WEAKLY CLOSED GRAPH

KAZUNORI MATSUDA

ABSTRACT. We introduce the notion of weak closedness for connected simple graphs. This notion is a generalization of closedness introduced by Herzog-Hibi-Hreindóttir-Kahle-Rauh. We give a characterization of weakly closed graphs and prove that the binomial edge ideal J_G is F-pure for weakly closed graph G.

Key Words: binomial edge ideal, F-purity, weakly closed graph. 2000 *Mathematics Subject Classification:* 05C25, 05E40, 13A35, 13C05.

1. INTRODUCTION

This article is based on [6].

Throughout this article, let k be an F-finite field of positive characteristic. Let G be a graph on the vertex set V(G) = [n] with edge set E(G). We assume that a graph G is always connected and simple, that is, G is connected and has no loops and multiple edges. And the term "labeling" means numbering of V(G) from 1 to n.

For each graph G, we call $J_G := ([i, j] = X_i Y_j - X_j Y_i | \{i, j\} \in E(G))$ the binomial edge ideal of G (see [4], [8]). J_G is an ideal of $S := k[X_1, \ldots, X_n, Y_1, \ldots, Y_n]$.

2. Weakly closed graph

In this section, we give the definition of weakly closed graphs and the first main theorem of this chapter, which is a characterization of weakly closed graphs.

Until we define the notion of weak closedness, we fix a graph G and a labeling of V(G). Let (a_1, \ldots, a_n) be a sequence such that $1 \le a_i \le n$ and $a_i \ne a_j$ if $i \ne j$.

Definition 1. We say that a_i is *interchangeable with* a_{i+1} if $\{a_i, a_{i+1}\} \in E(G)$. And we call the following operation $\{a_i, a_{i+1}\}$ -*interchanging*:

$$(a_1, \dots, a_{i-1}, a_i, a_{i+1}, a_{i+2}, \dots, a_n) \to (a_1, \dots, a_{i-1}, a_{i+1}, a_i, a_{i+2}, \dots, a_n)$$

Definition 2. Let $\{i, j\} \in E(G)$. We say that *i* is *adjacentable with j* if the following assertion holds: for a sequence (1, 2, ..., n), by repeating interchanging, one can find a sequence $(a_1, ..., a_n)$ such that $a_k = i$ and $a_{k+1} = j$ for some *k*.

Example 3. About the following graph G, 1 is adjacentable with 4:

The detailed version of this paper will be submitted for publication elsewhere.

Indeed,

$$(\underline{1},2,3,\underline{4}) \xrightarrow{\{1,2\}} (2,\underline{1},3,\underline{4}) \xrightarrow{\{3,4\}} (2,\underline{1},\underline{4},3).$$

Now, we can define the notion of weakly closed graph.

Definition 4. Let G be a graph. G is said to be *weakly closed* if there exists a labeling which satisfies the following condition: for all i, j such that $\{i, j\} \in E(G)$, i is adjacentable with j.

Example 5. The following graph G is weakly closed:

Indeed,

$$(\underline{1}, 2, 3, \underline{4}, 5, 6) \xrightarrow{\{1,2\}} (2, \underline{1}, 3, \underline{4}, 5, 6) \xrightarrow{\{3,4\}} (2, \underline{1}, \underline{4}, 3, 5, 6), (1, 2, \underline{3}, 4, 5, \underline{6}) \xrightarrow{\{3,4\}} (1, 2, 4, \underline{3}, 5, \underline{6}) \xrightarrow{\{5,6\}} (1, 2, 4, \underline{3}, \underline{6}, 5).$$

Hence 1 is adjacentable with 4 and 3 is adjacentable with 6.

Before stating the first main theorem of this chapter, which is a characterization of weakly closed graphs, we recall that the definition of closed graphs.

Definition 6 (See [4]). *G* is closed with respect to the given labeling if the following condition is satisfied: for all $\{i, j\}, \{k, l\} \in E(G)$ with i < j and k < l one has $\{j, l\} \in E(G)$ if i = k but $j \neq l$, and $\{i, k\} \in E(G)$ if j = l but $i \neq k$.

In particular, G is *closed* if there exists a labeling for which it is closed.

