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Abstract. In this paper we generalize the notion of cyclicity of codes, that is, poly-
cyclic codes and sequential codes. We study the relation between polycyclic codes and
sequential codes over finite commutative QF rings. Furthermore, we characterized the
family of some constacyclic codes.
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1. Introduction

Let R be a finite commutative ring. A linear code C of length n over R is a sub-
module of the R-module Rn = {(a0, · · · , an−1)|ai ∈ R}. If C is a free R-module, C is
said to be a free code. A linear code C ⊆ Rn is called cyclic if (a0, a1, · · · , an−1) ∈ C
implies (an−1, a0, a1, · · · , an−2) ∈ C. The notion of cyclicity has been extended in various
directions.

In [6], S. R. López-Permouth, B. R. Parra-Avila and S. Szabo studied the duality
between polycyclic codes and sequential codes. By the way, J. A. Wood establish the ex-
tension theorem and MacWilliams identities over finite frobenius rings in [9]. M. Greferath
and M. E. O’Sullivan study bounds for block codes on finite frobenius rings in [2]. In this
paper, we generalize the result of [6] to codes with finite commutative QF rings.

In section 2 we define polycyclic codes over finite commutative rings. And we study
the properties of polycyclic codes. In section 3 we define sequential codes and consider
the properties of sequential codes. In section 4 we study the relation between polycyclic
codes and sequential codes over finite commutative QF rings. And we characterized the
family of some constacyclic codes.

Throughout this paper, R denotes a finite commutative ring with 1 6= 0, n denotes a
natural number with n ≥ 2, unless otherwise stated.

2. Polycyclic codes

A linear [n, k]-code over a finite commutative ring R is a submodule C ⊆ Rn of rank
k. We define polycyclic codes over a finite commutative ring.

Definition 1. Let C be a linear code of length n over R. C is a polycyclic code induced by
c if there exists a vector c = (c0, c1, · · · , cn−1) ∈ Rn such that for every (a0, a1, · · · , an−1) ∈
C, (0, a0, a1, · · · , an−2) + an−1(c0, c1, · · · , cn−1) ∈ C. In this case we call c an associated
vector of C.

The detailed version of this paper will be submitted for publication elsewhere.
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As cyclic codes, polycyclic codes may be understood in terms of ideals in quotient
rings of polynomial rings. Given c = (c0, c1, · · · , cn−1) ∈ Rn, if we let f(X) = Xn −
c(X), where c(X) = cn−1X

n−1 + · · · + c1X + c0 then the R-module homomorphism ρ :
Rn → R[X]/(f(X)) sending the vector a = (a0, a1, · · · , an−1) to the equivalence class of

polynomial an−1Xn−1 + · · ·+ a1X + a0, allows us to identify the polycyclic codes induced
by c with the ideal of R[X]/(f(X)).

Definition 2. Let C be a polycyclic code in R[X]/(f(X)). If there exist monic polynomi-
als g and h such that ρ(C) = (g)/(f) and f = hg, then C is called a principal polycyclic
code.

Proposition 3. A code C ⊆ Rn is a principal polycyclic code induced by some c ∈ C if
and only if C is a free R-module and has a k × n generator matrix of the form

G =


g0 g1 · · · gn−k 0 · · · 0
0 g0 g1 · · · gn−k · · · 0

0
. . . . . . . . . . . . . . . 0

...
...

0 · · · 0 g0 g1 · · · gn−k


with an invertible gn−k. In this case

ρ(C) =
(
gn−kXn−k + · · ·+ g1X + g0

)
is the ideal of R[X]/(f(X)).

Definition 4. Let C = (g)/(f) ⊆ R[X]/(f(X)) be a principal polycyclic code. If the
constant term of g is invertible, then C is called a principal polycyclic code with an
invertible constant term.

For a c = (c0, c1, · · · , cn−1) ∈ Rn, let Dc be the following square matrix;

Dc =


0 1 0

. . .
0 1
c0 c1 · · · cn−1

.

It follows that a code C ⊆ Rn is polycyclic with an associated vector c ∈ Rn if and
only if it is invariant under right multiplication by Dc.

3. Sequential codes

Definition 5. Let C be a linear code of length n over R. C is a sequential code induced by
c if there exists a vector c = (c0, c1, · · · , cn−1) ∈ Rn such that for every (a0, a1, · · · , an−1) ∈
C, (a1, a2, · · · , an−1, a0c0+ a1c1+ · · ·+ an−1cn−1) ∈ C. In this case we call c an associated
vector of C.

Let C be a sequential code with an associated vector c = (c0, c1, · · · , cn−1). Then C is
invariant under right multiplication by the matrix
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tDc =


0 0 c0
1 c1

. . .
...

0 1 cn−1


On Rn define the standard inner product by

< x, y >=
∑n−1

i=0 xiyi

for x = (x0, x1, · · · , xn−1), y = (y0, y1, · · · , yn−1) ∈ Rn.
The dual code C⊥ of a linear code C is defined by

C⊥ = {a ∈ Rn| < c, a >= 0 for any c ∈ C}.
Clearly, C⊥ is a linear code over R.

