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Abstract. In a series of works [13, 16, 14, 15, 18, 19], Geiß-Leclerc-Schröer defined
the cluster algebra structure on the coordinate ring C[N(w)] of the unipotent subgroup,
associated with a Weyl group element w. And they proved cluster monomials are con-
tained in Lusztig’s dual semicanonical basis S∗. We give a set up for the quantization
of their results and propose a conjecture which relates the quantum cluster algebras in
[3] to the dual canonical basis Bup. In particular, we prove that the quantum analogue
Oq[N(w)] of C[N(w)] has the induced basis from Bup, which contains quantum flag mi-
nors and satisfies a factorization property with respect to the ‘q-center’ of Oq[N(w)].
This generalizes Caldero’s results [4, 5, 6] from finite type to an arbitrary symmetrizable
Kac-Moody Lie algebra.

1. Introduction

1.1. The canonical basis B and the dual canonical basis Bup. Let g be a sym-
metrizable Kac-Moody Lie algebra, Uq(g) its associated quantized enveloping algebra,
and U−

q (g) its negative part. In [24], Lusztig constructed the canonical basis B of U−
q (g)

by a geometric method when g is symmetric. In [21], Kashiwara constructed the (lower)
global basis Glow(B(∞)) by a purely algebraic method. Grojnowski-Lusztig [20] showed
that the two bases coincide when g is symmetric. We call the basis the canonical ba-
sis. There are two remarkable properties of the canonical basis, one is the positivity of
structure constants of multiplication and comultiplication, and another is Kashiwara’s
crystal structure B(∞), which is a combinatorial machinery useful for applications to
representation theory, such as tensor product decomposition.

SinceU−
q (g) has a natural pairing which makes it into a (twisted) self-dual bialgebra, we

consider the dual basis Bup of the canonical basis in U−
q (g). We call it the dual canonical

basis.

1.2. Cluster algebras. Cluster algebras were introduced by Fomin and Zelevinsky [10]
and intensively studied also with Berenstein [11, 1, 12] with an aim of providing a concrete
and combinatorial setting for the study of Lusztig’s (dual) canonical basis and total pos-
itivity. Quantum cluster algebras were also introduced by Berenstein and Zelevinsky [3],
Fock and Goncharov [8, 9, 7] independently. The definition of (quantum) cluster algebra
was motivated by Berenstein and Zelevinsky’s earlier work [2] where combinatorial and
multiplicative structures of the dual canonical basis were studied for g = sln (2 ≤ n ≤ 4).
In [1], it was shown that the coordinate ring of the double Bruhat cell contains a cluster
algebra as a subalgebra, which is conjecturally equal to the whole algebra.

The detailed version of this paper [22] will be published from Kyoto Journal of Mathematics.
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A cluster algebra A is a subalgebra of rational function field Q(x1, x2, · · · , xr) of r
indeterminates which is equipped with a distinguished set of generators (cluster variables)
which is grouped into overlapping subsets (clusters) consisting of precisely r elements.
Each subset is defined inductively by a sequence of certain combinatorial operation (seed
mutations) from the initial seed. The monomials in the variables of a given single cluster
are called cluster monomials. However, it is not known whether a cluster algebra have a
basis, related to the dual canonical basis, which includes all cluster monomials in general.

1.3. Cluster algebra and the semicanonical basis. In a series of works [13, 16, 14,
15, 18, 19], Geiß, Leclerc and Schröer introduced a cluster algebra structure on the coor-
dinate ring C[N(w)] of the unipotent subgroup associated with a Weyl group element w.
Furthermore they show that the dual semicanonical basis S∗ is compatible with the inclu-
sion C[N(w)] ⊂ U(n)∗gr and contains all cluster monomials. Here the dual semicanonical
basis is the dual basis of the semicanonical basis of U(n), introduced by Lusztig [25, 28],
and “compatible” means that S∗ ∩ C[N(w)] forms a C-basis of C[N(w)]. It is known
that canonical and semicanonical bases share similar combinatorial properties (crystal
structure), but they are different. Geiß, Leclerc and Schröer conjecture that certain dual
semicanonical basis elements are specialization of the corresponding dual canonical basis
elements. This is called the open orbit conjecture.

Acknowledgement. The author is grateful to Professor Osamu Iyama for giving oppor-
tunity to talk in Okayama University.

2. Quantum unipotent subgroup and the dual canonical basis

2.1. Notations. Let g be a symmetrizable Kac-Moody Lie algebra and g = n+⊕h⊕n− =
h⊕

⊕
α∈∆ gα be its triangular decomposition and its root decomposition. LetW be a Weyl

group which is associated with g. Let ∆± be the set of positive (resp. negative) roots. For
a Weyl group element w ∈ W , we set ∆(w) := ∆+∩w∆− = {α ∈ ∆+ | w−1α < 0} ⊂ ∆+.
For a Weyl group element w, let −→w = (i1, i2, . . . , i`) be a reduced expression of w. We set
βk := si1 . . . sik−1

(αik) for each 1 ≤ k ≤ `. Then it is known that ∆(w) = {βk | 1 ≤ k ≤ `}.
Let n(w) be the nilpotent Lie subalgebra which is associated with ∆(w), that is

n(w) =
⊕
1≤k≤`

gβk
.