Remark 7. (1) [4, Theorem 1.1] G is closed if and only if J_G has a quadratic Gröbner basis. Hence if G is closed then S/J_G is Koszul algebra.

- (2) [2, Theorem 2.2] Let G be a graph. Then the following conditions are equivalent:(a) G is closed.
 - (b) There exists a labeling of V(G) such that all facets of $\Delta(G)$ are intervals $[a,b] \subset [n]$, where $\Delta(G)$ is the clique complex of G.

The following characterization of closed graphs is a reinterpretation of Crupi and Rinaldo's one. This is relevant to the first main theorem of this chapter deeply.

Proposition 8 (See [1, Proposition 2.6]). Let G be a graph. Then the following conditions are equivalent:

- (1) G is closed.
- (2) There exists a labeling which satisfies the following condition: for all i, j such that $\{i, j\} \in E(G)$ and j > i + 1, the following assertion holds: for all i < k < j, $\{i, k\} \in E(G)$ and $\{k, j\} \in E(G)$.

Proof. (1) \Rightarrow (2): Let $\{i, j\} \in E(G)$. Since G is closed, there exists a labeling satisfying $\{i, i+1\}, \{i+1, i+2\}, \ldots, \{j-1, j\} \in E(G)$ by [HeHiHrKR, Proposition 1.4]. Then we have that $\{i, i+2\}, \ldots, \{i, j-2\}, \{i, j-1\} \in E(G)$ by the definition of closedness. Similarly, we also have that $\{k, j\} \in E(G)$ for all i < k < j.

(2) \Rightarrow (1): Assume that i < k < j. If $\{i, k\}, \{i, j\} \in E(G)$, then $\{k, j\} \in E(G)$ by assumption. Similarly, if $\{i, j\}, \{k, j\} \in E(G)$, then $\{i, k\} \in E(G)$. Therefore G is closed.

The following theorem characterizes weakly closed graph.

Theorem 9. Let G be a graph. Then the following conditions are equivalent:

- (1) G is weakly closed.
- (2) There exists a labeling which satisfies the following condition: for all i, j such that $\{i, j\} \in E(G)$ and j > i + 1, the following assertion holds: for all i < k < j, $\{i, k\} \in E(G)$ or $\{k, j\} \in E(G)$.

Proof. (1) \Rightarrow (2): Assume that $\{i, j\} \in E(G)$, $\{i, k\} \notin E(G)$ and $\{k, j\} \notin E(G)$ for some i < k < j. Then *i* is not adjacentable with *j*, which is in contradiction with weak closedness of *G*.

 $(2) \Rightarrow (1)$: Let $\{i, j\}E(G)$. By repeating interchanging along the following algorithm, we can see that *i* is adjacentable with *j*:

(a): Let $A := \{k \mid \{k, j\} \in E(G), i < k < j\}$ and $C := \emptyset$.

(b): If $A = \emptyset$ then go to (g), otherwise let $s := \max\{A\}$.

(c): Let $B := \{t \mid \{s,t\} \in E(G), s < t \le j\} \setminus C = \{t_1, \dots, t_m = j\}$, where $t_1 < \dots < t_m = j$.

(d): Take $\{s, t_1\}$ -interchanging, $\{s, t_2\}$ -interchanging, ..., $\{s, t_m = j\}$ -interchanging in turn.

(e): Let $A := A \setminus \{s\}$ and $C := C \cup \{s\}$.

(f): Go to (b).

(g): Let $U := \{u \mid i < u < j, \{i, u\} \in E(G) \text{ and } \{u, j\} \notin E(G)\}$ and $W := \emptyset$.

(h): If $U = \emptyset$ then go to (m), otherwise let $u := \min\{U\}$.

(i): Let $V := \{v \mid \{v, u\} \in E(G), i \le v < u\} \setminus W = \{v_1 = i, \dots, v_l\}$, where $v_1 = i < \dots < v_l$.

(j): Take $\{v_1 = i, u\}$ -interchanging, $\{v_2, u\}$ -interchanging, ..., $\{v_l, u\}$ -interchanging in turn.

(k): Let $U := U \setminus \{u\}$ and $W := W \cup \{u\}$.

(l): Go to (h).

(m): Finished.

