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Abstract. We study the quiver with relations of the endomorphism algebra of an APR
tilting module. We give an explicit description of the quiver with relations by graded
quivers with potential (QPs) and mutations. Consequently, mutations of QPs provide a
rich source of derived equivalence classes of algebras.

1. Introduction

Derived categories have been one of the important tools in the study of many areas
of mathematics. In the representation theory of algebras, tilting modules play an essen-
tial role to give an equivalence of derived categories. More precisely, the endomorphism
algebra of a tilting module is derived equivalent to the original algebra. Therefore the
relationship of quivers with relations of these algebras has been investigated for a long
time.

The first well-known result of these studies appears in the work of [5]. It is the origin
of tilting theory and formulated in terms of an APR tilting module now [4]. Let us recall
an important property of APR tilting modules.

Theorem 1. [4] Let KQ be a path algebra of a finite acyclic quiver Q and Tk be the APR
tilting KQ-module associated with a source k ∈ Q. Then we have an algebra isomorphism

EndKQ(Tk) ∼= K(µkQ),

where µk is a mutation at k.

Thus the quiver of the endomorphism algebra is completely determined by combinato-
rial methods and the mutation can be considered as a generalization of BGP reflection.
The notion of mutation was introduced by Fomin-Zelevinsky [11], which is an important
ingredient of cluster algebras, and many links with other subjects have been discovered
and widely investigated. In particular, Derksen-Weyman-Zelevinsky applied mutations
to quivers with potential (QPs). It has been found that mutations of QPs have close
connections with tilting theory, for example [9, 17].

The main purposes of this paper is to generalize the above result for a more general
class of algebras by using mutations of QPs. Since we have gl.dimKQ ≤ 1, it is natural
to consider algebras Λ with gl.dimΛ ≤ 2. In this case, we can describe the quiver and
relations by the following steps.

1. Define the associated graded QP (QΛ,WΛ, CΛ).
2. Apply left mutation µL

k to (QΛ,WΛ, CΛ).
3. Take the truncated Jacobian algebras P(µL

k (QΛ,WΛ, CΛ)).

The detailed version of this paper will be submitted for publication elsewhere.
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Then we have the following result.

Theorem 2. (Theorem 7) Let Λ be a finite dimensional algebra with gl.dimΛ ≤ 2 and
Tk be the APR tilting Λ-module associated with a source k. Then we have an algebra
isomorphism

EndΛ(Tk) ∼= P(µL
k (QΛ,WΛ, CΛ)).

We give three remarks about the theorem. First, we can show that P(µL
k (QΛ,WΛ, CΛ))

coincides with K(µkQ) if gl.dimΛ = 1, so that Theorem 2 gives a generalization of The-
orem 1. Second, the condition gl.dimΛ ≤ 2 is actually not necessary, and it is enough
to assume that the associated projective module has the injective dimension at most 2.
Finally, this isomorphic provides a bridge of the two notions which have entirely different
origins, and it implies that the contemporary concepts have a profound connection with
the classical ones.

Conventions and notations. We always suppose that K is an algebraically closed field
for simplicity. All modules are left modules and the composition fg of morphisms means
first f , then g. We denote the set of vertices by Q0 and the set of arrows by Q1 of a quiver
Q. We denote by a : s(a) → e(a) the start and end vertices of an arrow or path a.

2. Preliminaries

In this section, we give a brief summary of the definitions and results we will use in the
next sections. See references for more detailed arguments and precise definitions.

2.1. Quivers with potentials. We review the notions initiated in [10].
• Let Q be a finite connected quiver. We denote by KQi the K-vector space with basis

consisting of paths of length i in Q, and by KQi,cyc the subspace of KQi spanned by all
cycles. We denote complete path algebra by

K̂Q =
∏
i≥0

KQi.

A quiver with potential (QP) is a pair (Q,W ) consisting of a quiver Q and an element
W ∈

∏
i≥2 KQi,cyc, called a potential. For each arrow a in Q, the cyclic derivative

∂a : K̂Qcyc → K̂Q is defined by the continuous linear map which sends ∂a(a1 · · · ad) =∑
ai=a ai+1 · · · ada1 · · · ai−1. For a QP (Q,W ), we define the Jacobian algebra by

P(Q,W ) = K̂Q/J (W ),

where J (W ) = 〈∂aW | a ∈ Q1〉 is the closure of the ideal generated by ∂aW with respect
to the JK̂Q-adic topology.

• A QP (Q,W ) is called reduced if W ∈
∏

i≥3 KQi,cyc.
• For two QPs (Q′,W ′) and (Q′′,W ′′), we define a new QP (Q,W ) as a direct sum

(Q′,W ′)⊕ (Q′′,W ′′), where Q0 = Q′
0(= Q′′

0), Q1 = Q′
1

∐
Q′′

1 and W = W ′ +W ′′.

