WEAKLY CLOSED GRAPH
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ABSTRACT. We introduce the notion of weak closedness for connected simple graphs.
This notion is a generalization of closedness introduced by Herzog-Hibi-Hreindottir-
Kahle-Rauh. We give a characterization of weakly closed graphs and prove that the
binomial edge ideal Jg is F-pure for weakly closed graph G.
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1. INTRODUCTION

This article is based on [6].

Throughout this article, let £ be an F-finite field of positive characteristic. Let G be
a graph on the vertex set V(G) = [n| with edge set E(G). We assume that a graph G
is always connected and simple, that is, G is connected and has no loops and multiple
edges. And the term “labeling” means numbering of V(G) from 1 to n.

For each graph G, we call Jg = ([1,7] = X;Y; — X;Y; | {i,j} € E(G)) the binomial
edge ideal of G (see [4], [8]). Jg is an ideal of S := k[Xy,..., X, Y1,...,Y,].

2. WEAKLY CLOSED GRAPH

In this section, we give the definition of weakly closed graphs and the first main theorem
of this chapter, which is a characterization of weakly closed graphs.

Until we define the notion of weak closedness, we fix a graph G and a labeling of V (G).

Let (aq,...,a,) be a sequence such that 1 < a; <n and a; # a; if i # j.

Definition 1. We say that a; is interchangeable with a;iq if {a;,a;41} € E(G). And we
call the following operation {a;, a;11 }-interchanging :

(ah sy A1, Qs Qg 1, At 2,5 - - - 7%) — (al, ey A1, Qg 1, Ay Ay 25 - - 7%)
Definition 2. Let {i,5} € E(G). We say that i is adjacentable with j if the following
assertion holds: for a sequence (1,2,...,n), by repeating interchanging, one can find a
sequence (ay,...,a,) such that ay =i and a1 = j for some k.

Example 3. About the following graph G, 1 is adjacentable with 4:

1 2

The detailed version of this paper will be submitted for publication elsewhere.
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Indeed,

{1,2} {3,4}

(1,2,3,4) (2,1,3,4) (2,1,4,3).

Now, we can define the notion of weakly closed graph.

Definition 4. Let G be a graph. G is said to be weakly closed if there exists a labeling
which satisfies the following condition: for all 7, j such that {7, 7} € E(G), i is adjacentable
with j.

Example 5. The following graph G is weakly closed:

Indeed,
(123456) (2,1,3456) (2,1,4356)

(1,2,3,4,5,6) 2 (1,2,4,3,5,6) 2% (1,2,4,3,6,5).
Hence 1 is adjacentable with 4 and 3 is adjacentable with 6.

Before stating the first main theorem of this chapter, which is a characterization of
weakly closed graphs, we recall that the definition of closed graphs.

Definition 6 (See [4]). G is closed with respect to the given labeling if the following
condition is satisfied: for all {7, j},{k,l} € E(G) with i < j and k < [ one has {j,l} €
E(G)ifi=kbut j#I, and {i,k} € E(G) if j =1 but i # k.

In particular, G is closed if there exists a labeling for which it is closed.

Remark 7. (1) [4, Theorem 1.1] G is closed if and only if Ji has a quadratic Grobner
basis. Hence if G is closed then S/Jg is Koszul algebra.
(2) [2, Theorem 2.2] Let G be a graph. Then the following conditions are equivalent:
(a) G is closed.
(b) There exists a labeling of V(G) such that all facets of A(G) are intervals
[a,b] C [n], where A(G) is the clique complex of G.

The following characterization of closed graphs is a reinterpretation of Crupi and Ri-
naldo’s one. This is relevant to the first main theorem of this chapter deeply.

Proposition 8 (See [1, Proposition 2.6]). Let G be a graph. Then the following conditions
are equivalent:
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(1) G is closed.

(2) There exists a labeling which satisfies the following condition: for alli,j such that
{i,j} € E(G) and j > i+ 1, the following assertion holds: for all i < k < j,
{i,k} € E(G) and {k,j} € E(G).