By comparing this theorem and Proposition 8, we get the following corollary. A graph G is said to be *complete r-partite* if there exists a partition $V(G) = \prod_{i=1}^{r} V_i$ such that $\{i, j\} \in E(G)$ if and only of $a \neq b$ for all $i \in V_a$ and $j \in V_b$.

Corollary 10. Closed graphs and complete r-partite graphs are weakly closed.

Proof. Assume that G is complete r-partite and $V(G) = \coprod_{i=1}^{r} V_i$. Let $\{i, j\} \in E(G)$ with $i \in V_a$ and $j \in V_b$. Then $a \neq b$. Hence for all i < k < j, $k \notin V_a$ or $k \notin V_b$. This implies that $\{i, k\} \in E(G)$ or $\{k, j\} \in E(G)$.

3. F-purity of binomial edge ideals

In this section, we study about F-purity of binomial edge ideals. Firstly, we recall that the definition of F-purity of a ring R.

Definition 11 (See [5]). Let R be an F-finite reduced Noetherian ring of characteristic p > 0. R is said to be F-pure if the Frobenius map $R \to R$, $x \mapsto x^p$ is pure, equivalently, the natural inclusion $\tau : R \hookrightarrow R^{1/p}$, $(x \mapsto (x^p)^{1/p})$ is pure, that is, $M \to M \otimes_R R^{1/p}$, $m \mapsto m \otimes 1$ is injective for every R-module M.

The following proposition, which is called the Fedder's criterion, is useful to determine the F-purity of a ring R.

Proposition 12 (See [3]). Let (S, \mathfrak{m}) be a regular local ring of characteristic p > 0. Let I be an ideal of S. Put R = S/I. Then R is F-pure if and only if $I^{[p]} : I \not\subseteq \mathfrak{m}^{[p]}$, where $J^{[p]} = (x^p \mid x \in J)$ for an ideal J of S.

In this section, we consider the following question:

Question. When is S/J_G F-pure ?

In [8], Ohtani proved that if G is complete r-partite graph then S/J_G is F-pure. Moreover, it is easy to show that if G is closed then S/J_G is F-pure. However, there are many examples of G such that G is neither complete r-partite nor closed but S/J_G is F-pure. Namely, there is room for improvement about the above studies.

The second main theorem of this chapter is as follows:

Theorem 13. If G is weakly closed, then S/J_G is F-pure.

Proof. For a sequence v_1, v_2, \ldots, v_s , we put

$$Y_{v_1}(v_1, v_2, \dots, v_s) X_{v_s} := (Y_{v_1}[v_1, v_2][v_2, v_3] \cdots [v_{s-1}, v_s] X_{v_s})^{p-1}.$$

Let $\mathfrak{m} = (X_1, \ldots, X_n, Y_1, \ldots, Y_n)S$. By taking completion and using Proposition 2.2, it is enough to show that $Y_1(1, 2, \ldots, n)X_n \in (J_G^{[p]} : J_G) \setminus \mathfrak{m}^{[p]}$. It is easy to show that $Y_1(1, 2, \ldots, n)X_n \notin \mathfrak{m}^{[p]}$ by considering its initial monomial.

Next, we use the following lemmas (see [8]):

Lemma 14 ([8, Formula 1]). If $\{a, b\} \in E(G)$, then

$$Y_{v_1}(v_1,\ldots,c,\underline{a},\underline{b},d,\ldots,v_n)X_{v_n} \equiv Y_{v_1}(v_1,\ldots,c,\underline{b},\underline{a},d,\ldots,v_n)X_{v_n}$$

modulo $J_G^{[p]}$.

Lemma 15 ([8, Formula 2]). If $\{a, b\} \in E(G)$, then

$$Y_{a}(\underline{a}, \underline{b}, c, \dots, v_{n})X_{v_{n}} \equiv Y_{b}(\underline{b}, \underline{a}, c, \dots, v_{n})X_{v_{n}},$$

$$Y_{v_{1}}(v_{1}, \dots, c, \underline{a}, \underline{b})X_{b} \equiv Y_{v_{1}}(v_{1}, \dots, c, \underline{b}, \underline{a})X_{a}$$

modulo $J_G^{[p]}$.