For i ∈ I, we have Lusztig’s braid symmetry Ti on Uq(g), see [26, Chapter 32] for
more details. It is known that {Ti}i∈I satisfies braid relations. Hence the composite
Tw := Ti1 · · ·Ti`does not depend on a choice of reduced word −→w = (i1, i2, . . . , i`) of w. In
this article, we set Ti = T ′

i,−1.

2.2. Poincaré-Birkhoff-Witt basis. Let g be a symmetrizable Kac-Moody Lie algebra
and Uq(g) be the corresponding quantized enveloping algebra. We have a standard gen-
erators {Ei}i∈I ∪ {qh} ∪ {Fi}i∈I Let U−

q (g) be the Q(q)-subalgebra which is generated
by {Fi}i∈I . It is known that U−

q (g) is isomophic to the Q(q)-algebra which is defined by
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{Fi}i∈I and q-Serre relations

1−aij∑
k=0

(−1)kF
(k)
i FjF

(1−aij−k)
i ,

where {aij} is the generalized Cartamn matrix which defines g and F
(k)
i is the divided

power which is defined by F
(k)
i := F k

i /[k]i!. Let U−
q (g)Q be the Q[q±1]-subalgebra which

is generated by {F (n)
i }i∈I,n∈Z≥0

. This Q[q±1]-algebra is called Lusztig’s Q[q±1]-form.

We define root vectors associated with a reduced word−→w = (i1, i2, . . . , i`) for a Weyl
group element w ∈ W . See [26, Proposition 40.1.3, Proposition 41.1.4] for more detail.
For a Weyl group elementw ∈ W and a reduced word −→w = (i1, i2, . . . , i`) , we define βk

as above. We define the root vectors F (βk) associated with βk ∈ ∆(w)

F (βk) = Ti1 . . . Tik−1
(Fik).

It is known that F (βk) ∈ U−
q (g) for all 1 ≤ k ≤ `. We also define its divided power by

F (cβk) = Ti1 . . . Tik−1
(F

(c)
ik

). For an ` tuple of non-negative integers c = (c1, c2, . . . , c`), we
set

F (c,−→w ) := F (c`β`) · · ·F (c1β1).

It is known that F (c,−→w ) ∈ U−
q (g)Q.

Theorem 1 ([26, Proposition 40.2.1, Proposition 41.1.3]).

Theorem 2. (1) Then {F (c,−→w )}c∈Z`
≥0

forms a Q(q)-basis of a subspace defined to be

U−
q (w) of U

−
q (g) which does not depend on −→w .

(2) We have F (c,−→w ) ∈ U−
q (g)Q for all c ∈ Z`

≥0.

We consider the total order on ∆(w) as follows:

β1 < β2 < · · · < β`.

We have the following convex properties on {F (βk)}1≤k≤`.

Theorem 3 ([29, Proposition 3.6], [23, 5.5.2 Proposition]). For j < k, let us write

F (cjβj)F (ckβk)− q−(cjβj ,ckβk)F (ckβk)F (cjβj) =
∑

c′∈Z`
≥0

fc′F (c′,−→w )

fc′ ∈ Q(q). If fc′ 6= 0, then c′j < cj and c′k < ck with
∑

j≤m≤k c
′
mβm = cjβj + ckβk.

By the above formula, it is shown that U−
q (w) is a Q(q)-algebra which is generated by

{F (βk)}1≤k≤`.

2.3. PBW basis and crystal basis. Let L(∞) be the crystal lattice of U−
q (g) and

B(∞) be the crystal basis and B the canoncial basis.
The following result is due to Saito and Lusztig.
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Theorem 4 ([30, Theorem 4.1.2], [27, Proposition 8.2]). (1) We have F (c,−→w ) ∈ L(∞)
and

b(c,−→w ) := F (c,−→w ) mod qL(∞) ∈ B(∞).

(2) The map Z`
≥0 → B(∞) which is defined by c 7→ b(c,−→w ) is injective and the image

B(w) does not depend on the choice of −→w .

2.4. Dual canonical basis. Let ( , )K be the inner product on U−
q (g) defined by Kashi-

wara and U−
q (g)

up
Q be the dual Q[q±1]-lattice of U−

q (g)Q. Let Bupbe the dual basis of B
with respect to ( , )K and this is called dual canonical basis. We set

F up(c,−→w ) :=
1

(F (c,−→w ), F (c,−→w ))K
F (c,−→w ).

