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Abstract. Concerning the Feit-Thompson Conjecture, Stephens found the serious
example. Using Artin map (see [9]), we shall show that numbers 17 and 3313 in the
example by Stephen are common index divisors of some subfields of a cyclotomic field

Q(ζr) where r = 112643 and ζr = e
2πi
r , and some results in [7, 8] shall be again proved.
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Let p < q be primes and we set

f :=
qp − 1

q − 1
and t :=

pq − 1

p− 1
.

Feit and Thompson [3] conjectured that f never divides t. If it would be proved,
the proof of their odd order theorem [4] would be greatly simplified (see [1] and [5]).
Throughout this note, we assume that r is a common prime divisor of f and t.

Using computer, Stephens [10] found the example about r as follows: for p = 17 and
q = 3313, r = 112643 = 2pq + 1 is the greatest common divisor of f and t. This example
is so far the only one.
In this note, using the Artin map, we shall show that both 17 and 3313 are common

index divisors (gemeinsamer ausserwesentlicher Discriminantenteiler) of some subfields of

a cyclotomic field Q(ζr) where r = 112643 and ζr = e
2πi
r , and some results in [7, 8] shall

be again proved from our Theorem.
The assumption on r yields from [7, Lemma, (1) and (3)] that p and q are orders of

q mod r and p mod r, respectively. Thus r ≡ 1 mod 2pq since r is odd.
We set q∗q := r − 1 and ζ = e

2πi
r . Let n be a divisor of q∗, let Ln be a subfield of

K = Q(ζ) with [Ln : Q] = n and let On be the algebraic integer ring of Ln. Using the
exact sequence by the Artin map (see [9, p.99 and section 2.16] ) and Kummer’s theorem.
We have d(µ) = I(µ)2d(Ln) for µ ∈ On where I(µ) ∈ Z, d(µ) and d(Ln) are discrimi-

nants of µ and of the field Ln, respectively.

The example by Stephens shows from the next Theorem that p = 17 and q = 3313 are
common index divisors of L34 and of L6626, respectively, since we can exchange p for q.

The detailed version of this paper will be submitted for publication elsewhere.

–121–



Theorem. Assume r is a common prime divisor of f and t, and n is a divisor of q∗,
where q∗q = r − 1. Then p splits completely in On and if there exists µ ∈ On such that p
does not divide I(µ), then n 5 p. In particular, for n > p, p is a common index divisor of
On namely, p divides I(γ) for all γ ∈ On.

Let c be a primitive root for r, let χ be a character of order n defined by χ(c) = ω

where ω = e
2πi
n and let g(χ) =

∑
a∈Fr

χ(a)ζa be the Gauss sum of χ where Fr is a finite
field of order r. Let σ(ζ) = ζc be a generator of the Galois group G of K over Q and set
Tn := 〈σn〉.
For simplicity, we set g0 = −1, gk = g(χk) for n > k > 0 and θk = θσ

k
for n > k = 0

where θ =
∑

τ∈Tn
ζτ is a trace of ζ.

It is known that Ln = Q(θ) and θ is a normal basis element of On over Z (see [9, p.61,
p.74])

The next Lemma is useful to our object. It only needs to assume r is prime and n is a
divisor of r − 1 in this Lemma. This proof is essentially in the first equation of (1) due
to [9, p.62]. This idea of classifying primitive roots goes back to Gauss; the regular 17
polygon construction by ruler and compass.

Lemma.

(1) gk =
∑n−1

s=0 ω
ksθs for 0 5 k < n and nθk =

∑n−1
s=0 ω̄

ksgs for 0 5 k < n where ω̄ is
the complex conjugate of ω.

(2) Using (1), determinants of cyclic matrices An, Bn are given by

|An| :=

∣∣∣∣∣∣∣∣
θ0 θ1 . . . θn−1

θn−1 θ0 . . . θn−2
...

...
. . .

...
θ1 θ2 . . . θ0

∣∣∣∣∣∣∣∣ =
n−1∏
k=0

gk and |Bn| :=

∣∣∣∣∣∣∣∣
g0 g1 . . . gn−1

gn−1 g0 . . . gn−2
...

