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thank all speakers and coauthors for their contributions.

We would also like to express our thanks to all the members of the orgnizing commitee
(Professors Hideto Asashiba, Shûichi Ikehata, Shigeo Koshitani, Masahisa Sato and Kunio
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DERIVED EQUIVALENCES FOR ENDOMORPHISM RINGS

HIROKI ABE AND MITSUO HOSHINO

Abstract. We provide derived equivalences for endomorphism rings associated with a
certain exact sequences.

1. Notation

For a ring A, we denote by Mod-A the category of right A-modules, by mod-A the
full subcategory of Mod-A consisting of finitely presented modules and by PA the full
subcategory of Mod-A consisting of finitely generated projective modules. For M ∈
Mod-A, we denote by proj dim MA (resp., inj dim MA) the projective (resp., injective)
dimension of M , where we use the notation MA to stress that the module M considered
is a right A-module, and by ΩnM the nth syzygy of M . For a ring A, we denote by
gl dim A the global dimension of A. For an object X in an additive category B, we
denote by add(X) the full subcategory of B whose objects are direct summands of finite
direct sums of copies of X.

2. Main result

In [1], we have shown the following.

Theorem 1 ([1, Lemma 1.1]). Let 0 → Y
µ→ E

ε→ X → 0 be an exact sequence in
an abelian category A and P an object of A. Assume that E ∈ add(P ) and that both
HomA(P, ε) and HomA(µ, P ) are epic. Then EndA(X ⊕P ) and EndA(Y ⊕P ) are derived
equivalent to each other.

The next two propositions are direct consequences of Theorem 1.

Proposition 2. Let A be a right noetherian ring and M ∈ mod-A. If Exti
A(M,A) = 0

for 1 ≤ i ≤ n, then EndA(M ⊕ A) and EndA(ΩnM ⊕ A) are derived equivalent to each
other.

Proposition 3. Let A be an Artin algebra, P ∈ mod-A and 0 → Y → E → X → 0 an
almost split sequence in mod-A. If E ∈ add(P ) and X,Y /∈ add(P ), then EndA(X ⊕ P )
and EndA(Y ⊕ P ) are derived equivalent to each other.

The propositions above enable us to construct many derived equivalences between en-
domorphism rings. For example, we obtain the following.

Example 4. Let k be a field, R = k[X1, · · · , Xn]/〈X2
i − X2

j , XiXj | 1 ≤ i 6= j ≤ n〉 with
n ≥ 2 and S the simple R-module. Then the following hold.

The detailed version of this paper will be submitted for publication elsewhere.
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(1) EndR(Ω−i−1S ⊕ Ω−iS) and EndR(Ω−1S ⊕ S) are derived equivalent to each other
for all i ≥ 1, where the first algebra has global dimension three and the last algebra
has global dimension two.

(2) EndR(ΩiS ⊕ Ωi+1S) and EndR(S ⊕ ΩS) are derived equivalent to each other for
all i ≥ 1, where the first algebra has global dimension three and the last algebra
has global dimension two.

(3) EndR(ΩiS ⊕ Ωi+1S ⊕ R) and EndR(S ⊕ ΩS ⊕ R) are derived equivalent to each
other for all i ∈ Z, where these algebras have global dimension three.

(4) EndR(ΩiS⊕Ωi+1S) is isomorphic to a trivial extension of

(
k kn

0 k

)
for all i ∈ Z.

3. Auslander algebra

In this section, we apply the results of the previous section to Auslander algebras. We
start by recalling the definition of Auslander algebras (see e.g. [3] for details).

Definition 5. Let Λ be an Artin algebra and 0 → Λ → I0 → I1 → · · · a minimal
injective resolution in mod-Λ. Set dom dim Λ = sup{k ∈ Z | I i ∈ PΛ for 0 ≤ i ≤ k − 1},
which is called the dominant dimension of Λ. Then Λ is said to be an Auslander algebra
provided gl dim Λ ≤ 2 and dom dim Λ ≥ 2.

Let A be a representation-finite Artin algerba and assume that A is basic and connected.
Let M1, · · · ,Mm be a complete set of nonisomorphic indecomposable modules in mod-A
and set I = {1, · · · , m}. We assume that m ≥ 2, i.e., A is not simple. Then, setting
M =

⊕
i∈I Mi, we have an Auslander algebra Λ = EndA(M), which will be called the

Auslander algebra of A. For each indecomposable module X ∈ mod-A, since there exists
a unique iX ∈ I such that X ∼= MiX , we set I(X) = I \ {iX}, MX =

⊕
i∈I(X) Mi and

ΛX = EndA(MX). Then by Proposition 3 we have the following.

Proposition 6. The following hold.

(1) If X is not projective then ΛX is derived equivalent to ΛτX , where τ denotes the
Auslander-Reiten translation.

(2) If X is not injective then ΛX is derived equivalent to Λτ−1X .

We can calculate the global dimension and the dominant dimension of ΛX .

Lemma 7. Assume that X is not projective, not injective and τX ∼= X. Then A is a
local Nakayama algebra and the following hold.

(1) If m = 2, then ΛX
∼= A as algebras.

(2) If m > 2, then inj dim ΛX = 2.

Proposition 8. The following hold.

(1) If X is projective (resp., injective), then gl dim ΛX ≤ 2.
(2) If X is not projective, not injective and τX 6∼= X, then gl dim ΛX = 3.
(3) If X is not projective, not injective and τX ∼= X, then gl dim ΛX = ∞.

Proposition 9. The following hold.

(1) If X is projective (resp., injective), not injective (resp., not projective) and not
simple, then dom dim ΛX = 0.
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(2) If X is projective (resp., injective), not injective (resp., not projective) and simple,
then dom dim ΛX = 1.

(3) If X is projective and injective, then dom dim ΛX ≥ 2.
(4) If X is not projective and not injective, then dom dim ΛX ≥ 2.

It follows by the propositions above that ΛX is an Auslander algebra if and only if X
is projective and injective.

Consider next the case where X is a simple projective module with inj dim XA = 1.
Let P1, · · · , Pn = X be a complete set of nonisomorphic indecomposable modules in PA

and set T = (
⊕n−1

i=1 Pi)⊕ τ−1X. Then T is a classical tilting module, i.e., a tilting module
of projective dimension ≤ 1 (cf. [2]). Set B = EndA(T ) and Y = Ext1

A(T,X) ∈ mod-B.
Then Y is a simple injective module with proj dim YB = 1. We set NY = HomA(T,MX),
N = NY ⊕ Y , Γ = EndB(N) and ΓY = EndB(NY ). Note that Γ is the Auslander algebra
of B.

