xj be a basic hom-orthogonal partial tilting Λ-module having
s distinct indecomposable summands. Note that X has at most one injective direct
summand. If X does not have any injective, then the first entry of dimX is zero;
that is, it is a sum of positive roots that come from An−1-type. So the number for
such modules is equal to a(n − 1, s). Assume that X has just one injective summand,
say I(k). Then, according to Proposition 2.1, X has t and s − 1 − t direct summands
that come from Ak−2-type and An−1−k-type, respectively. Thus we see that there exist∑s−1

t=0 a(k−2, t) ·a(n−1−k, s−1− t) such modules. Since k runs from 1 to n, we obtain
our assertion. �

By using the recurrence formula above, we prove Theorem 0.1 for An-type. Here we
notice that the generating function of a(n, s) = Cs · ( n+1

2s ) can be immediately obtained
from the generalized binomial expansion.

Lemma 2.3. The generating function Fs(x) =
∑∞

n=0 a(n, s)x
n of a(n, s) for fixed s is

given by

Fs(x) =
Cs · x2s−1

(1− x)2s+1
.

Proof of Theorem 0.1 for An-type. First we note that a(n, 1) is nothing but the number
of positive roots of An-type, which is equal to n(n + 1)/2 = C1 · ( n+1

2 ). In the case of
n = 1, our assertion is trivial. So we assume that the assertion (0.2) holds for all positive
integers less than n (≥ 2). In the recurrence formula (2.1), we note that a(m, t) (resp.
a(n − 3 −m, s − 1 − t)) is the coefficient of degree m (resp. n − 3 −m) of Ft(x) (resp.
Fs−1−t(x)). The coefficient of degree n− 3 of the Taylor expansion at the origin (x = 0)
of

Ft(x)× Fs−1−t(x) = Ct · Cs−1−t ·
x2s−4

(1− x)2s
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is equal to ( n
2s−1 ); hence we have

(2.2)
n−2∑

m=−1

a(m, t) · a(n− 3−m, s− 1− t) = Ct · Cs−1−t · ( n
2s−1 ) .

By the recurrence formula (2.1) and the assumption of induction, we have

a(n, s) = a(n− 1, s) + ( n
2s−1 )

s−1∑
t=0

Ct · Cs−1−t

= Cs · ( n
2s ) + ( n

2s−1 ) · Cs = Cs · ( n+1
2s ) .

Next we prove that a(n, s) = 0 if s > (n + 1)/2. Let s be such an integer. Then
we have a(n − 1, s) = 0 by the assumption of induction because s > n/2. Suppose that
t ≤ (m+1)/2 and s−1−t ≤ (n−3−m+1)/2 for fixed t. Then we have s−1 ≤ (n−1)/2;
a contradiction. Hence t > (m + 1)/2 or s − 1 − t > (n − 3 − m + 1)/2, and so that
a(m, t) = 0 or a(n−3−m, s−1− t) = 0. Thus we conclude a(n, s) = 0 by the recurrence
formula (2.1). Therefore we obtain our assertion for An-type. �
Remark 2.4. The formula (0.2) has a combinatorial interpretation. According to Araya
[1, Lemma 3.2], for distinct indecomposables X,Y ∈ modΛ, their direct sum X ⊕ Y is a
hom-orthogonal partial tilting module (or, both (X,Y ) and (Y,X) are exceptional pairs)
if and only if the corresponding codes of a circle with n+1 points do not meet each other.
It follows from a well-known combinatorics on codes that the number of such codes is
equal to C2 · ( n+1

4 ) = a(n, 2). The formula for general s ≥ 2 can be similarly obtained.

Proposition 2.5. Let X be a basic sincere hom-orthogonal partial tilting Λ-module. Then
X has exactly one direct summand isomorphic to I(n).

Proof of Theorem 0.3 for An-type. LetX be a basic sincere hom-orthogonal partial tilting
Λ-module. In the case of s = 1 (that is, X itself is indecomposable), it must be isomorphic
to I(n). Hence we have a0(n, 1) = 1 for any n. If n = 1 or n = 2, our assertion can
be proved directly. So let n ≥ 3 and s ≥ 2. By Propositions 2.2 and 2.5, the other
summands of X should be taken from a module category of An−2-type. The number of
such candidates is equal to a(n− 2, s− 1). We can prove a0(n, s) = 0 for s > (n + 1)/2
by a similar manner to the proof of Theorem 0.1. �

Theorems for Dn-type and En-type are shown in a similar way. The detailed proof is
given in our paper which has been submitted for publication elsewhere
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