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Abstract. Let A be a Nakayama algebra over an algebraically closed field k, HH(A)
the Hochschild cohomology ring. We will study the condition when HH(A) is a finitely
generated algebra and Ext∗A(A/J,A/J) is a finitely generated HH(A)-module, where J
is the Jacobson radical of A. In [4], it is shown that if an algebra satisfies the both
finiteness conditions, then the algebra is Gorenstein. We will investigate the Hochschild
cohomology of Gorenstein Nakayama algebras and show that Gorenstein Nakayama al-
gebras satisfy the both finiteness conditions above.

1. Introduction

Let A be a finite dimensional algebra over an algebraically closed field k and H a
noetherian commutative graded subalgebra of the Hochschild cohomology algebra HH(A)
with H0 = HH0(A). In [9], Snashall and Solberg defined the support variety of a finitely
generated A-module M over H as the set of maximal ideals of H containing the annihilator
AnnH Ext∗A(M,M), where the H-action on Ext∗A(M,M) is given by the graded algebra
homomorphism

H
incl.−→ HH∗(A)

−⊗M−→ Ext∗A(M, M).

In [4], Erdmann, Holloway, Snashall, Solberg and Taillefer showed that some geometric
properties of the support variety and some representation theoretic properties are related
if A satisfies the following finiteness condition:

Ext∗A(A/J,A/J) is a finitely generated H-module,

where J is the Jacobson radical of A. This finiteness condition holds for group algebras
of finite groups and, in [4], various results for finite groups are generalized to those for
the class of selfinjective algebras satisfying the finiteness condition. It is known that the
condition holds for any block of a finite dimensional cocomutative Hopf algebra [6], for
any complete intersection in commutative setting [7], and so on [5].

In this paper, we consider this finiteness condition in the case of Nakayama algebras.
In [9], Hochschild cohomology rings of Nakayama algebras with a single relation are in-
vestigated and some of them do not satisfy the finiteness condition. On the other hand,
in [4], it is shown that any algebra A is Gorenstein if A satisfies the finiteness condition.
We are, therefore, interested in to determine when Gorenstein Nakayama algebras satisfy
the finiteness condition. One of our main results, Theorem 9 answers to this question.

The detailed version of this paper will be submitted for publication elsewhere.
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2. The finiteness condition (Fg)

In [4], Erdmann, Holloway, Snashall, Solberg and Taillefer introduce some finiteness
conditions (Fg1) and (Fg2) for an algebra A and a graded subalgebra H of HH(A). These
conditions are the followings:

(Fg1) H is a commutative noetherian algebra with H0 = HH0(A).
(Fg2) Ext∗A(A/J,A/J) is a finitely generated H-module.

In [4], some geometric properties of the support variety and some representation theo-
retic properties are related if A satisfies the finiteness condition above. Moreover various
results for finite groups are generalized to those for selfinjective algebras satisfying the
finiteness conditions.

On the other hand, in [10], Solberg showed the following.

Proposition 1. Let A be a finite dimensional algebra. Then there exists a graded subal-
gebra H of HH(A) such that A and H satisfy (Fg1) and (Fg2) if and only if HH(A) is a
finitely generated algebra and Ext∗A(A/J,A/J) is a finitely generated HH(A)-module.

Definition 2. We denote by (Fg) the latter condition in the proposition above.

3. Stratifying ideals

In this section, we will give some results on algebras with stratifying ideals. The
stratifying ideal is defined as follows.

Definition 3. Let A be an algebra and e = e2 an idempotent. The two-sided ideal AeA
generated by e is called a stratifying ideal if the following conditions are satisfied:

(a) The multiplication map Ae ⊗eAe eA → AeA is an isomorphism.
(b) ToreAe

n (Ae, eA) = 0 for all n > 0.

The following lemma will be used to check if an ideal is stratifying [8].

Lemma 4. Let e be an idempotent element in A. If AeA is projective as a right or left
A-module, then AeA is stratifying.

In [8], it is shown that there exist several long exact sequences relating Hochschild
cohomology of algebras with a stratifying ideal. The followings are the sequences, which
we will use to prove Proposition 6.

Theorem 5. Let A be an algebra with a stratifying ideal AeA and B the factor algebra
A/AeA. Then there are long exact sequences as follows:

(1) → Extn
Ae(A,AeA) → HHn(A) → HHn(B) → Extn+1

Ae (A,AeA) →;
(2) → Extn

Ae(B, A) → HHn(A) → HHn(eAe) → Extn+1
Ae (B, A) →; and

(3) → Extn
Ae(B, AeA) → HHn(A) → HHn(B) ⊕ HHn(eAe) → Extn+1

Ae (B, AeA) → .

Moreover these sequences induce graded algebra homomorphisms between Hochschild coho-
mology algebras, especially, the second sequence is induced from the functor eA⊗A−⊗AAe.

The following proposition is one of our main results and we will apply this for the class
of Nakayama algebras in the next section.
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Proposition 6. Let A be an algebra with a stratifying ideal AeA. Suppose pdAe A/AeA <
∞. Then we have

(1) HH≥n(A) ∼= HH≥n(eAe) as graded algebras, where n = pdAe A/AeA + 1,
(2) A satisfies (Fg) if and only if so does eAe,
(3) A is Gorenstein if and only if so is eAe.