...
. . .

...
g1 g2 . . . g0

∣∣∣∣∣∣∣∣ = nn

n−1∏
k=0

θk.

(3) We have

d(Ln) =

{
rn−1 if n is odd,

(−1)
r−1
2 rn−1 if n is even.

Some results in [7, 8] are proved again in the next

Corollary. Let r be a common prime divisor of f and t. Then we have
(1) p ≡ 1 or r ≡ 1 mod 4 (see [7, Lemma, (4) ]).

(2) q ≡ −1 mod 9 in case p = 3 and f divides t (see [8, Corollary, (a)]).
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Proof of (2). We consider the case n = p = 3. If f is composite, then f does not
divide t. Thus we may assume f is prime and so r = f (see [7]). f has a primary prime

decomposition f = ηη̄ in Z[ω] where ω = e
2πi
3 and η = ω(ω− q), (see [6, 8]). In this case,

we set χ is the cubic residue character modulo η. Let h(x) be the minimal polynomial of
θ over Q.

h(x) := x3 + a1x
2 + a2x+ a3 = (x− θ0)(x− θ1)(x− θ2).

where a1 = −θ0 − θ1 − θ2 = 1. If 3 does not divide I(θ), then h(x) ≡ x3 − x mod 3 by
Kummer’s theorem and our Theorem. This contradicts to a1 = 1. Thus d(θ) ≡ 0 mod 3.
Using g1g2 = g1ḡ1 = |g1|2 = r, we have

f = r = −|A3| = −(θ0 + θ1 + θ2)

∣∣∣∣∣∣
1 θ1 θ2
1 θ0 θ1
1 θ2 θ0

∣∣∣∣∣∣ = θ20 + θ21 + θ22 − a2 = 1− 3a2.

Thus we obtain 3a2 = 1− f = −q(q + 1). On the other hand, using g2 = ḡ1, f = ηη̄ and
the Stickelberger relation g31 = rη = fη (see [6]), we have

−27a3 = 27θ0θ1θ2 = |B3| =

∣∣∣∣∣∣
g0 g1 g2
g2 g0 g1
g1 g2 g0

∣∣∣∣∣∣ = g30 + g31 + g32 − 3g0g1g2

= −1 + f(η + η̄) + 3f = −1 + f(q − 1) + 3f = (q + 1)3.

Thus we have 33q3a3 = (−q(q + 1))3 = 33a32 and so a2 + a3 ≡ a32 − q3a3 = 0 mod 3.
Noting h′(θ) ≡ a2 − θ mod 3 where h′(x) is the derivation of h(x), we obtain

0 ≡ −d(θ) = NL3/Q(h
′(θ)) ≡ h(a2) ≡ a2 − a22 + a3 ≡ −a22 mod 3.

Thus we have 0 ≡ 3a2 = −q(q + 1) mod 9. 2

Remark. Using only the quadratic reciprocity law, we can prove

q ≡ −1 mod 8 in case p = 3 and f divides t.

It simplifies the proof of Proposition 3.2 by Lemma 3.3 on p.172 in the paper
K. Dilcher and J. Knauer, On a conjecture of Feit and Thompson, pp.169-178 in the book,
High primes and misdemeanours, edited by A. van der Poorten, A. Stein, Fields Institute
Communications 41, Amer. Math. Soc., 2004.

We can understand their proof through the next some results in this order :

• Ex. 11 on p.231, and p.103 in the book, B. C. Berndt, R.J. Evans, K. S. Williams,
Gauss and Jacobi Sums, Wiley, New York, 1998.

• Proof of Theorem 2 on p.139 in the paper, R. Hudson and K. S. Williams, Some
new residuacity criteria, Pacific J. of Math. 91(1980), 135-143.

• The tables for the cyclotomic numbers of order 6 and p.68 in the paper, A. L.
Whiteman, The cyclotomic numbers of order twelve, Acta. Arithmetica 6 (1960),
53-76.
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