Proposition 10. We have ΓY
∼= ΛX as algebras and hence for any i, j ≥ 0, if τ iY, τ−jX

are nonzero, Γτ iY and Λτ−jX are derived equivalent to ΛX .

Remark 11. Set T̃ = HomA(M,MX) ⊕ Ext1
A(M,X) ∈ mod-Λ. Then the following hold.

(1) EndΛ(T̃ ) ∼= Γ as algebras.
(2) proj dim T̃Λ = 2.
(3) there exists an exact sequence 0 → Λ → T 0 → T 1 → T 2 → 0 in mod-Λ with the

T i ∈ add(T̃ ).
(4) Ext1

Λ(T̃ , T̃ ) = 0.

(5) Ext2
Λ(T̃ , T̃ ) = 0 if and only if A ∼=

(
D D
0 D

)
with D = EndA(X).

4. Tilting module

Finally, we point out that the exact sequence in Theorem 1 enables us to construct
another tilting module from a given tilting module by exchanging direct summands.

Proposition 12. Let A be a ring, P ∈ Mod-A and 0 → Y
µ→ E

ε→ X → 0 an exact
sequence in Mod-A. Assume that E ∈ add(P ) and that both HomA(P, ε) and HomA(µ, P )
are epic. Then X ⊕ P is a tilting module if and only if so is Y ⊕ P . In particular, if
X ⊕ P is a classical tilting module, then so is Y ⊕ P .

Corollary 13. Let A be a Noether algebra and X ∈ mod-A. Assume that there exists
T ∈ mod-A such that X ⊕ T is a tilting module. Then the following hold.

(1) If there exists an epimorphism of the form f : T (l) → X, then there exists an
epimorphism ε : T (r) → X such that Ker ε ⊕ T is a tilting module. In particular,
if X ⊕ T is a classical tilting module, then so is Ker ε ⊕ T .

(2) If there exists a monomorphism of the form g : X → T (l), then there exists a
monomorphism µ : X → T (r) such that Cok µ ⊕ T is a tilting module.
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THE BUCHSBAUM-RIM FUNCTION OF A PARAMETER MODULE

FUTOSHI HAYASAKA

Abstract. This note is basically a summary of a part of the paper [11] with Eero
Hyry (University of Tampere). In this note we prove that the Buchsbaum-Rim function
`A(Sν+1(F )/Nν+1) of a parameter module N in F is bounded above by e(F/N)

(
ν+d+r−1

d+r−1

)
for every integer ν ≥ 0. Moreover, it turns out that the base ring A is Cohen-Macaulay
once the equality holds for some integer ν. As a direct consequence, we observe that
the first Buchsbaum-Rim coefficient e1(F/N) of a parameter module N is always non-
positive.

1. Introduction

Let (A, m) be a Noetherian local ring of dimension d. Let F = Ar be a free module of
rank r > 0, and let S = SA(F ) be the symmetric algebra of F , which is a polynomial ring
over A. For a submodule M of F , let R(M) denote the image of the natural homomor-
phism SA(M) → SA(F ), which is a standard graded subalgebra of S. Assume that the
quotient F/M has finite length and M ⊆ mF . Then we can consider the function

λ : Z≥0 → Z≥0 ; ν 7→ `A(Sν/M
ν)

where Sν and M ν denote the homogeneous components of degree ν of S and R(M),
respectively. Buchsbaum and Rim studied this function in [4] in order to generalize the
notion of the usual Hilbert-Samuel multiplicity of an m-primary ideal. They proved that
λ(ν) eventually coincides with a polynomial P (ν) of degree d + r − 1. This polynomial
can then be written in the form

P (ν) =
d+r−1∑

i=0

(−1)iei(F/M)

(
ν + d + r − 2 − i

d + r − 1 − i

)
with integer coefficients ei(F/M). The coefficients ei(F/M) are called the Buchsbaum-
Rim coefficients of F/M . The Buchsbaum-Rim multiplicity of F/M , denoted by e(F/M),
is now defined to be the leading coefficient e0(F/M).

In their article Buchsbaum and Rim also introduced the notion of a parameter module
(matrix), which generalizes the notion of a parameter ideal (system of parameters). The
module N in F is said to be a parameter module in F , if the following three conditions
are satisfied: (i) F/N has finite length, (ii) N ⊆ mF , and (iii) µA(N) = d + r − 1, where
µA(N) is the minimal number of generators of N .

A starting point of this note is the characterization of the Cohen-Macaulay property
of A given in [4, Corollary 4.5] by means of the equality `A(F/N) = e(F/N) for every

The detailed version of this paper has been submitted for publication elsewhere.
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parameter module N of rank r in F = Ar. Brennan, Ulrich and Vasconcelos observed
in [1, Theorem 3.4] that if A is Cohen-Macaulay, then in fact

`A(Sν+1/N
ν+1) = e(F/N)

(
ν + d + r − 1

d + r − 1

)
for all integers ν ≥ 0. Our main result is now as follows:

Theorem 1. Let (A, m) be a Noetherian local ring of dimension d > 0.

(1) For any rank r > 0, the inequality

`A(Sν+1/N
ν+1) ≥ e(F/N)

(
ν + d + r − 1

d + r − 1

)
always holds true for every parameter module N in F = Ar and for every integer
ν ≥ 0.

(2) The following statements are equivalent:
(i) A is a Cohen-Macaulay local ring;

(ii) There exists an integer r > 0 and a parameter module N of rank r in F = Ar

such that the equality

`A(Sν+1/N
ν+1) = e(F/N)

(
ν + d + r − 1

d + r − 1

)
holds true for some integer ν ≥ 0.

This generalizes our previous result [10, Theorem 1.3] where we assumed that ν = 0.
The equivalence of (i) and (ii) in (2) seems to contain some new information even in the
ideal case. Indeed, it improves a recent observation that the ring A is Cohen-Macaulay if
there exists a parameter ideal Q in A such that `A(A/Qν+1) = e(A/Q)

(
ν+d

d

)
for all ν À 0

(see [8, 12]). Moreover, as a direct consequence of (1), we have the non-positivity of the
first Buchsbaum-Rim coefficient of a parameter module.