Proposition 5. (1) We have F up(βk) ∈ Bup.
(2) Let U−

q (w)
up
Q be the Q[q±1]-span of {F up(c,−→w )}c∈Z`

≥0
. Then U−

q (w)
up
Q is the Q[q±1]-

algebra generated by {F up(βk)}1≤k≤`.

Using the above proposition we obtain the following compabitility. This is a quantum
analogue of the Geiß-Leclerc-Schroër’s result.

Theorem 6. Let Bup(w) := Bup ∩U−
q (w)

up
Q . Then Bup(w) is a Q[q±1]-basis of Bup(w).

2.5. Specialization at q = 1. For the Lusztig form, we have the specilization isomor-
phism C⊗Q[q±1]U

−
q (g)Q ' U(n). Dually, we have the C-algebra isomorphism Φup : C⊗Q[q±1]

U−
q (g)

up
Q ' C[N ].

Under the isomorphism C⊗Q[q±1] U
−
q (g)

up
Q ' C[N ], as a corollay of the above theorem,

we obtain the following result for U−
q (w) which concerns the specialization at q = 1.

Corollary 7. Under the C-algebra isomorphism Φup, we have

C⊗Q[q±1] U
−
q (w)

up
Q ' C[N(w)],

where N(w) is the unipotent subgroup associated with the nilpotent Lie algebra n(w).

3. Quantum closed unipotent subgroup and Dual canonical basis

For a Weyl group element w ∈ W and a reduced word −→w = (i1, . . . , i`), we set

U−
w :=

∑
a=(a1,...,a`)∈Z`

≥0

Q(q)F
(a1)
i1

. . . F
(a`)
i`

.

This is called Demazure-Schubert filtration. It is known that U−
w is compatible with the

canonical basis B, that is B ∩U−
w is a Q[q±1]-basis of U−

w . We denote the correponding
subset by B(w,∞). Hence we set

Oq[Nw] := U−
q (g)/(U

−
w)

⊥,

where (U−
w)

⊥ is the annhilator of U−
w with respect to Kashiwara’s bilinear form ( , )K .

Since (U−
w)

⊥ is compatible with Bup, the canonical projection induces the dual canonical
basis on Oq[Nw].
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Theorem 8. (1)Let U−
q (w) → U−

q (g) → Oq[Nw] be the inclusion and the canonical
projectinon. Then the composite is monomorphism of algebra.

(2) We have B(w) ⊂ B(w,∞).

4. Quantum flag minor and Its multiplicative proprerties

For a dominant integral weight λ ∈ P+, let V (λ) be the corresponding integrable highest
weight module with highest weight vector uλ. We have symmetric bilinear form ( , )λon
V (λ). Let πλ : U

−
q (g) � V (λ) be the projection defined by x 7→ xuλ. Let jλ be dual of

πλ, that is jλ : V (λ) ↪→ U−
q (g). For a Weyl group element w ∈ W , we have the extremal

vector uwλ of weight λ. It is known that uwλ is contained in the canoical basis and the
dual canoncial basis. We set quantum unipotent minro Dwλ,λby

Dwλ,λ := jλ(uwλ).

It is known that Dwλ,λ ∈ Bup. The following is main result in our study.

Theorem 9. (1) For w ∈ W and λ ∈ P+, we have Dwλ,λ ∈ U−
q (w).

(2) For arbitrary b ∈ B(w), there exists N ∈ Z such that qNGup(b)Dwλ,λ ∈ Bup(w),
there Gup(b) is the dual canonical basis element which is associated with b ∈ B(w).

Using the above theorem, we obtain the following quantum seed.
For a Weyl group element w, a reduced word −→w = (i1, i2, . . . , i`) and c = (c1, . . . , c`) ∈

Z`
≥0, we set

D
−→w (c) :=

∏
1≤k≤`

Dsi1...sik ck$ik
,ck$ik

.

Then {D−→w (c)}c∈Z`
≥0

forms a mutually commmuting familty and {D−→w (c)}c∈Z`
≥0

is linear

independent over Z[q±1]. {D−→w (c)}c∈Z`
≥0

can be considered as a quantum analogue of the

initial seed in [18] and we can form the corresponding quantum cluster algebra by it. Our
conjecture is an Q[q±1]-algebra isomorphism between the quantum cluster algebra and
the quantum unipotent subgroup Oq[N(w)] and the set of quantum cluster monomials is
contained by the dual canonical basis Bup(w). This is just a quantum analogue of [18]
and this is compatible with their open orbit conjecture for symmetric g. Recently the
Q(q)-algebra isomorphism is obtained by [17].
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[15] C. Geiß, B. Leclerc, and J. Schröer. Cluster algebra structures and semicanonical bases for unipotent
groups. E-print arXiv http://arxiv.org/abs/math/0703039, 2007.
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