ON A GENERALIZATION OF STABLE TORSION THEORY

YASUHIKO TAKEHANA

ABSTRACT. Throughout this paper R is a ring with a unit element, every right R-module
is unital and Mod-R is the category of right R-modules. A subfunctor of the identity
functor of Mod-R is called a preradical. A torsion theory (7,F) is called stable if 7
is closed under taking injective hulls. We denote E(M) the injective hull of a module
M. For a preradical o, we denote E,(M) the o-injective hull of a module M, where
E,(M) is defined by E,(M)/M := o(E(M)/M). For a preradical o we call a torsion
theory (7,F) is o-stable if T is closed under taking o-injective hulls. In this note, we
characterize o-stable torsion theories and give some related facts.

0. FUNDAMENTAL FACTS OF TORSION THEORY

For a preradical ¢ it hold that ¢(N) C t(M) and t(M/N) 2 (¢(M) + N)/N for any
M € Mod-R and its submodule N. A preradical ¢ is called idempotent (radical) if
t(t(M)) = t(M) (t(M/t(M)) = 0) for any module M, respectively. For a preradical
o, T, := {M € Mod-R | o(M) = M} is the class of o-torsion right R-modules, and
F, :={M € Mod-R | o(M) = 0} is the class of o-torsionfree right R-modules. For a
subclass C of Mod-R, it is said that C is closed under taking extensions if: if N, M/N € C
then M € C for any M € Mod-R and its submodule N. A preradical ¢ is called left exact
if t(N) = N Nt(M) for any submodule N of a module M. It is also well known that a
preradical t is idempotent and 7; is closed under taking submodules if and only if ¢ is left
exact. A right R-module M is called o-injective if the functor Hompg(—, M) preserves the
exactness for any exact sequence 0 - A — B — C' — 0 with C' € 7,. For a preradical
o a submodule N of a module M is called o-dense in M if M/N is o-torsion, and N is
called o-essential in M if N is o-dense and essential in M. It holds that a module M is
o-injective if and only if M has no proper o-essential extension.

Let o be an idempotent radical. If X is minimal in {X | X is o-injective and X D M},
X is called to be a minimal o-injective extension of M. If Y is maximalin {Y | Y O M and
M is o-essential in Y}, Y is called to be a maximal o-essential extension of M. If X O M
and X is o-injective and M is o-essential in X, X is called to be a o-injective o-essential
extension of M. For any module M a o-injective o-essential extension of M exists and
is unique to within isomorphism. The o-injective g-essential extension of M coincides
with the minimal o-injective extension of M and the maximal o-essential extension of M
and is called to be the o-injective hull of M. We put o(E(M)/M) = E,(M)/M. For an
idempotent radical o, the o-injective hull of M is isomorphic to E,(M). But even if a

preradical o is not an idempotent radical, we call E,(M) the o-injective hull of a module
M.

The detailed version of this paper will be submitted for publication elsewhere.
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Let C be a subclass of Mod-R. A torsion theory for C is a pair (7,F) of classes of
objects of C such that

(i) Homg(T,F)=0forall Te T, F € F

(ii) If Homg(M, F) =0 for all F € F, then M € T

(iii) If Homg(7T,N) =0 for all T € 7, then N € F.

Weputt(M)= > N (= NN ),then 7 =7, and F = F, hold and ¢ is an idempotent
TSNcM ~ M/NeF
radical. Conversely if ¢ is an idempotent radical, then (7, ;) is a torsion theory.

1. A STABLE TORSION THEORY RELATIVE TO TORSION THEORIES

P. Gabriel studied a hereditary stable torsion theory in [3] (Or see p. 152 in [12]). We
generalize hereditary stable torsion theory. First we generalize left exact preradicals. For
preradicals o and ¢, we call t a o-left exact preradical if t(N) = N N¢(M) holds for any
o-dense submodule N of a module M.

Lemma 1. If 0 is a radical, then E,(M) is o-injective for any module M.

Lemma 2. For a preradical o, the following hold.

(1) If o is idempotent, then F, is closed under taking extensions. Conversely if o is
a radical and F, is closed under taking extensions, then o is idempotent.

(2) If o is a radical, then 1, is closed under taking extensions. Conversely if o is
idempotent and 1, is closed under taking extensions, then o is a radical.

In [14] we generalized hereditary torsion theories. For the sake of reader’s convenience,
we state the following propositions.