Proof. By the second long exact sequence in theorem 5, the first assertion (1) holds.
For the proof of (2), applying the functor HomAe(−, Homk(A/J,A/J)) to the short

exact sequense 0 → AeA → A → A/AeA → 0 we obtain the isomorphism

Extn
Ae(A, Homk(A/J,A/J)) ∼= Extn

Ae(AeA, Homk(A/J,A/J))

for any n ≥ pdAe A/AeA + 1. This gives the following isomorphism

Extn
A(A/J,A/J) ∼= Extn

eAe(eA/eJ, eA/eJ)

for any n ≥ pdAe A/AeA + 1, which is induced from the exact functor eA⊗A −. Then we
have the following commutative diagram of graded algebra homomorphism,

HH(A)
−⊗AA/J

//

eA⊗A−⊗AAe
��

Ext∗A(A/J,A/J)

eA⊗A−
��

HH(eAe)
−⊗eAeeA/eJ

// Ext∗eAe(eA/eJ, eA/eJ),

both columns are isomorphic on all but finite degrees. Hence (2) holds.
For the proof of (3), applying the functor HomAe(−, Homk(X, A)) to the short exact

sequense 0 → AeA → A → A/AeA → 0 we obtain the isomorphism

Extn
Ae(A, Homk(X, A)) ∼= Extn

Ae(AeA, Homk(X, A))

for any n ≥ pdAe A/AeA + 1. This gives the following isomorphism

Extn
A(X,A) ∼= Extn

eAe(eX, eA)

for any n ≥ pdAe A/AeA+1. Therefore we have that idA A < ∞ if and only if ideAe eA <
∞. Hence if idA A < ∞ then ideAe eAe < ∞. On the other hand, since

Extn
A(AeA,X) ∼= Extn

eAe(eA, eX)

for any i, we have that pdA AeA=pdeAe eA. By the assumption pdAe A/AeA < ∞, it
follows that pdA AeA < ∞ . Hence if ideAe eAe < ∞ then ideAe eA < ∞, so that
idA A < ∞.

Similarly we can show that id AA < ∞ if and only if id eAeeAe < ∞. Hence (3)
holds. ¤

4. Nakayama algebras

Throughout this section, we assume that the algebras are basic for simplicity. Because
Hochschild cohomology is a Morita-invariance, Theorem 9 holds for any algebra. In
this section, we will prove our main theorem, which states that Gorenstein Nakayama
algebras satisfy the finiteness condition (Fg). An algebra A is called Nakayama if the
indecomposable projective right and left modules are uniserial. It is known that if the
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indecomposable projective modules over a Nakayama algebra have the same length, then
the algebra is selfinjective (see [1, Proposition 3.8.]). Especially, any local Nakayama
algebra is selfinjective. Using this fact, it is easy to show the following.

Lemma 7. Let A be a Nakayama algebra. If A is not self injective, then there exists a
primitive idempotent f in A such that Jf is a non-zero projective A-module.

Lemma 8. Let A be a Gorenstein Nakayama algebra. If A is not selfinjective, then there
exists an idempotent e ̸= 1 such that

(1) AeA is projective as left A-module;
(2) pdAe A/AeA < ∞; and
(3) eAe is a Gorenstein Nakayama algebra.

Proof. Assume that A is not selfinjective. By Lemma 7, there exists a primitive idempo-
tent f in A such that Jf is a non-zero projective A-module, so that there exists a primitive
idempotent f ′ ̸= f such that Jf ∼= Af ′. Put e = 1 − f . Since f ′ ̸= f , AfJf < AeJf , so
that Jf = AfJf+AeJf = AeJf ≤ AeAf < Af . We obtain that Jf = AeAf because Jf
is a maximal submodule of Af . Since Jf = AeAf , J ≤ AeA, so that fJ ≤ fAeA < fA.
Therefore we obtain that fJ = fAeA because fJ is a maximal submodule of fA.

(1) Since AeAf = Jf , it follows that AeA = AeAe⊕AeAf = Ae⊕ Jf , so that AeA is
projective as left A-module.

(2) Since (A/AeA)e = 0 , it follows that A/AeA ∼= Af/AeAf = Af/Jf . Similarly we
have that A/AeA ∼= fA/fJ . Thus A/AeA is simple Ae-module and A/AeA ∼= Af/Jf ⊗k

fA/fJ . Since Jf is projective, the left projective dimension of Af/Jf is finite and the
right injective dimension of fA/fJ ∼= D(Af/Jf) is finite. Since A is Gorenstein, the
right projective dimension of fA/fJ is finite. Hence pdAe A/AeA < ∞.

(3)By Lemma 4, AeA is a stratifying ideal. By the assertion (2) above and Proposition
6, eAe is Gorenstein. It is clear that eAe is a Nakayama algebra. ¤

Theorem 9. Let A be a Gorenstein Nakayama algebra. Then we have

(1) There exists a selfinjective Nakayama algebra B such that HH≥n(A) ∼= HH≥n(B)
as graded algebras for some n,

(2) A satisfies the finiteness condition (Fg).

Proof. By Proposion 6 and Lemma 8, if A is not selfinjective, then there exists an idem-
potent e ̸= 1 such that HH≥n(A) ∼= HH≥n(eAe) as graded algebras for some n. Since the
number of the simple modules of eAe is less than that of A and local Nakayama algebras
are selfinjective, the assertion (1) holds.

By Proposion 6 and Lemma 8, if A is not selfinjective, then there exists an idempotent
e ̸= 1 such that A satisfies (Fg) if and only if so does eAe. By [2, Section 4], selfinjective
Nakayama algebras satisfy (Fg). Hence assertion (2) holds. ¤

Corollary 10. Let A be a Nakayama algebra. Then

A is Gorenstein if and only if A satisfies the finiteness condition (Fg).

Proof. By [4] and [10], if an algebra satisfies the finiteness condition (Fg), then the algebra
is Gorenstein. Hence, by Theorem 9, the assertion holds. ¤
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This corollary gives us a way to check whether a given Nakayama algebra satisfies the
finiteness condition (Fg) or not without computing Hochschild cohomology, because we
can check whether a given Nakayama algebra is Gorenstein or not by using the Kupish
series.
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