Proof. (1) = (2): Let {i,5} € E(G). Since G is closed, there exists a labeling satisfying
{i,i+1},{i+1,i+2}....{j — 1,5} € E(G) by [HeHiHrKR, Proposition 1.4]. Then
we have that {i,7 + 2},...,{i,j — 2},{i,7 — 1} € E(G) by the definition of closedness.
Similarly, we also have that {k,j} € E(G) for all i < k < j.

(2) = (1): Assume that i < k < j. If {i,k},{i,j} € E(G), then {k,j} € E(G)
by assumption. Similarly, if {i,j},{k,j} € E(G), then {i,k} € E(G). Therefore G is
closed. O

The following theorem characterizes weakly closed graph.

Theorem 9. Let G be a graph. Then the following conditions are equivalent:

(1) G is weakly closed.

(2) There exists a labeling which satisfies the following condition: for all i,j such that
{i,j} € E(G) and j > i+ 1, the following assertion holds: for all i < k < j,
{i,k} € E(G) or {k,j} € E(G).

Proof. (1) = (2): Assume that {i,j} € E(G), {i,k} ¢ E(G) and {k,j} & E(G) for
some ¢ < k < j. Then ¢ is not adjacentable with 7, which is in contradiction with weak
closedness of G.

(2) = (1): Let {i,7}E(G). By repeating interchanging along the following algorithm,
we can see that ¢ is adjacentable with j:

(a): Let A:={k|{k,j} € E(G),i <k <j}and C :=0.

(b): If A =0 then go to (g), otherwise let s := max{A}.

( ) Let B:={t|{s,t} € E(G),s <t <j}\C =A{t1,...,t,, = j}, where t; < ... <

(d) Take {s, t1 }-interchanging, {s,t2}-interchanging, ..., {s,t,, = j}-interchanging in
turn.

(e): Let A:= A\ {s} and C := C U {s}.

(f): Go to (b).

(g): Let U:={ul|i<u<j{iu} € E(G) and {u,j} € E(G)} and W := ().

(h): If U = 0 then go to (m), otherwise let u := min{U}.

(i): Let V:=A{v | {v,u} € E(G),i <v <u}\W ={v; =1i,...,u}, where v; =i <

<.

j): Take {v; = i, u}-interchanging, {ve, u}-interchanging, ..., {v;, u}-interchanging in
tu

1): Go to (h).

(
?1}:) Let U :=U \ {u} and W := W U {u}.
81): Finished. O
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By comparing this theorem and Proposition 8, we get the following corollary. A graph
G is said to be complete r-partite if there exists a partition V(G) = [['_, Vi such that
{i,j} € E(G) if and only of a # b for all i € V, and j € V},.

Corollary 10. Closed graphs and complete r-partite graphs are weakly closed.
Proof. Assume that G is complete r-partite and V(G) = [[;_, V;. Let {i,j} € E(G) with

i €V,and j € V. Then a # b. Hence for all i < k < j, k & V, or k ¢ Vj. This implies
that {i,k} € E(G) or {k,j} € E(G). O

3. F-PURITY OF BINOMIAL EDGE IDEALS

In this section, we study about F-purity of binomial edge ideals. Firstly, we recall that
the definition of F-purity of a ring R.

Definition 11 (See [5]). Let R be an F-finite reduced Noetherian ring of characteristic
p > 0. R is said to be F-pure if the Frobenius map R — R, z + P is pure, equivalently,
the natural inclusion 7 : R < RY?  (x + (2P)'/P) is pure, that is, M — M ®g RYP,
m +— m ® 1 is injective for every R-module M.

The following proposition, which is called the Fedder’s criterion, is useful to determine
the F-purity of a ring R.

Proposition 12 (See [3]). Let (S,m) be a regular local ring of characteristic p > 0. Let
I be an ideal of S. Put R = S/I. Then R is F-pure if and only if IP) : I ¢ mP!, where
JP = (zP | € J) for an ideal J of S.

In this section, we consider the following question:
Question. When is S/Jg F-pure ?