Proposition 3. For a left exact preradical o and an idempotent preradical t, t is o-left
exact if and only if T; is closed under taking o-dense submodules.

Proof. (—): Let N be a o-dense submodule of a module M € 7;. Thent(N) = NNt(M) =
NN M = N, as desired.

(«): Let N be a o-dense submodule of a module M. Since t(M)/(N Nt(M)) ~
(N +t(M))/N € M/N € 17, and t(M) € T;, NNt(M) € 7;. Then it holds that
NNt(M) =t(NNt(M)) C t(N). Since it is clear that NNt(M) D ¢(N), NNt(M) = ¢(N)
holds. UJ

Proposition 4. For an idempotent radical o and a radical t, t is o-left exact if and only
if Fi 1s closed under taking o-injective hulls.

Proof. (—): Let M be in F;. Then 0 =t(M) = M Nt(E,(M)), and so t(E,(M)) =0, as
desired.

(«-): Let N be a o-dense submodule of a module M € 7;. Consider the following
diagram.

0—-NLM-— M/N—0

Y
0 — N/t(N) = E,(N/t(N)),
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where g and 7 are the inclusion maps, j is the canonical epimorphism and f is a homomor-
phism determined by the o-injectivity of E,(N/t(N)). Since t is a radical, E,(N/t(N)) €
F: by the assumption. Since f(t(M)) C t(E,(N/t(N))) = 0, it holds that ¢(M) C kerf.
Let f|ny be a restriction map of f to N. Then it follows that ¢(IN) = ker j = ker f|y =
Nnkerf DONNt(M)Dt(N), and so t(N) = N Nt(M), as desired. O

Lemma 5. Let o be an idempotent radical. If M is a o-essential extension of a module
N, then E,(M) = E,(N) holds. Conversely if o is a left exact radical, N C M and
E,(M) = E,(N), then M is a o-essential extension of N.

Lemma 6. Let o be a left exact radical and L a submodule of a module M. Then the
following are equivalent.
(1) L=FE,(L)N M.
(2) L is o-essentially closed in M, that is, if L is o-essential in X such that L C
X CM, then L=X.

Lemma 7. Let o be an idempotent radical and M a module. Then M is o-injective if
and only if E;(M) = M.

A preradical t is called stable if 7; is closed under taking injective hulls. Next we
generalize stable torsion theory. We call a preradical ¢ o-stable if 7; is closed under
taking o-injective hulls for a preradical o. We put Ay (M) = {X : M/X € T} and
NNX(M):={NNX:X € X,(M)}. The following theorem generalize Proposition 7.1
n [12] and (i) and (ii) of Theorem 2.8 in [2].

Theorem 8. Let t be an idempotent preradical and o an idempotent radical. Then the
following conditions (1), (2) and (3) are equivalent.

Assume that t is an idempotent radical and 7; is closed under taking o-dense submod-
ules and o is a left exact radical, then all conditions (1)7(10) except (6) are equivalent.
Moreover if t is left exact, then all conditions are equivalent.

(1) t is o-stable, that is, Ty is closed under taking o-injective hulls.

(2) The class of o-injective modules are closed under taking t(—), that is, t(E) is
o-injective for any o-injective module E.

) E,(t(M)) Ct(E,(M)) holds for any module M.

) 7; is closed under taking o-essential extensions.

) If M/N is o-torsion, then N N X,(M) = X;(N) holds.

) Every module M ¢ T, with M/t(M) € 1, contains a nonzero submodule N € F;.

) For any module M, t(M) = E,(t(M)) N M holds.

) For any module M, t(M) is o-essentially closed in M.

) For any o-injective module E with E/t(E) € 1,, t(E) is a direct summand of E.

(10) E,(t(M)) = t(E,(M)) holds for any module M.

Proof. (1)—(3): Let ¢t be an idempotent preradical and M € Mod-R. Then t(M) € T,
and by assumption E,(t(M)) € 7;. Since E,(t(M)) C E,(M), it follows that E,(t(M)) =
t(Ey(t(M))) Ct(E,(M)), as desired.

(3)—(2): Let o be an idempotent radical and X be a o-injective module, and then we
have E,(X) = X by Lemma 1. Then it follows that E,(¢(X)) C t(E,(X)) = t(X) by the

(
(
(
(
(
(
(
1

— 73 —



assumption. Since E,(¢(X)) D ¢(X) holds clearly, it follows that E,(t(X)) = t(X), and
so t(X) is o-injective by Lemma 1, as desired.

