
　
WEAKLY CLOSED GRAPH

KAZUNORI MATSUDA

Abstract. We introduce the notion of weak closedness for connected simple graphs.
This notion is a generalization of closedness introduced by Herzog-Hibi-Hreindóttir-
Kahle-Rauh. We give a characterization of weakly closed graphs and prove that the
binomial edge ideal JG is F -pure for weakly closed graph G.
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1. Introduction

This article is based on [6].
Throughout this article, let k be an F -finite field of positive characteristic. Let G be

a graph on the vertex set V (G) = [n] with edge set E(G). We assume that a graph G
is always connected and simple, that is, G is connected and has no loops and multiple
edges. And the term “labeling” means numbering of V (G) from 1 to n.

For each graph G, we call JG := ([i, j] = XiYj − XjYi | {i, j} ∈ E(G)) the binomial
edge ideal of G (see [4], [8]). JG is an ideal of S := k[X1, . . . , Xn, Y1, . . . , Yn].

2. Weakly closed graph

In this section, we give the definition of weakly closed graphs and the first main theorem
of this chapter, which is a characterization of weakly closed graphs.

Until we define the notion of weak closedness, we fix a graph G and a labeling of V (G).
Let (a1, . . . , an) be a sequence such that 1 ≤ ai ≤ n and ai 6= aj if i 6= j.

Definition 1. We say that ai is interchangeable with ai+1 if {ai, ai+1} ∈ E(G). And we
call the following operation {ai, ai+1}-interchanging :

(a1, . . . , ai−1, ai, ai+1, ai+2, . . . , an) → (a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an)

Definition 2. Let {i, j} ∈ E(G). We say that i is adjacentable with j if the following
assertion holds: for a sequence (1, 2, . . . , n), by repeating interchanging, one can find a
sequence (a1, . . . , an) such that ak = i and ak+1 = j for some k.

Example 3. About the following graph G, 1 is adjacentable with 4:
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The detailed version of this paper will be submitted for publication elsewhere.
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Indeed,

(1, 2, 3, 4)
{1,2}−−−→ (2, 1, 3, 4)

{3,4}−−−→ (2, 1, 4, 3).

Now, we can define the notion of weakly closed graph.

Definition 4. Let G be a graph. G is said to be weakly closed if there exists a labeling
which satisfies the following condition: for all i, j such that {i, j} ∈ E(G), i is adjacentable
with j.

Example 5. The following graph G is weakly closed:
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Indeed,

(1, 2, 3, 4, 5, 6)
{1,2}−−−→ (2, 1, 3, 4, 5, 6)

{3,4}−−−→ (2, 1, 4, 3, 5, 6),

(1, 2, 3, 4, 5, 6)
{3,4}−−−→ (1, 2, 4, 3, 5, 6)

{5,6}−−−→ (1, 2, 4, 3, 6, 5).

Hence 1 is adjacentable with 4 and 3 is adjacentable with 6.

Before stating the first main theorem of this chapter, which is a characterization of
weakly closed graphs, we recall that the definition of closed graphs.

Definition 6 (See [4]). G is closed with respect to the given labeling if the following
condition is satisfied: for all {i, j}, {k, l} ∈ E(G) with i < j and k < l one has {j, l} ∈
E(G) if i = k but j 6= l, and {i, k} ∈ E(G) if j = l but i 6= k.

In particular, G is closed if there exists a labeling for which it is closed.

Remark 7. (1) [4, Theorem 1.1] G is closed if and only if JG has a quadratic Gröbner
basis. Hence if G is closed then S/JG is Koszul algebra.

(2) [2, Theorem 2.2] Let G be a graph. Then the following conditions are equivalent:
(a) G is closed.
(b) There exists a labeling of V (G) such that all facets of ∆(G) are intervals

[a, b] ⊂ [n], where ∆(G) is the clique complex of G.

The following characterization of closed graphs is a reinterpretation of Crupi and Ri-
naldo’s one. This is relevant to the first main theorem of this chapter deeply.

Proposition 8 (See [1, Proposition 2.6]). Let G be a graph. Then the following conditions
are equivalent:
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(1) G is closed.
(2) There exists a labeling which satisfies the following condition: for all i, j such that

{i, j} ∈ E(G) and j > i + 1, the following assertion holds: for all i < k < j,
{i, k} ∈ E(G) and {k, j} ∈ E(G).