Definition 3. For each vertex k in Q not lying on a loop nor 2-cycle, we define a mutation
µk(Q,W ) as a reduced part of µ̃k(Q,W ) = (Q′,W ′), where (Q′,W ′) is given as follows.

–115–



(1) Q′ is a quiver obtained from Q by the following changes.
• Replace each arrow a : k → v in Q by a new arrow a∗ : v → k.
• Replace each arrow b : u → k in Q by a new arrow b∗ : k → u.

• For each pair of arrows u
b→ k

a→ v, add a new arrow [ba] : u → v
(2) W ′ = [W ] + ∆ is defined as follows.

• [W ] is obtained from the potential W by replacing all compositions ba by the

new arrows [ba] for each pair of arrows u
b→ k

a→ v.

• ∆ =
∑

a,b∈Q1

e(b)=k=s(a)

[ba]a∗b∗.

2.2. Truncated Jacobian algebras. We introduce the notion of cuts and the truncated
Jacobian algebras.

Definition 4. [14] Let (Q,W ) be a QP. A subset C ⊂ Q1 is called a cut if each cycle
appearing W contains exactly one arrow of C. Then we define the truncated Jacobian
algebra by

P(Q,W,C) := P(Q,W )/〈C〉 = K̂QC/〈∂cW | c ∈ C〉,
where QC is the subquiver of Q with vertex set Q0 and arrow set Q1 \ C.

Then, we can naturally define a QP with a cut from a given algebra as follows.

Definition 5. [16] Let Q be a finite connected quiver and Λ = K̂Q/〈R〉 be a finite
dimensional algebra with a minimal set of relations.

Then we define a QP (QΛ,WΛ) as follows:

(1) (QΛ)0 = Q0

(2) (QΛ)1 = Q1

∐
CΛ, where CΛ := {ρr : e(r) → s(r) | r ∈ R}.

(3) WΛ =
∑
r∈R

ρrr.

Then the set CΛ gives a cut of (QΛ,WΛ).

2.3. APR tilting modules. We call a Λ-module T tilting module if proj.dimΛT ≤ 1,
Ext1Λ(T, T ) = 0, and there exists a short exact sequence 0 → Λ → T0 → T1 → 0 with
T0, T1 in addT .

Definition 6. Let Λ be a basic finite dimensional algebra and Pk be a simple projective
non-injective Λ-module associated with a source k of the quiver Λ. Then Λ-module
T := τ−Pk ⊕ Λ/Pk is called an APR tilting module, where τ− denotes the inverse of the
Auslander-Reiten translation.

3. Main theorem

3.1. Main result. Let Q be a finite connected quiver and Λ = K̂Q/〈R〉 be a finite
dimensional algebra with a minimal set of relations. Assume that Pk is the simple pro-
jective non-injective Λ-module associated with a source k ∈ Q. Our aim is to determine
the quiver and the set of relations giving EndΛ(Tk).
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Consider the associated QP (QΛ,WΛ, CΛ) of Λ and we put µ̃k(QΛ,WΛ) = (Q′,W ′).
Then W ′ is given by

W ′ = [
∑
r∈R

ρrr] +
∑

a∈Q1,r∈R
s(a)=k=s(r)

[ρra]a
∗ρ∗r,

and it is easy to check that subset

C ′ = { ρr | r ∈ R, s(r) 6= k}
∐

{ [ρra] | a ∈ Q1, r ∈ R, s(a) = k = s(r)}

of Q′ is a cut of (Q′,W ′).
Then we have the following.

Theorem 7. Let Λ = K̂Q/〈R〉 be a finite dimensional algebra with a minimal set of
relations. Let Tk := τ−Pk ⊕ Λ/Pk be the APR tilting module. Then if inj.dimPk ≤ 2, we
have an algebra isomorphism

EndΛ(Tk) ∼= P(µ̃k(QΛ,WΛ), C
′).

Notice that the assumption inj.dimPk ≤ 2 is automatic if gl.dimΛ = 2. Thus our
theorem give a generalization from gl.dimΛ = 1 to gl.dimΛ = 2.

Here we will explain the choice of C ′. In fact C ′ is naturally obtained by using graded
mutations. For this purpose, we recall graded QPs, as introduced by [1].

Graded quivers with potentials. Let (Q,W ) be a QP and we define a map d : Q1 → Z.
We call a QP (Q,W, d) Z-graded QP if each arrow a ∈ Q1 has a degree d(a) ∈ Z, and
homogeneous of degree l if each term in W is a degree l.

Definition 8. Let QP (Q,W, d) be a Z-graded QP of degree l. For each vertex k in Q
not lying on a loop nor 2-cycle, we define a left mutation µL

k (Q,W, d) as a reduced part
of µ̃L

k (Q,W, d) = (Q′,W ′, d′), where (Q′,W ′, d′) is given as follows.