(2)—(1): Let o be a radical and M € 7;. By the assumption, ¢(E,(M)) is o-injective.
Since t(E,(M)) D t(M) = M, E,(M)/t(E,(M)) is an epimorphic image of E,(M)/M,
and so E,(M)/t(E,(M)) € 7,. Thus the exact sequence (0 — t(E,(M)) — E,(M) —
E,(M)/t(E;(M)) — 0) splits. Then there exists a submodule K of E,(M) such that
E,(M) =t(E,(M))® K, and so 0 = K Nt(E,(M)) 2 KN M. Since M is essential in
E, (M), it follows that K = 0, and so E,(M) = t(E,(M)), as desired.

(1)—(4): Assume that o is an idempotent radical and 7; is closed under taking o-dense
submodules. Let M € 7; be o-essential in a module X. By the assumption it follows that
E,(M) € T;. By Lemma 5 E,(M) = E,(X). Thus E,(X) € 7;. Since X is a o-dense
submodule of E,(X), it follows that X € 7;, as desired.

(4)—(1): It is clear.

(3)—(7): Let t be a o-left exact preradical. By the assumption it follows that t(M) C
MNOE,(t(M)) C MNt(E,(M)) =t(M). Thus t(M) = M N E,(t(M)).

(7)—(9): Let o be an idempotent radical, £ be o-injective and E/t(E) € 7,. Then it
follows that t(F) = E,(t(F)) N E and E,(t(E)) C E,(F) = E, and so t(F) = E,(t(E)).
Hence t(E) is o-injective. Thus the sequence 0 — t(F) — E — E/t(E) — 0 splits, as
desired.

(9)—(1): Let o be an idempotent radical and ¢ be an idempotent preradical and M € 7,
then it follows that M = t(M) C t(E,(M)). Thus E,(M)/t(E,(M)) is a factor module
of E,(M)/M € 7,. By the assumption there exists a submodule K of E,(M) such that
E,(M)=K&t(E,(M)). Thus it follows that 0 = KNt(E,(M)) O KNM, and so K = 0.
Hence E,(M) =t(E,(M)) € T,.

(10)—(2): It is clear.

(3)—(10): Here we assume that o is a left exact radical and ¢ is a o-left exact preradical.

First we claim that t(M) is o-essential in t(E,(M)). Suppose that L Nt(M) = 0 for a
submodule L of t(E,(M)). Then it follows that 0 = LNt(M) = LNMNt(E,(M)) = LNM.
Since M is essential in E,(M), L = 0, and so t(M) is essential in t(E,(M)). It is clear
that t(M) is a o-dense submodule of t(E,(M)) since t(E,(M))/t(M) = t(E,(M))/(M N
H(E, (M))) ~ (M + t(E,(M)))/M C E,(M)/M €T,

Thus t(M) is o-essential in t(E,(M)), and so by Lemma 5 E,(t(M)) = E,(t(E,(M))) 2
t(Ey(M)). By the assumption E,(t(M)) C t(E,(M)), and so E,(t(M)) = t(E,(M)), as
desired.

(4)—(5): Assume that 7; is closed under taking o-dense submodules. Let N be a
o-dense submodule of a module M.

First we claim that N N AX(M) O Ay(N). Let Ny € X(N). Then N/Ny € 7;. We
put I' = {M;/Ny C M/Ny : (M;/Ny) N (N/Ny) = 0}. Then by Zorn’s argument, I" has a
maximal element M /Ny which is a complement of N/Ny in M /Ny, and then MyNN = Ny.
Hence (My/Ny) & (N/Ny) is essential in M /Ny, and so [(My/No) & (N/Ny)|/[Moy/No| is
essential in [M/Ny|/[Moy/No|. Therefore (My+N)/My is essential in M /M,. Since M /N €
T, it follows that M/(My + No) € T,. Thus 7; 3 N/Ny = N/(My N N) = (N + M)/ M.
So (N + My) /M is o-essential in M /M. By the assumption it follows that M /M, € 7;.
Since My N N = Ny, it conclude that N N X, (M) 2 X,(N).
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Next we will show that N N X, (M) C X,(N). Let My € X,(M), and then M/M, € 7T;.
Simce N/(N N M;) ~ (N + M,)/My C M/M, € T, and T, 5 M/N — M /(N + M;) — 0,
it follows that N/(N N M) € 7; by the assumption, and so N N M; € X (N).