Corollary 2. For any rank r > 0, the inequality

e1(F/N) ≤ 0

always holds true for every parameter module N in F = Ar.

Mandal and Verma have recently proved that e1(A/Q) ≤ 0 for any parameter ideal Q
in A (see [15], and also [8]). Corollary 2 can be viewed as the module version of this fact.
However, our proof based on the inequality in Theorem 1 (1) is completely different from
theirs and is considerably more simpler.

2. Preliminaries

Let (A, m) be a Noetherian local ring of dimension d. Let F = Ar be a free module of
rank r > 0. Let S = SA(F ) be the symmetric algebra of F . Let N be a parameter module
in F , that is, N is a submodule of F satisfying the conditions: (i) `A(F/N) < ∞, (ii)
N ⊆ mF , and (iii) µA(N) = d+ r−1. We put n = d+ r−1. Let Nν be the homogeneous
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component of degree ν of the standard graded subalgebra R(N) = Im(SA(N) → S) of S.
Let Ñ = (cij) be the matrix associated to a minimal free presentation

An Ñ→ F → F/N → 0

of F/N . Let X = (Xij) be a generic matrix of the same size r × n. We denote by Is(X)
the ideal in the polynomial ring A[X] = A[Xij | 1 ≤ i ≤ r, 1 ≤ j ≤ n] generated by
the s-minors of X. Let B = A[X](m,X) be the ring localized at the graded maximal ideal
(m, X) of A[X]. The substitution map A[X] → A where Xij 7→ cij now induces a map
ϕ : B → A. We consider the ring A as a B-algebra via the map ϕ. Let

b = Ker ϕ = (Xij − cij | 1 ≤ i ≤ r, 1 ≤ j ≤ n)B.

Set G = Br, and let L denote the submodule Im(Bn X→ G) of G. Let Gν and Lν

be the homogeneous components of degree ν of the graded algebras SB(G) and R(L),
respectively. Then one can check the following.

Lemma 3. For any integers ν ≥ 0, we have the following:

(1) (Gν+1/L
ν+1) ⊗B (B/b) ∼= Sν+1/N

ν+1;
(2) SuppB(Gν+1/L

ν+1) = SuppB(B/Ir(X)B);
(3) The ideal b is generated by a system of parameters of the module Gν+1/L

ν+1.

The following fact concerning Gν+1/L
ν+1 is known by [3, Corollary 3.2] (see also [13,

Proposition 3.3]).

Lemma 4. For any integer ν ≥ 0, we have Gν+1/L
ν+1 is a perfect B-module of grade d.

The following plays a key role in the proof of Theorem 1. See [11, Proposition 2.4] for
the proof.

Proposition 5. For any p ∈ MinB(B/Ir(X)B), the equality

`Bp

(
(Gν+1/L

ν+1)p

)
= `Bp ((B/Ir(X)B)p)

(
ν + d + r − 1

d + r − 1

)
holds true for all integers ν ≥ 0.

3. Proof of Theorem 1

In order to prove Theorem 1, we need to introduce more notation. For any matrix a
of size r × n over an arbitrary ring, we denote by K•(a) its Eagon-Northcott complex [6].
When r = 1, the complex K•(a) is just the ordinary Koszul complex of the sequence a.
See [7, Appendix A2] for the definition and more details of complexes of this type. Recall
in particular that if N is a parameter module in a free module F as in section 2, then

e(F/N) = χ(K•(Ñ)),

where χ(K•(Ñ)) denotes the Euler-Poincaré characteristic of the complex K•(Ñ) (see [4]
and [14]). Moreover, one can check the following by computing TorB

p (B/IB,A) for any
p ≥ 0 (see [5]).
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Lemma 6. Using the setting and notation of section 2, we have

χ(K•(b) ⊗B (B/Ir(X)B)) = χ(K•(Ñ)).

Now we can give the proof of Theorem 1.

Proof of Theorem 1. We use the same notation as in section 2. Put I = Ir(X).
(1): Fix integers ν ≥ 0. The ideal b being generated by a system of parameters of the

module Gν+1/L
ν+1, we get

`A(Sν+1/N
ν+1)

= `B((Gν+1/L
ν+1) ⊗B (B/b))

≥ e(b; Gν+1/L
ν+1)

=
∑

p∈AsshB(Gν+1/Lν+1)

e(b; B/p) · `Bp((Gν+1/L
ν+1)p)

=
∑

p∈AsshB(B/IB)

e(b; B/p) · `Bp((B/IB)p)

(
ν + d + r − 1

d + r − 1

)

= e(b; B/IB)

(
ν + d + r − 1

d + r − 1

)
= χ(K•(b) ⊗B (B/IB))

(
ν + d + r − 1

d + r − 1

)
= χ(K•(Ñ))

(
ν + d + r − 1

d + r − 1

)
= e(F/N)

(
ν + d + r − 1

d + r − 1

)
as desired, where e(b; ∗) denotes the multiplicity of ∗ with respect to b.

(2): The other implication being clear, by the ideal case, for example, it is enough to
show that (ii) implies (i). Assume thus that

`A(Sν+1/N
ν+1) = e(F/N)

(
ν + d + r − 1

d + r − 1

)
for some ν ≥ 0. The above argument then gives

`B((Gν+1/L
ν+1) ⊗B (B/b)) = e(b; Gν+1/L

ν+1).

It follows that Gν+1/L
ν+1 is a Cohen-Macaulay B-module of dimension rn ([2, (5.12)

Corollary]). By Lemma 4, Gν+1/L
ν+1 is a perfect B-module of grade d. Thus, by the

Auslander-Buchsbaum formula,

depth B = depthB(Gν+1/L
ν+1) + pdB(Gν+1/L

ν+1)

= dimB(Gν+1/L
ν+1) + gradeB(Gν+1/L

ν+1)

= rn + d

= dim B.

Therefore B is Cohen-Macaulay so that A is Cohen-Macaulay, too. ¤
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Vietnam Joint Seminar on Commutative Algebra (2006), 162–168
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REPRESENTATION RINGS OF STRING ALGEBRAS

MARTIN HERSCHEND

Abstract. String algebras are a class of algebras given by certain quivers with mono-
mial relations. Thus the category of finite dimensional left modules over a string algebra
is equipped with a tensor product defined point-wise and arrow-wise on the level of
quiver representations. We describe the corresponding representation ring for any string
algebra.