Let $\{i, j\} \in E(G)$. Since G is weakly closed, i is adjacentable with j. Hence there exists a polynomial $g \in S$ such that

$$Y_1(1,2,\ldots,n)X_n \equiv g \cdot [i,j]^{p-1}$$

modulo $J_G^{[p]}$ from the above lemmas. This implies $Y_1(1, 2, ..., n) X_n \in (J_G^{[p]} : J_G)$.

4. Difference between closedness and weak closedness and some examples

In this section, we state the difference between closedness and weak closedness and give some examples.

Proposition 16. Let G be a graph.

- (1) [4, Proposition 1.2] If G is closed, then G is chordal, that is, every cycle of G with length t > 3 has a chord.
- (2) If G is weakly closed, then every cycle of G with length t > 4 has a chord.

Proof. (2) It is enough to show that the pentagon graph G with edges $\{a, b\}, \{b, c\}, \{c, d\}, \{d, e\}$ and $\{a, e\}$ is not weakly closed. Suppose that G is weakly closed. We may assume that $a = \min\{a, b, c, d, e\}$ without loss of generality. Then $b \neq \max\{a, b, c, d, e\}$. Indeed, if $b = \max\{a, b, c, d, e\}$, then c, d, e are connected with a or b by the definition of weak closedness, but this is a contradiction. Similarly, $e \neq \max\{a, b, c, d, e\}$. Hence we may assume that $c = \max\{a, b, c, d, e\}$ by symmetry. If $b = \min\{b, c, d\}$, then d, e are connected with b or c, a contradiction. Therefore, $b \neq \min\{b, c, d\}$. Similarly, $b \neq \max\{b, c, d\}$. Hence we may assume that $d = \min\{b, c, d\}$ and $e = \max\{b, c, d\}$ by symmetry. Then $\{a, b\}$ and a < d < b, but $\{a, d\}, \{d, b\} \notin E(G)$. This is a contradiction.

Next, we give a characterization of closed (resp. weakly closed) tree graphs in terms of claw (resp. bigclaw). A graph G is said to be *tree* if G has no cycles. We consider the following graphs (a) and (b). We call the graph (a) a *claw* and the graph (b) a *bigclaw*.

Proposition 17. Let G be a tree.

- (1) [4, Corollary 1.3] The following conditions are equivalent:
 - (a) G is closed.
 - (b) G is a path.
 - (c) G is a claw-free graph.
- (2) The following conditions are equivalent:
 - (a) G is weakly closed.
 - (b) G is a caterpillar, that is, a tree for which removing the leaves and incident edges produces a path graph.

(c) G is a bigclaw-free graph.

Proof. (2) One can see that a bigclaw graph is not weakly closed.

Remark 18. From Proposition 17(2), we have that chordal graphs are not always weakly closed. As other examples, the following graphs are chordal, but not weakly closed:

References

- [1] M. Crupi and G. Rinaldo, Koszulness of binomial edge ideals, arXiv:1007.4383.
- [2] V. Ene, J. Herzog and T. Hibi, Cohen-Macaulay binomial edge ideals, arXiv:1004.0143.
- [3] R. Fedder, F-purity and rational singularity, Trans. Amer. Math. Soc., 278 (1983), 461–480.
- [4] J. Herzog, T. Hibi, F. Hreindóttir, T. Kahle and J. Rauh, Binomial edge ideals and conditional independence statements, Adv. Appl. Math., 45 (2010), 317–333.
- [5] M. Hochster and J. L. Roberts, The purity of the Frobenius and Local Cohomology, Adv. in Math., 21 (1976), 117–172.
- [6] K. Matsuda, Weakly closed graph, preprint.
- [7] M. Ohtani, Graphs and ideals generated by some 2-minors, Comm. Alg., 39 (2011), 905–917.
- [8] _____, Binomial edge ideals of complete r-partite graphs, Proceedings of The 32th Symposium The 6th Japan-Vietnam Joint Seminar on Commutative Algebra (2010), 149–155.

GRADUATE SCHOOL OF MATHEMATICS NAGOYA UNIVERSITY

-104-

FROCHO, CHIKUSAKU, NAGOYA 464-8602 JAPAN *E-mail address*: d09003p@math.nagoya-u.ac.jp