(5)—(1): Let o be an idempotent preradical and M be in 7;. Since E,(M)/M € T,
X(E,(M))NM = X,(M) >0 for M € 7, . Thus there exists a submodule X of E, (M)
such that E,(M)/X € T, and X N M = 0. Since M is essential in E,(M), it follows that
X =0, and so E,(M) € T,.

(1)—(6): Let M ¢ T; with M /t(M) € 7,. Suppose that any nonzero submodule N of
M is not t-torsionfree. Since 0 # t(N) C N Nt(M), N Nt(M) # 0 holds for any nonzero
submodule N of M, and so t(M) is essential in M. By the assumption it follows that ¢(M)
is o-essential in M. By Lemma 5, E,(t(M)) = E,(M) holds. Since ¢ is an idempotent
preradical, it follows that ¢(M) € 7; and so E,(t(M)) € 7; by the assumption. Thus
E,(M)eT;. Thent(M)=MNt(E,(M))=MNE;(M)= M, and so M € 7;. This is a
contradiction, and so M ¢ 7; with M /t(M) € 7, contains a nonzero submodule N € F;.

(6)—(1): Let M € T;, then t(E,(M)) D t(M) = M. Suppose that E,(M) ¢ T;. Since
E,(M)/M — E,(M)/t(E,(M)) — 0, it follows that 0 # E,(M)/t(E,(M)) € 7,. By
the assumption there exists a nonzero submodule N € F; of E,(M). Since M is essential
in E(M), it follows that M NN # 0, andso /; > N D NNM C M € 7;. Astis left
exact, NN M € F,N7T; = {0}. This is a contradiction. Thus it follows that E,(M) € 7y,
as desired. O

2. SOME APPLICATIONS OF 0-STABLE TORSION THEORY

If R is right noetherian, t is stable if and only if every indecomposable injective module
is t-torsion or t-torsionfree by Proposition 11.3 in [6]. We will generalize this. First we
need the following torsion theoretic generalization of Matlis Papp’s theorem in Theorem 1
in [10].

For a left exact radical o, we denote £, :={I C R;R/I € T,}

[10, Theorem 1] Let o be a left exact radical. Then L, satisfies ascending chain con-
ditions if and only if every o-injective o-torsion R-module is a direct sum of o-injective
o-torsion indecomposable submodules.

The following theorem generalizes [6, Proposition 11.3].

Theorem 9. Assume that t is an idempotent radical, o is a left exact radical and 7Ty is
closed under taking o-dense submodules. Then the following hold.

(1) Ift is o-stable, then () every indecomposable o-injective module E with E[t(E) €
1, is either t-torsion or t-torsionfree.

(2) If the ring R satisfies the condition (x) and L, satisfies ascending chain conditions,
then 7; N1, is closed under taking o-injective hulls.

Proof of (1): Let E be an indecomposable o-injective module with E/t(E) € 7,. By (9)
in Theorem 8, t(F) is a direct summand of E. As E is indecomposable, ¢(E) = 0 or
t(F) = E, as desired.

Proof of (2): Let M be in 7; N 7,. Since 7, is closed under taking extensions, E,(M)

is o-torsion. As E,(M) is o-injective and o-torsion, it follows that E,(M) = > & E;
i€l
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by [10, Theorem 1], where I is an index set and E; is a nonzero o-injective o-torsion
indecomposable submodule of E,(M). As E; C E,(M) € 1, it follows that E; € 7, and
so E;/t(E;) € 1,, it follows that E; is t-torsion or t-torsionfree. Since M is essential in
E, (M), it follows that M NE; # 0. Since M € 7,, M/(MNE;) € T,. As M € T, and 7, is
closed under taking o-dense submodules, MNE; € 7,. Thus t(E;) 2 t(MNE;) = MNE; #
0, and so t(F;) # 0. Hence t(E;) = E; holds for all 7. Since every preradical preserves
direct sums, it follows that t(E,(M)) =t(>_ @ E;) = > ®t(E;) =Y ®FE, = E,(M), and

iel iel icl

so E,(M) € T;. O
The following proposition generalizes [7, Proposition 1.2].