1. Introduction

The category of finite dimensional representations of a group G is equipped with a tensor
product defined by diagonal action. Thus the set of isoclasses of such representations has
the structure of a semi-ring, where addition is given by the direct sum and multiplication
by the tensor product. From this semi-ring one constructs the representation ring R(G)
by including formal additive inverses.

It would be interesting to generalise this procedure to the category of left modules over
an associative algebra A instead of group representations. However, in general there is no
know way of defining a tensor product on this category. Now assume that A is given as
the path algebra of a quiver Q with monomial relations, i.e. A = kQ/〈X〉 for some set
X of paths in Q and a field k. Then finite dimensional left A-modules are given by finite
dimensional representations of Q satisfying the relations X (we call such representations
(Q,X)-representations). Thus we can define a tensor product point-wise and arrow-wise.
Moreover, as in the case of group representations we obtain a representation ring R(Q,X),
which we denote simply by R(Q) in case X is empty. Our aim is to describe this ring.

By the Krull-Schmidt Theorem R(Q, X) has a Z-basis consisting of the isoclasses of
indecomposable (Q,X)-representations. Thus, describing the multiplicative structure of
R(Q,X) amounts to solving the following problem: given to indecomposable (Q,X)-
representations V , W decompose V ⊗ W into indecomposables. This problem is called
the Clebsch-Gordan problem and has its origin in the study of binary algebraic forms by
Clebsch and Gordan [2].

The most classical case is when Q is the loop quiver. For k algebraically closed of
characteristic zero, the solution to the Clebsch-Gordan problem for the loop was found by
Aitken [1]. The case when k is algebraically closed of positive characteristic was solved
by Iima-Iwamatsu [11] and the case when k is perfect was treated in [3].

For Q a Dynkin quiver, R(Q) was described for type A and D in [10] and for type E6

in [9]. The remaining cases E7 and E8 are still unsolved to my knowledge.

The detailed version of this paper has been submitted for publication elsewhere.
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For extended Dynkin quivers of type Ã the solution to the Clebsch-Gordan problem
was found in [7]. There is also a solution in case Q is the double loop quiver

•α
$$

β
zz

with relations αn = βn = αβ = βα = 0, found in [8]. These two cases are instances of
string algebras. In the present article we shall describe the representation ring for each
quiver with relations corresponding to a string algebra.

Gelfand and Ponomarev classified the indecomposable representations of the double
loop quiver appearing above in [6], as part of their classification of Harish-Chandra mod-
ules over the Lorentz group. The indecomposables in this case fall into two classes called
strings and bands. This type of classification was later used in other settings by Ringel
[13] and Donovan-Freislich [4]. A well-rounded setting to which it applies is that of string
algebras.

2. Preliminaries

Let us recall some definitions and set notation. More detail can be found in [5].
Throughout fix a perfect field k. A quiver Q consists of a set of vertices Q0 and a
set of arrows Q1. Moreover, it is equipped with two maps t, h : Q1 → Q0 mapping each
arrow α to its tail tα and head hα respectively. We depict this by tα

α→ hα.
A representation V of Q consists of a collection of finite dimensional k-vector spaces

Vx, where x ∈ Q0 and linear maps V (α) : Vx → Vy where x
α→ y ∈ Q1. Let X be a

set of paths in Q. We call V a (Q,X)-representation if for every path α1 · · ·αn ∈ X the
equality V (α1) · · ·V (αn) = 0 holds. The category of (Q,X)-representations is denoted
repk(Q,X).

Given two (Q, X)-representation their tensor product V ⊗W is defined as follows. For
each x ∈ Q0, α ∈ Q1 set

(V ⊗ W )x = Vx ⊗ Wx and (V ⊗ W )(α) = V (α) ⊗ W (α).

It is routine to check that V ⊗ W is a (Q,X)-representation.
Let S(Q,X) be the set of isoclasses of (Q,X)-representations. For all [V ], [W ] ∈

S(Q,X) set

[V ] + [W ] = [V ⊕ W ] and [V ][W ] = [V ⊗ W ].

This endows S(Q,X) with the structure of a semi-ring. Let R(Q,X) be the corresponding
Grothendieck ring [12].

Our aim is to describe R(Q,X) in case (Q,X) corresponds to a string algebra. Of
particular importance is the case when Q is the loop quiver:

• α
zz

In this case there is an equivalence of categories

repk Q →̃ mod k[x]

defined for each representation V by letting x act on V• by V (α). The tensor product
induced by this equivalence on mod k[x] comes from the coproduct k[x] → k[x] ⊗ k[x],
x 7→ x ⊗ x.
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Let Vn correspond to the indecomposable k[x]/xn under the above equivalence for every
n > 0. We have the following result from [3].

Proposition 1. Let Q be the loop quiver and V a Q-representation such that V (α) is an
invertible linear operator. Then the following statements hold.

(1) Vn ⊗ Vm →̃ (m − n + 1)Vn ⊕
⊕n−1

i=1 2Vi for n ≤ m.
(2) V ⊗ Vn = (dim V )Vn for all n.

Let Is ⊂ R(Q) be the Z-span of {[Vn] | n > 0}. By Proposition 1, Is is an ideal in
R(Q) and R(Q)/Is →̃ R(k[x, x−1]). The structure of R(k[x, x−1]) depends heavily on the
field k. Let us recall its description from [3]. We need to construct another ring which we
denote by R′.

If char k = 0, then set R′ = Z[T ].
If char k = p > 0, then R′ is constructed as follows. For each i ∈ N let Cpi be the cyclic

group of order pi and set Ri = R(kCpi). There are canonical inclusions Ri ⊂ Ri+1, and
we set R′ =

∪
i∈N Ri.

Let k
ι

be the group of invertible elements in the algebraic closure of k and Zk
ι

the
corresponding group ring. The absolute Galois group G = Gal(k/k) acts on k

ι
and

consequently on Zk
ι
. Denote by (Zk

ι
)G, the ring of invariants. The following Theorem is

from [3].

Theorem 2. There is an isomorphim

R(k[x, x−1]) →̃ (Zk
ι
)G ⊗Z R′.

3. String algebras

As before fix a quiver Q and a set X of paths in Q. Set I = 〈X〉 and A = kQ/I.

Definition 3. The algebra A is called a string algebra if it is finite dimensional and
satisfies the following conditions.