Theorem 6. For a code C ⊆ Rn, we have the following assertions:
(1) If C is polycyclic, then C⊥ is sequential.
(2) If C is sequential, then C⊥ is polycyclic.

4. Codes over finite commutative QF rings

Let R be a (not necessarily commutative) ring. A left R-module P is projective if for
every R-epimorphism g : M → N and every R-homomorphism f : P → N , there exists a
R-homomorphism h : P → M with f = g◦h.

A left R-module Q is injective if for every R-monomorphism g : N → M and every
R-homomorphism f : N → Q, there exists a R-homomorphism h : M → Q with f = h◦g.

The ring R is said to be left (resp. right) self-injective if R itself is injective as left
(resp. right) R-module. If both conditions hold, R is said to be a self-injective ring.

A left R-module M is Artinian if M is satisfies the descending chain condition on
submodules. A ring R is left (resp. right) Artinian if R itself is Artinian as left (resp.
right) R-module. If both conditions hold, R is said to be an Artinian ring.

It is clear that a finite ring is an Artinian ring.

Definition 7. For a (not necessarily commutative) ring R, R is called a QF (quasi-
Frobenius) ring if R is left Artinian and left self-injective.

It is well-known that the definition of a QF ring is left-right symmetric.
For any R-submodule C ⊆ Rn, C◦ is defined by

C◦ = {λ ∈ HomR(R
n, R)|λ(C) = 0}.

Theorem 8. For a (not necessarily commutative) ring R, the following conditions are
equivalent:
(1) R is a QF ring.
(2) For submodules M ⊆ Rn, M◦◦ = M.

Theorem 9. For a (not necessarily commutative) ring R, the following are equivalent:
(1) R is a QF ring.
(2) A left module is projective if and only if it is injective.

We define an R-module homomorphism δx : Rn → R as δx(y) =< y, x > for any x ∈ Rn.
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Proposition 10. The homomorphism δ : C⊥ → C◦ sending x to δx is an isomorphism
of R-modules.

Theorem 11. Let R be a finite commutative QF ring. For a submodule C ⊆ Rn, (C⊥)⊥ =
C.

By Theorem 1 and Theorem 4, we can get the following corollary.

Corollary 12. Let R be a finite commutative QF ring. Then C is a polycyclic code if
and only if C⊥ is a sequential code.

Theorem 13. Let R be a finite commutative QF ring. If C ⊆ Rn is a free R-module of
finite rank, then C⊥ is a free R-module of rankC⊥ = n− rankC.

We determine the parity check matrix of a constacyclic code.

Proposition 14. Let R be a finite commutative QF ring and f = Xn − α ∈ R[X].
Suppose f = hg ∈ R[X] where g and h are polynomials of degree n−k and k, respectively.
Let C be the linear [n, k]-code corresponding to the ideal generated by g in R[X]/(Xn−α)
and h(X) = hkX

k +hk−1X
k−1+ · · ·+h1X +h0. Then C has the (n− k)×n parity check

matrix H given by

H =


hk · · · h1 h0 0 · · · 0
0 hk · · · h1 h0 · · · 0

0
. . . . . . . . . . . . . . . 0

...
...

0 · · · 0 hk · · · h1 h0

.

Definition 15. Let R be a finite commutative QF ring. For a sequential code C ⊆ Rn, C
is called a principal sequential code if C⊥ is a principal polycyclic code. And C is called a
principal sequential code with an invertible constant term if C⊥ is a principal polycyclic
code with an invertible constant term.

Now we can get the main theorem.

Theorem 16. Let R be a finite commutative QF ring. Suppose C is a free codes of Rn.
Then the following conditions are equivalent:
(1) Both C and C⊥ are principal polycyclic codes with invertible constant terms.
(2) Both C and C⊥ are principal sequential codes with invertible constant terms.
(3) C is a principal polycyclic and sequential code with an invertible constant term.
(4) C⊥ is a principal polycyclic and sequential code with an invertible constant term.
(5) C = (g)/(Xn − α) is a constacyclic code with an invertible α.
(6) C⊥ = (q)/(Xn − β) is a constacyclic code with an invertible β.
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[1] D. Boucher and P. Solé, Skew constacyclic codes over Galois rings, Advances in Mathematics of
Communications, Volume 2, No. 3 (2008), 273–292.

[2] M. Greferath, M. E. O’Sullivan, On bounds for codes over Frobenius rings under homogeneous weights,
Discrete Math, 289 (2004), 11–24.

[3] Y. Hirano, On admissible rings, Indag. Math. 8 (1997), 55–59.
[4] S. Ikehata, On separable polynomials and Frobenius polynomials in skew polynomial rings, Math. J.

Okayama. Univ. 22 (1980), 115–129.
[5] T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, Vol. 189, Springer-Verlag,

New York, 1999.
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