Proposition 10. Let (7;, F;) be a o-hereditary o-stable torsion theory, that is, t is an
idempotent radical and T; is closed under taking o-injective hulls and o-dense submod-

ules, where o is a left exact radical. Then there exists an isomorphism: E,(M/t(M)) ~
E,(M)/E,((M)), if M/t(M) € T,.

Proof. For a module M consider the following commutative diagram.

0— M i> EJ(M)
lyg Lf
0 — M/t(M) — E,(M/t(M)),

where ¢ and j are inclusions and ¢ is a canonical epimorphism and f is an induced
morphism by o-injectivity of E,(M/t(M)). By the above diagram, t(M) = kerg =
ker(f|a) = ker f N M, and so t(M) = ker f N M follows. Since M/t(M) € F; and
F; is closed under taking o-injective hulls and o is a left exact preradical, it follows
that E,(M)/ker f C E,(M/t(M)) € F;. Thus it follows that t(E,(M)) C ker f.
Since 7, is closed under taking extensions and M/t(M) € 7, and E,(M)/M € 7,,
it follows that E,(M)/t(M) € 7,. Since E,(M)/t(E,(M)) is an epimorphic image of
Ey(M)/t(M), it follows that E,(M)/t(E,(M)) € T,. Since o is left exact preradical and
ker f/t(E,(M)) C E,(M)/t(E,(M)) € T,, it follows that ker f/t(E,(M)) € 7T,. By the
assumption t(E,(M)) is o-injective. Then the exact sequence (0 — t(E,(M)) — ker f —
ker f/t(E,(M)) — 0) splits. Then there exists a submodule S of ker f such that ker f =
S@®t(E,(M)). Then since 0 = SNt(E,(M)) 2 SNt(M), it follows that 0 = SNt(M) =
SNker fNM. As M is essential in E, (M), it follows that 0 = S Nker f = S. Thus it
follows that t(E,(M)) =ker f. So f(Es(M)) ~ E,(M)/ker f = E,(M)/t(E,(M)) € T,.
Thus the exact sequence 0 — t(E,(M)) — E,(M) — f(E,(M)) — 0 splits as t(E,(M))
is o-injective. Thus f(E,(M)) is a direct summand of o-injective module E, (M), and
so f(E,(M)) is also o-injective. Since E,(M/t(M)) D f(E,(M)) 2 g(M) 2 M/t(M), it
follows that E,(M/t(M))/f(Es(M)) € 7,. Thus the exact sequence 0 — f(E,(M)) —
E,(M/t(M)) — E,(M/t(M))/f(Es(M)) — 0 splits. So there exists a submodule K
of E,(M/t(M)) such that E,(M/t(M)) = K & f(E,(M)). Since f(E,(M)) 2 M/t(M),
it follows that K N (M/t(M)) = 0. But M/t(M) is essential in E,(M/t(M)), and so
K = 0. Thus E,(M/t(M)) = f(Es(M)) ~ E,(M)/ker f = E,(M)/t(E,(M)), as de-
sired. 0J
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Hereafter we omit the proof of the following propositions.

We call A o-M-injective if Homg(—, A) preserves the exactness for any exact sequence
0—N—=M— M/N — 0, where M/N € 7,. The following proposition is a generaliza-
tion of Theorem 15 in [16].

Proposition 11. A is o-M -injective if and only if f(M) C A for any f € Homg(E, (M),
E,(A)).

We obtain the following corollary as a torsion theoretic generalization of the Johnson
Wong theorem by putting M = A in Proposition 11. We call a module A o-quasi-injective
if A is o-A-injective.

Corollary 12. A is o-quasi-injective if and only if f(A) C A for any f € Homg(E,(A),
Ey(A)).

The following lemma generalizes Proposition 2.3 in [17].
Lemma 13. If A is o-quasi-injective and E,(A) = M@ N, then A= (MNA) & (NNA).
Now we can generalize [1, Theorem 2.3]

Theorem 14. Assume that o is a left exact radical and 7; is closed under taking o-
injective hulls, then every o-quasi-injective R-module A with AJt(A) € T, splits, that is,
A=1t(A)® N where N € F;, and then if t(A) is o-torsion, then N is o-quasi-injective.

The following corollary generalizes Corollary 2.15 in [5].

Corollary 15. Let M be a o-quasi-injective module. Then any o-essentially closed and
o-dense submodule of M is a direct summand of M, and any direct summand is o-quasi-
mjective.
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