(1) Each x ∈ Q0 is the tail, respectively head, of at most two arrows.
(2) For each α ∈ Q1 there is at most one β ∈ Q1 and at most one γ ∈ Q1 such that

βα 6∈ I and αγ 6∈ I.

Example 4. The following quiver with relations defines a string algebra for every n > 0.

•
α // •
β

oo γdd βα = αβ = (βαγ)n = 0

We proceed to describe the indecomposable modules over string algebras.

Definition 5. A quiver morphism F : P → Q consists of two maps F : P0 → Q0,

F : P1 → Q1 such that for any arrow x
α→ y we get Fx

Fα→ Fy.
We call F = (F, P ) a shape over Q if for any two distinct arrows x1

α1→ y1, x2
α2→ y2 ∈ Q1

we have that Fα1 = Fα2 implies x1 6= y1 and x2 6= y2.
A morphism of shapes (F, P ) → (F ′, P ′) is a quiver morphism G : P → P ′ such that

F = F ′G. Denote by |F′ : F|, the number of morphisms F → F′.
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We only consider shapes (F, P ) and such that for any path α1 · · ·αn in P we have that
Fα1 · · ·Fαn 6∈ I.

With each shape (F, P ) we associate two functors

repk P

F∗
²²

repk(Q,X)

F ∗

OO

defined as follows.
For each V ∈ repk(Q,X), x ∈ P0 and α ∈ P1 set (F ∗V )x = VFx and (F ∗V )(α) = V (Fx).

For each W ∈ repk P , and x′ ∈ Q0 set

(F∗W )x =
⊕

Fx=x′

Wx.

Let x′ α′
→ y′ ∈ Q1. Write the linear map

(F∗W )(α′) :
⊕

Fx=x′

Wx →
⊕

Fy=y′

Wy

as a matrix A with elements

Ayx =

{
W (α) if there is x

α→ y such that Fα = α′,

0 else.

Definition 6. A shape F = (F,L) is called linear if L is Dynkin of type A, i.e. if its
underlying graph is

• · · · •.

We define the L-representation V by

k
1 · · · 1

k.

The string associated to F is the (Q,X)-module SF := F∗V . It is always indecomposable.
A shape G = (G,Z) is called cyclic if it has trivial automorphism group and Z is

extended Dynkin of type Ã, i.e. if its underlying graph is

•

ooooooo

• · · · •.

OOOOOOO

Now let M be a k[x, x−1]-module and γ ∈ Z1. We define the Z-representation W by

M
1

pppppp

M
1

· · ·
1

M

xNNNNNN

where the arrow acting as x is γ. The band associated with (G, M, γ) is the (Q,X)-
module BG(M,γ) := G∗W . It is indecomposable if and only if M is indecomposable. For
γ′ ∈ Z1 we say that γ and γ′ are oriented equally if when cycling through the vertices of
Z we encounter tγ and hγ in the same order as we encounter tγ′ and hγ′. In that case
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BG(M,γ′) →̃ BG(M,γ). Otherwise BG(M,γ′) →̃ BG(M−1, γ), where M−1 is obtained
from M by inverting the action of x.

The following Theorem follows from [14].

Theorem 7. Assume that A is a string algebra. Then strings and (indecomposable) bands
classify all indecomposables, i.e.

(1) Each indecomposable A-module is isomorphic to either a string or band.
(2) No strings are isomorphic to bands.
(3) Two strings SF and SF′ are isomorphic if and only if they have isomorphic shapes.
(4) Two bands BG(M,γ) and BG′(M ′, γ′) are isomorphic if and only if their shapes

are isomorphic via some H such that M ′ is isomorphic to M if H(γ) and γ′ are
equally oriented and M ′ is isomorphic to M−1 otherwise.

Let L be the set of isoclasses of linear shapes and Z be the set of isoclasses of cyclic
shapes.

We need the following preliminary result.

Proposition 8. Let (F, P ) be a shape over Q, V ∈ repk(Q,X) and W ∈ repk P . Then

F∗W ⊗ V →̃ F∗(W ⊗ F ∗V )

Let Is ⊂ R(Q,X) be the Z-span of {[SF] | F ∈ L}. By Proposition 8, it is an ideal,
since [SF][V ] = [F∗(F

∗V )] ∈ Is.
The following Theorem completely describes the structure of R(Q, X) in the case A is

a string algebra.

Theorem 9. Assume that A is a string algebra. Then the ideal Is has a unique Z-basis of
pair-wise orthogonal idempotents {eF = eF}F∈L, such that the following statements hold:

(1) For each linear shape F

[SF] =
∑
F′∈L

|F : F′|eF′ .

(2) For each cyclic shape G = (G,Z), γ ∈ Z1 and k[x, x−1]-module M

[BG(M,γ)]eF′ = dim M |G : F′|eF′ .

(3) For each pair of non-isomorphic cyclic shapes G1 = (G1, Z
1), G2 = (G2, Z

2),
γ1 ∈ Z1

1 , γ2 ∈ Z2
1 and k[x, x−1]-modules M , N

[BG1(M,γ1)][BG2(N, γ2)] =
∑
F′∈L

dim M dim N |G1 : F′||G2 : F′|eF′ .

Moreover,

[BG1(M,γ1)][BG1(N, γ1)] = [BG1(M ⊗ N, γ1)]+∑
F′∈L

dim M dim N |G1 : F′|(|G1 : F′| − 1)eF′ .

We end with the following observations. As a (non-unital) subring Is →̃
⊕

F∈L Z. On
the other hand, R(Q,X)/Is →̃

⊕
G∈Z R(k[x, x−1]).
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FULLY WEAKLY PRIME RINGS

YASUYUKI HIRANO, EDWARD POON AND HISAYA TSUTSUI

Abstract. Anderson and Smith studied weakly prime ideals for a commutative ring
with identity. Blair and Tsutsui studied the structure of a ring in which every ideal is
prime. In this paper we investigate the structure of rings, not necessarily commutative,
in which all ideals are weakly prime.

1. Introduction

Anderson-Smith [1] defined a proper ideal P of a commutative ring R with identity to
be weakly prime if 0 6= ab ∈ P implies a ∈ P or b ∈ P . They proved that every proper
ideal in a commutative ring R with identity is weakly prime if and only if either R is a
quasilocal ring (possibly a field) whose maximal ideal is square zero, or R is a direct sum
of two fields [1, Theorem 8]. On the other hand, Blair-Tsutsui [2] studied the structure
of a ring in which every ideal is prime. In this paper we first consider the structure of
rings, not necessarily commutative nor with identity, in which all ideals are weakly prime.
A necessary and sufficient condition for a ring to have such property is given and several
examples to support given propositions are constructed. We then further investigate
commutative rings in which every ideal is weakly prime and the structure of such rings
under assumptions that generalize commutativity of rings. At the end, we consider the
structure of rings in which every right ideal is weakly prime.