In [8], Ohtani proved that if G is complete r-partite graph then S/Jg is F-pure. More-
over, it is easy to show that if G is closed then S/Jg is F-pure. However, there are many
examples of G such that G is neither complete r-partite nor closed but S/Jg is F-pure.
Namely, there is room for improvement about the above studies.

The second main theorem of this chapter is as follows:

Theorem 13. If G is weakly closed, then S/Jg is F-pure.

Proof. For a sequence vy, vs, ..., vs, We put
Yo, (V1,09 .o, 06) Xy, 1= (Yo, [v1, va][v2, 03] - - - [0s_1, vs] X, )P 1.
Let m = (Xy,...,X,,,Y1,...,Y,)S. By taking completion and using Proposition 2.2, it
is enough to show that Yi(1,2,...,n)X, € (J[C];] . Jg) \ mPl. Tt is easy to show that
Yi(1,2,...,n)X, & mP by considering its initial monomial.
Next, we use the following lemmas (see [8]):
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Lemma 14 ([8, Formula 1]). If {a,b} € E(G), then
Y;l(vla' I 767Q7[_)>d7 . 7vn)Xvn = Y;}l(vlw .. 7Cabagad7 s 7/Un)Xvn
modulo J[é’].

Ya(@? b? C7 c 7Un)Xv = Yé(b? Q? C? ct 7UTL)XUTL7

}/1)1(U17 L 7C7Q7l_))Xb = Y:U1<U17 .. ‘7CJZ_)7Q)X(Z

modulo J[g] .

Let {i,7} € E(G). Since G is weakly closed, i is adjacentable with j. Hence there
exists a polynomial g € S such that

Yi(1,2,...,0) X, =g~ [i, j]P
modulo Jg] from the above lemmas. This implies Y1(1,2,...,n)X, € (Jc[;p} : Ja). O

4. DIFFERENCE BETWEEN CLOSEDNESS AND WEAK CLOSEDNESS AND SOME
EXAMPLES

In this section, we state the difference between closedness and weak closedness and give
some examples.

Proposition 16. Let G be a graph.

(1) [4, Proposition 1.2] If G is closed, then G is chordal, that is, every cycle of G with
length t > 3 has a chord.
(2) If G is weakly closed, then every cycle of G with length t > 4 has a chord.

Proof. (2) It is enough to show that the pentagon graph G with edges {a, b}, {b, c}, {c,d},
{d,e} and {a, e} is not weakly closed. Suppose that G is weakly closed. We may assume
that @ = min{a, b, ¢, d, e} without loss of generality. Then b # max{a,b,c,d,e}. Indeed,
if b = max{a,b,c,d, e}, then ¢,d, e are connected with a or b by the definition of weak
closedness, but this is a contradiction. Similarly, e # max{a,b,c,d,e}. Hence we may
assume that ¢ = max{a, b, ¢, d, e} by symmetry. If b = min{b, ¢, d}, then d, e are connected
with b or ¢, a contradiction. Therefore, b # min{b, c,d}. Similarly, b # max{b,c,d}.
Hence we may assume that d = min{b, c,d} and e = max{b,c,d} by symmetry. Then
{a,b} and a < d < b, but {a,d},{d,b} ¢ E(G). This is a contradiction. O

Next, we give a characterization of closed (resp. weakly closed) tree graphs in terms of
claw (resp. bigclaw). A graph G is said to be tree if G has no cycles. We consider the
following graphs (a) and (b). We call the graph (a) a claw and the graph (b) a bigclaw.
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(a) (b)

Proposition 17. Let G be a tree.

(1) /4, Corollary 1.3] The following conditions are equivalent:
(a) G is closed.
(b) G is a path.
(¢) G is a claw-free graph.
(2) The following conditions are equivalent:
(a) G is weakly closed.
(b) G is a caterpillar, that is, a tree for which removing the leaves and incident
edges produces a path graph.
(¢) G is a bigclaw-free graph.

Proof. (2) One can see that a bigclaw graph is not weakly closed. U

Remark 18. From Proposition 17(2), we have that chordal graphs are not always weakly
closed. As other examples, the following graphs are chordal, but not weakly closed:
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