Proof. (1) ⇒ (2): Let {i, j} ∈ E(G). Since G is closed, there exists a labeling satisfying
{i, i + 1}, {i + 1, i + 2}, . . . , {j − 1, j} ∈ E(G) by [HeHiHrKR, Proposition 1.4]. Then
we have that {i, i + 2}, . . . , {i, j − 2}, {i, j − 1} ∈ E(G) by the definition of closedness.
Similarly, we also have that {k, j} ∈ E(G) for all i < k < j.

(2) ⇒ (1): Assume that i < k < j. If {i, k}, {i, j} ∈ E(G), then {k, j} ∈ E(G)
by assumption. Similarly, if {i, j}, {k, j} ∈ E(G), then {i, k} ∈ E(G). Therefore G is
closed. �

The following theorem characterizes weakly closed graph.

Theorem 9. Let G be a graph. Then the following conditions are equivalent:

(1) G is weakly closed.
(2) There exists a labeling which satisfies the following condition: for all i, j such that

{i, j} ∈ E(G) and j > i + 1, the following assertion holds: for all i < k < j,
{i, k} ∈ E(G) or {k, j} ∈ E(G).

Proof. (1) ⇒ (2): Assume that {i, j} ∈ E(G), {i, k} 6∈ E(G) and {k, j} 6∈ E(G) for
some i < k < j. Then i is not adjacentable with j, which is in contradiction with weak
closedness of G.

(2) ⇒ (1): Let {i, j}E(G). By repeating interchanging along the following algorithm,
we can see that i is adjacentable with j:

(a): Let A := {k | {k, j} ∈ E(G), i < k < j} and C := ∅.
(b): If A = ∅ then go to (g), otherwise let s := max{A}.
(c): Let B := {t | {s, t} ∈ E(G), s < t ≤ j} \ C = {t1, . . . , tm = j}, where t1 < . . . <

tm = j.
(d): Take {s, t1}-interchanging, {s, t2}-interchanging, . . . , {s, tm = j}-interchanging in

turn.
(e): Let A := A \ {s} and C := C ∪ {s}.
(f): Go to (b).
(g): Let U := {u | i < u < j, {i, u} ∈ E(G) and {u, j} 6∈ E(G)} and W := ∅.
(h): If U = ∅ then go to (m), otherwise let u := min{U}.
(i): Let V := {v | {v, u} ∈ E(G), i ≤ v < u} \W = {v1 = i, . . . , vl}, where v1 = i <

. . . < vl.
(j): Take {v1 = i, u}-interchanging, {v2, u}-interchanging, . . . , {vl, u}-interchanging in

turn.
(k): Let U := U \ {u} and W := W ∪ {u}.
(l): Go to (h).
(m): Finished. �
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By comparing this theorem and Proposition 8, we get the following corollary. A graph
G is said to be complete r-partite if there exists a partition V (G) =

∐r
i=1 Vi such that

{i, j} ∈ E(G) if and only of a 6= b for all i ∈ Va and j ∈ Vb.

Corollary 10. Closed graphs and complete r-partite graphs are weakly closed.

Proof. Assume that G is complete r-partite and V (G) =
∐r

i=1 Vi. Let {i, j} ∈ E(G) with
i ∈ Va and j ∈ Vb. Then a 6= b. Hence for all i < k < j, k 6∈ Va or k /∈ Vb. This implies
that {i, k} ∈ E(G) or {k, j} ∈ E(G). �

3. F -purity of binomial edge ideals

In this section, we study about F -purity of binomial edge ideals. Firstly, we recall that
the definition of F -purity of a ring R.

Definition 11 (See [5]). Let R be an F -finite reduced Noetherian ring of characteristic
p > 0. R is said to be F-pure if the Frobenius map R → R, x 7→ xp is pure, equivalently,
the natural inclusion τ : R ↪→ R1/p, (x 7→ (xp)1/p) is pure, that is, M → M ⊗R R1/p,
m 7→ m⊗ 1 is injective for every R-module M .

The following proposition, which is called the Fedder’s criterion, is useful to determine
the F -purity of a ring R.

Proposition 12 (See [3]). Let (S,m) be a regular local ring of characteristic p > 0. Let
I be an ideal of S. Put R = S/I. Then R is F -pure if and only if I [p] : I 6⊆ m[p], where
J [p] = (xp | x ∈ J) for an ideal J of S.