2. General results

We generalize the definition of a weakly prime ideal to arbitrary (not necessarily com-
mutative) rings as follows.

Definition. A proper ideal I of a ring R is weakly prime if 0 6= JK ⊆ I implies either
J ⊆ I or K ⊆ I for any ideals J, K of R.

Our first proposition is Theorem 1 of Anderson-Smith [1] in a more general setting.

Proposition 1. If P is weakly prime but not prime, then P 2 = 0.

Proof. Since P is weakly prime but not prime, there exist ideals I 6⊆ P and J 6⊆ P but
0 = IJ ⊆ P. But if P 2 6= 0, then 0 6= P 2 ⊆ (I + P )(J + P ) ⊆ P , which implies I ⊆ P or
J ⊆ P , a contradiction.

2000 Mathematics Subject Classification. 16N60, 16W99.
Key words and phrases. Weakly prime.
The detailed version of this paper has been submitted for publication elsewhere.
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Proposition 2. Let P be an ideal in a ring R with identity. The following statements
are equivalent:

(1) P is a weakly prime ideal.
(2) If J , K are right (left) ideals of R such that 0 6= JK ⊆ P, then J ⊆ P or K ⊆ P.
(3) If a, b ∈ R such that 0 6= aRb ⊆ P, then a ∈ P or b ∈ P.

Proof. The implications (1) => (2) and (2) => (3) are easy. The implication (3) =>
(1) can be verified by checking a number of cases.

Since weakly prime ideals are defined to be proper ideals, we shall say that every ideal of
a ring R is weakly prime when every proper ideal of R is weakly prime. In this case we
say that R is fully weakly prime.

If R2 = 0, then clearly every ideal of R is weakly prime. In particular, if an ideal I of a
ring R is weakly prime but not a prime ideal, then every ideal of I as a ring is weakly
prime by Proposition 1.

Proposition 3. Every ideal of a ring R is weakly prime if and only if for any ideals I and
J of R, IJ = I,IJ = J, or IJ = 0.

Corollary 1. Let R be a ring in which every ideal of R is weakly prime. Then for any
ideal I of R, either I2 = I or I2 = 0.

Example 1. Let F be a field and R = F ⊕ F ⊕ F . Then every ideal of R is idempotent
but the ideal I = F ⊕ 0 ⊕ 0 is evidently not weakly prime, showing that the converse of
Corollary 1 is false.

Suppose that a ring R with identity has a maximal ideal M and M2 = 0. One can readily
check that R is fully weakly prime, and M is the only prime ideal of R.

Corollary 1 in particular yields that if a ring R has the property that every ideal is weakly
prime, then either R2 = R, or R2 = 0. Notice that R2 is neither 0 nor R in the example
given below.

Example 2. Let S be a ring such that S2 = 0, and let F be a field. Then the ring
R = F ⊕ S ⊕ S with component-wise addition and multiplication has a maximal ideal
M = 0 ⊕ S ⊕ S and M2 = 0. However, I = F ⊕ 0 ⊕ S is not weakly prime since
0 6= (F ⊕ S ⊕ 0)2 ⊆ I.

If a ring R satisfying R2 = R has a maximal ideal M and M2 = 0, then every proper
ideal of R is contained in M. However, it is possible that MR 6= M . Thus, such a ring
does not necessarily have the property that every ideal is weakly prime as the following
example shows.

Example 3. Let F be a field and S =


 0 a b

0 c d
0 0 0

∣∣∣∣∣∣ a, b, c, d ∈ F

. Then S has a

unique maximal ideal L =


 0 a b

0 0 d
0 0 0

∣∣∣∣∣∣ a, b, d ∈ F

.
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Let N =


 0 0 b

0 0 0
0 0 0

∣∣∣∣∣∣ b ∈ F

. Consider the factor ring R = S/N . While R2 = R and

M = L/N is a maximal ideal whose square is zero, the proper ideals RM and MR are
not weakly prime.

Proposition 4. If every ideal of a ring R is weakly prime and R2 = R, then R has at
most two maximal ideals.

Proof. By contradiction.

The following example shows that the condition R2 = R in Proposition 4 cannot be
dropped.

Example 4. Let R be the unique maximal ideal of Z4.Then S = R⊕R⊕R is an example
of a ring all of whose ideals are weakly prime and having more than 2 maximal ideals.

Proposition 5. Suppose that every ideal of a ring R is weakly prime. If R has two
maximal ideals M1 and M2, then their product is zero. Furthermore, if R has an identity
element, then R is a direct sum of two simple rings.

Proof. Note M1M2 ⊆ M1 ∩M2. If R has an identity, then M1 ∩M2 = (M1 ∩M2)(M1 +
M2) = 0.

We denote the prime radical of R by P (R), and the sum of all ideals whose square is zero
by N(R).

Theorem 1. Suppose that every ideal of a ring R is weakly prime and R2 = R. Then
P (R) = N(R) and (P (R))2 = (N(R))2 = 0.

Proof. Any finite sum of square-zero ideals is nilpotent, and hence square-zero, so
N(R)2 = 0. Thus N(R) ⊆ P (R).

Either P (R) is not prime (in which case P (R)2 = 0, so P (R) ⊆ N(R)), or P (R) is prime,
in which case N(R) can be shown to be prime (apply Theorem 1.2 of Blair-Tsutsui [2] to
R/P (R)).

Corollary 2. Suppose that every ideal of a right Noetherian ring R with identity is
weakly prime and R2 = R. Then P (R) = N(R) = J(R) and (J(R))2 = 0, where J(R) is
the Jacobson radical of R.

Proof. If (J(R))2 = J(R), then J(R) = 0 ⊆ P (R) by Nakayama’s lemma. If (J(R))2 = 0,
then J(R) ⊆ P (R).

Note that for a ring R in which every ideal is weakly prime, in general it is possible that
P (R) = N(R) 6= J(R) [2, §5 An Example].