(1) (Q′,W ′) = µ̃k(Q,W )
(2) The new degree d′ is defined as follows:

• d′(a) = d(a) for each arrow a ∈ Q ∩Q′.
• d′(a∗) = −d(a) for each arrow a : k → v in Q.
• d′(b∗) = −d(b) + l for each arrow b : u → k in Q.

• d′([ba]) = d(a) + d(b) for each pair of arrows u
b→ k

a→ v in Q.

In particular, µ̃L
k (Q,W, d) also has a potential of degree l. Similarly, we can define

µ̃R
k at k. In this case, we define d′(b∗) = −d(b) for each arrow b : u → k in Q and

d′(a∗) = −d(a) + l for each arrow a : k → v in Q.

If (Q,W ) has a cut C, we can identify the QP with a Z-graded QP of degree 1 associating
a grading on Q by

dC(a) =

{
1 a ∈ C

0 a 6∈ C.

We denote by (Q,W,C) the graded QP of degree 1 with this grading. If any arrow of
µ̃L
k (Q,W,C) has degree 0 or 1, degree 1 arrows give a cut of µ̃k(Q,W ) since µ̃L

k (Q,W,C)
is homogeneous of degree 1. Therefore a cut of µ̃k(QΛ,WΛ) is naturally induced as degree
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1 arrows of µ̃L
k (QΛ,WΛ, CΛ) and the above C ′ is obtained in this way. Thus we identify

degree 1 arrows as a cut.
Because we have P(µ̃L

k (QΛ,WΛ, CΛ)) ∼= P(µL
k (QΛ,WΛ, CΛ)), we can rewrite Theorem 7

that we have an algebra isomorphism

EndΛ(Tk) ∼= P(µL
k (QΛ,WΛ, CΛ)).

3.2. Examples. We explain the theorem with some examples.

Example 9. We keep the assumption of Theorem 7. If gl.dimΛ = 1, then we have
Λ = KQ and

P(µL
k (QΛ,WΛ, CΛ)) = P(µL

k (Q, 0, 0)) = K(µkQ),

so that the mutation procedure is just reversing arrows having k. Thus the above theorem
coincides with the classical result (Theorem 1).

Example 10. Let Λ = K̂Q/〈R〉 be a finite dimensional algebra given by the following
quiver with a relation.

2
b

##G
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GG

1

a
;;wwwww

c ""E
EE

EE
E 4

3
d

<<yyyyyy
〈R〉 = 〈ab〉.

Then we consider the APR tilting module T1 := τ−P1 ⊕ Λ/P1 and calculate Q′ and R′

satisfying K̂Q′/〈R′〉 ∼= EndΛ(T1) by the following steps.
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〈R〉 = 〈ab〉. WΛ = ρab. W ′ = [ρa]b+[ρa]a∗ρ∗+[ρc]c∗ρ∗.

2
a∗

~~||
||
||

µL
1=⇒ 1

ρ∗ // 4

[ρc]pp

P(µL
1 (QΛ,WΛ,CΛ))
=⇒ Q′ =

3

d
>>||||||c∗
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2
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1
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3

d
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W ′ = [ρc]c∗ρ∗ 〈R′〉 = 〈c∗ρ∗〉.
Similarly from the left-hand side algebra Λ, we obtain the quiver and the set of relations

giving EndΛ(T1), which is given by right-hand side picture.
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(1)

1
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2
b // 3

c =⇒

OO 1
ρ∗1

ρ∗2 +3 4

2
b //

a∗1a∗2

KS

3

c

OO

〈R〉 = 〈a1bc, a2bc〉 〈R′〉 = 〈a∗1ρ∗1+bc, a∗2ρ
∗
2+bc, a∗1ρ

∗
2, a

∗
2ρ

∗
1〉.

(2) (i)

1
a1 //

b1

��

2
a1 // 3

a3 =⇒
��

4
b2

// 5
b3

// 6

1

ρ∗

))SSS
SSS

SSS
SSS

SSS
SSS

SSS
S 2

a2 //a1∗oo 3

a3

��
4

b2

//

b1
∗

OO

5
b3

// 6

〈R〉 = 〈a1a2a3〉 〈R′〉 = 〈a2a3 + a1
∗ρ∗, b1

∗ρ∗〉.
(ii)

1
a1 //

b1

��

2
a1 // 3

a3 =⇒
��

4
b2

// 5
b3

// 6

1

ρ∗

))SS
SSS

SSS
SSS

SSS
SSS

SSS
SS 2

a2 //a1∗oo 3

a3

��
4

b2

//

b1
∗

OO

5
b3

// 6

〈R〉 = 〈a1a2a3 = b1b2b3〉 〈R′〉 = 〈a2a3 + a1
∗ρ∗, b2b3 + b1

∗ρ∗〉.
As examples show, we interpret the degree 1 arrows as relations.
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