In this section, we consider the following question:

Question. When is S/JG F -pure ?

In [8], Ohtani proved that if G is complete r-partite graph then S/JG is F -pure. More-
over, it is easy to show that if G is closed then S/JG is F -pure. However, there are many
examples of G such that G is neither complete r-partite nor closed but S/JG is F -pure.
Namely, there is room for improvement about the above studies.

The second main theorem of this chapter is as follows:

Theorem 13. If G is weakly closed, then S/JG is F -pure.

Proof. For a sequence v1, v2, . . . , vs, we put

Yv1(v1, v2, . . . , vs)Xvs := (Yv1 [v1, v2][v2, v3] · · · [vs−1, vs]Xvs)
p−1.

Let m = (X1, . . . , Xn, Y1, . . . , Yn)S. By taking completion and using Proposition 2.2, it

is enough to show that Y1(1, 2, . . . , n)Xn ∈ (J
[p]
G : JG) \ m[p]. It is easy to show that

Y1(1, 2, . . . , n)Xn 6∈ m[p] by considering its initial monomial.
Next, we use the following lemmas (see [8]):
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Lemma 14 ([8, Formula 1]). If {a, b} ∈ E(G), then

Yv1(v1, . . . , c, a, b, d, . . . , vn)Xvn ≡ Yv1(v1, . . . , c, b, a, d, . . . , vn)Xvn

modulo J
[p]
G .

Lemma 15 ([8, Formula 2]). If {a, b} ∈ E(G), then

Ya(a, b, c, . . . , vn)Xvn ≡ Yb(b, a, c, . . . , vn)Xvn ,

Yv1(v1, . . . , c, a, b)Xb ≡ Yv1(v1, . . . , c, b, a)Xa

modulo J
[p]
G .

Let {i, j} ∈ E(G). Since G is weakly closed, i is adjacentable with j. Hence there
exists a polynomial g ∈ S such that

Y1(1, 2, . . . , n)Xn ≡ g · [i, j]p−1

modulo J
[p]
G from the above lemmas. This implies Y1(1, 2, . . . , n)Xn ∈ (J

[p]
G : JG). �

4. Difference between closedness and weak closedness and some
examples

In this section, we state the difference between closedness and weak closedness and give
some examples.

Proposition 16. Let G be a graph.

(1) [4, Proposition 1.2] If G is closed, then G is chordal, that is, every cycle of G with
length t > 3 has a chord.

(2) If G is weakly closed, then every cycle of G with length t > 4 has a chord.

Proof. (2) It is enough to show that the pentagon graph G with edges {a, b}, {b, c}, {c, d},
{d, e} and {a, e} is not weakly closed. Suppose that G is weakly closed. We may assume
that a = min{a, b, c, d, e} without loss of generality. Then b 6= max{a, b, c, d, e}. Indeed,
if b = max{a, b, c, d, e}, then c, d, e are connected with a or b by the definition of weak
closedness, but this is a contradiction. Similarly, e 6= max{a, b, c, d, e}. Hence we may
assume that c = max{a, b, c, d, e} by symmetry. If b = min{b, c, d}, then d, e are connected
with b or c, a contradiction. Therefore, b 6= min{b, c, d}. Similarly, b 6= max{b, c, d}.
Hence we may assume that d = min{b, c, d} and e = max{b, c, d} by symmetry. Then
{a, b} and a < d < b, but {a, d}, {d, b} 6∈ E(G). This is a contradiction. �

Next, we give a characterization of closed (resp. weakly closed) tree graphs in terms of
claw (resp. bigclaw). A graph G is said to be tree if G has no cycles. We consider the
following graphs (a) and (b). We call the graph (a) a claw and the graph (b) a bigclaw.
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Proposition 17. Let G be a tree.

(1) [4, Corollary 1.3] The following conditions are equivalent:
(a) G is closed.
(b) G is a path.
(c) G is a claw-free graph.

(2) The following conditions are equivalent:
(a) G is weakly closed.
(b) G is a caterpillar, that is, a tree for which removing the leaves and incident

edges produces a path graph.
(c) G is a bigclaw-free graph.

Proof. (2) One can see that a bigclaw graph is not weakly closed. �
Remark 18. From Proposition 17(2), we have that chordal graphs are not always weakly
closed. As other examples, the following graphs are chordal, but not weakly closed:
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