Corollary 3. Suppose that every ideal of a ring R is weakly prime. Then every nonzero
ideal of R/N(R) is prime.

Corollary 4. Suppose every ideal of a ring R is weakly prime. Then (N(R))2 = 0 and
every prime ideal contains N(R). There are three possibilities:

(a) N(R) = R.
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(b) N(R) = P (R) is the smallest prime ideal and all other prime ideals are idempotent
and prime ideals are linearly ordered. If N(R) 6= 0, then it is the only non-idempotent
prime ideal.
(c) N(R) = P (R) is not a prime ideal. In this case, there exist two nonzero minimal prime
ideals J1 and J2 with N(R) = J1 ∩ J2 and J1J2 = J2J1 = 0. All other ideals containing
N(R) also contain J1 + J2 and they are linearly ordered.

Proof. Use Theorem 1. If we are not in case (a) or (b), apply [2, Theorem 1.2] and [4,
Theorem 2.1] to R/N(R).

Example 5. Let R be a ring and M an R-bimodule. Define

R ∗ M = {(r, m)|r ∈ R, m ∈ M}
with component-wise addition and multiplication

(r, m)(s, n) = (rs, rn + ms).

Then R ∗ M is a ring whose ideals are precisely of the form I ∗ N where I is an ideal of
R and N is a submodule (a bimodule) of M containing IM and MI.

(a) Let R be a prime ring with exactly one nonzero proper ideal P. For example, the ring
of linear transformations of a vector space V over a field F where dimF V = ℵ0 has such a
property. Then every ideal of S1 = R∗P is weakly prime: the maximum ideal P1 = P ∗P
is idempotent and the nonzero minimal ideal P2 = 0 ∗ P is nilpotent, both of which are
prime.

(b) Every ideal of S2 = S1 ∗ P2 is weakly prime: The maximum ideal Q1 = P1 ∗ P2 is
idempotent and the three nonzero nilpotent ideals are Q2 = P2 ∗ P2, Q3 = 0 ∗ P2, and
Q4 = P2 ∗ 0.

(c) If we redefine the multiplication above as

(r, m)(s, n) = (rs, rn + ms + mn),

then S1 in (a) has an additional minimal ideal P3 = {(p, −p)| p ∈ P}. In this case,
N(S1) = P3 ∩ P2 = 0.

We don’t know of an example of Corollary 4, case (c) where N(R) 6= 0.

3. Commutative Rings and Generalizations thereof

We now consider the structure of rings in which every ideal is weakly prime under the
assumption of the ring being commutative or with commutative-like conditions.

Proposition 6. Let R be a commutative ring in which every ideal is weakly prime. If
R2 = R, then R has a maximal ideal.

Proof. If N(R) is not maximal there exists a prime ideal I. Apply [2, Theorem 1.3] to
R/I.

We note that a commutative ring R with the property R2 = R does not necessarily have
a maximal ideal. For example, if a commutative ring S has a unique nonzero maximal
ideal M and M2 = M, then M as a ring cannot have a maximal ideal.
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The next corollary follows from Propositions 4 and 6.

Corollary 5. Let R be a commutative ring all of whose ideals are weakly prime. Suppose
that R2 = R. Then R has either a unique maximal ideal or exactly two maximal ideals.

Theorem 2. Let R be a commutative ring all of whose ideals are weakly prime. Suppose
that R2 = R.

(1) If R has a unique maximal ideal M, then M2 = 0.

(2) If R has two maximal ideals M and N , then MN = 0.

Proof. By contradiction.

Proposition 7. Let R be a commutative ring all of whose ideals are weakly prime.
Suppose that R2 = R. Then every proper ideal is contained in a maximal ideal.

Proof. Use the preceding theorem.

Corollary 6. Let R be a commutative ring and suppose that every ideal of R is weakly
prime. If R2 = R, then R has an identity element.

Proof. We show that if a commutative ring R satisfies the following conditions, then R
has an identity element:
(a) R2 = R,
(b) every proper ideal is contained in a maximal ideal, and
(c) R has a finite number of maximal ideals M1,M2, . . . ,Mn.

Choose x ∈ R such that x /∈ Mj for any j. Let (x) = {xR + nx|n ∈ Z}. If xR ⊆ Mj,
then R = R2 = (Mj + (x))2 ⊆ Mj, a contradiction. Hence xR = R and consequently, R
has an identity element.

Corollary 7. Let R be a commutative ring all of whose ideals are weakly prime. Then
one of the following holds:
(a) R2 = 0,
(b) R is a ring with identity and a square zero maximal ideal M, or
(c) R is a direct sum of two fields.

For the case (b) in Corollary 7, the following theorem further determines the structure of
R.

Theorem 3. Let R be a commutative ring with a square-zero maximal ideal M and
R2 = R. If (ch(R/M) = 0, then R is isomorphic to (R/M) ∗ M (as defined in Example
5).

Proof. Note that if E is a subfield of R/M and ψ : E → R is a homomorphism satisfying
π ◦ ψ = id|E, then the map ϕ : E ∗ M → R given by ϕ((x̄,m)) = ψ(x̄) + m is a
monomorphism. So, it suffices to show such a map ψ exists for E = R/M (in this case ϕ
is also onto); the proof proceeds by defining ψ on successively larger subfields E ⊆ R/M .

Using the same idea, the result also holds for ch(R/M) = p if pR = 0 and R/M is
separable over F. In general, however, the theorem is false if ch(R/M) = p 6= 0.
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Example 6. (a) Let R = Zp2 where p is prime. Then R has maximal ideal M = pR 6=
0 but p(R/M ∗ M) = 0.

(b) Let R =

[
F F
0 0

]
where F is a field. Then R2 = R 6= 0, and every ideal of R is

weakly prime but R does not contain an identity element.

As a natural generalization of commutative rings, we next consider polynomial identity
(PI) rings.

Theorem 4. Let R be a PI-ring with identity. If every ideal of R is weakly prime, then
one of the following folds:
(a) R/P (R) is a finite dimensional central simple algebra.
(b) R is a direct sum of two finite dimensional central simple algebras.

Proof. Use Corollary 4 and [2, Theorem 3.3].

More general than the class of PI-rings is the class of fully bounded rings. Using [2,
Theorem 3.4] yields the following theorem.

Theorem 5. Let R be a ring with identity in which every ideal is weakly prime. If R is
a right fully bounded, right Noetherian ring, then one of the following holds:

(a) R/P (R) is a simple Artinian ring.
(b) R is a direct sum of two simple Artinian rings.

4. Rings in which every right ideal is weakly prime

Definition. We define a proper right ideal I of a ring R to be weakly prime if 0 6= JK ⊆ I
implies either J ⊆ I or K ⊆ I for any right ideals J, K of R.

For a ring R that is not square zero, Koh[3] showed that R is simple and a ∈ aR for all
a ∈ R if and only if every right ideal of R is prime. Now consider the structure of rings
in which every right ideal is weakly prime. For the commutative case, it is evident that
such rings need not be simple. Example 6 (b) gives an example of a ring R = R2 in which
every right and left ideal is weakly prime.

Unlike the case of weakly prime two sided ideals, there exists a nonzero idempotent

weakly prime right ideal that is not prime. For example, if R =

{[
a b
0 c

]∣∣∣∣ a, b, c ∈ F

}
,

then K =

{[
0 0
0 t

]∣∣∣∣ t ∈ F

}
is a weakly prime right ideal and K2 = K 6= 0. But K is not

a prime right ideal.

We conclude with the following generalization of Corollary 7.

Theorem 6. Suppose that every right ideal of a ring R is weakly prime. Then one of
the following holds:
(a) R2 = 0.
(b) R has a square zero maximal ideal.
(c) R is a direct sum of two division rings.
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Under an additional condition we can say more about case (b).

Proposition 8. Let R be a ring all of whose right ideals are weakly prime. Suppose R
has a square zero maximal ideal N 6= 0. If NR = 0, then RN = N and either:

(a) R/N is a simple dense ring of endomorphisms over the infinite-dimensional vector
space N (and every nonzero endomorphism is surjective), or

(b) R/N is a division ring and R is isomorphic to{[
a b
0 0

]
: a, b ∈ R/N

}
.
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ON GALOIS EXTENSIONS WITH AN INNER GALOIS GROUP
AND A GALOIS COMMUTATOR SUBRING

SHÛICHI IKEHATA, GEORGE SZETO AND LIANYONG XUE

Abstract. Properties of a Galois ring extension with an inner Galois group are given,
and equivalent conditions for a Galois extension with a Galois commutator subring are
shown.

1. Introduction

In 1960’s, Galois theory was developed for rings by M. Auslander-O.Goldman ([2]),
S.U. Chase-D.K. Harrison-A. Rosenberg ([3]), F.R. DeMeyer ([4], [5]), M. Harada ([7]),
Y. Miyashita ([13]), T. Nagahara ([14]), T. Kanzaki ([12]), K. Sugano ([15], [16]), and
others. It was shown ([4], Theorem 6, [5], Theorem 3) that B is a central Galois algebra
over its center C with an inner Galois group G if and only if it is an Azumaya projective
group algebra CGf where f : G × G −→ units of C is a factor set. In section 3, we shall
generalize the above theorem to any Galois extension B with an inner Galois group G
where G = {g ∈ G | g(x) = UgxU−1

g for some Ug ∈ B and for all x ∈ B}. It is shown
that B contains a projective group algebra CGf . An equivalent condition for a central
Galois algebra CGf with Galois group induced by G is given, and characterizations for a
Galois extension B with an inner Galois group G generated by {Ug | g ∈ G} over BG are
obtained. When B is also an Azumaya algebra, in section 4, some properties are given for
a Galois extension B with an inner Galois group G. We note that any Galois extension
with an inner Galois group G is a Hirata separable extension of BG ([17], Corollary 3).
For a Hirata separable Galois extension B with Galois group G (not necessarily inner),
in [17], Sugano investigated the Galois commutator subring VB(BG) of BG in B. We
shall study when VB(BG) is a Galois extension with Galois group induced by G for any
Galois extension B with Galois group G in section 5. Equivalent conditions are given in
terms of a composition Galois extensions: B ⊃ BG · VB(BG) ⊃ BG and crossed products
respectively. Some examples are also given to demonstrate the results.

2. Basic Definitions and Notations

Let B be a ring with identity 1, C the center of B, G a finite automorphism group of
B, BG the set of elements in B fixed under each element in G. Following the definitions
as given in the references, we call B a Galois extension of BG with Galois group G if there
exist elements {ai, bi in B, i = 1, 2, ...,m for some integer m} such that

∑m
i=1 aig(bi) = δ1,g

for each g ∈ G ([4]). Such a set {ai, bi} is called a G-Galois system for B. A Galois
extension B of BG is called a Galois algebra if BG is contained in C ([21]), and a central
Galois algebra if BG = C ([20]). We call B a center Galois extension with Galois group

The detailed version of this paper will be submitted for publication elsewhere.
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G if C is a Galois algebra over CG with Galois group G|C ∼= G, and a commutator Galois
extension of BG with Galois group G if VB(BG) is a Galois extension of (VB(BG))G

with Galois group G|VB(BG)
∼= G. Let A be a subring of B with the same identity 1.

We denote VB(A) the commutator (also called centralizer) subring of A in B, that is,
VB(A) = {b ∈ B|bx = xb for all x ∈ A}. We call B a separable extension of A if
there exist {ai, bi in B, i = 1, 2, ...,m for some integer m} such that

∑
aibi = 1, and∑

bai ⊗ bi =
∑

ai ⊗ bib for all b in B where ⊗ is over A. An Azumaya algebra is a
separable extension of its center. A Galois extension B of BG with Galois group G is
called an Azumaya Galois extension if BG is an Azumaya CG-algebra ([1]). A Galois
extension B of BG with Galois group G is called a DeMeyer-Kanzaki Galois extension if
B is an Azumaya algebra over C which is a Galois algebra over CG with Galois group
G|C ∼= G. A ring B is called a Hirata separable extension of A if B ⊗A B is isomorphic to
a direct summand of a finite direct sum of B as a B-bimodule, and B is called a Hirata
separable Galois extension of BG if it is a Galois and a Hirata separable extension of BG.
Let R be a commutative ring with 1 and U(R) the set of units of R. As given in [4], for
a factor set f : G × G −→ U(R) (that is, f(g, h)f(gh, k) = f(h, k)f(g, hk) for all g, h,
and k in G), RGf =

∑
g∈G RUg is called a projective group algebra over R if RGf is an

algebra with a free basis {Ug

∣∣ g ∈ G} over R where Ug is an invertible element for each
g ∈ G, the multiplications are given by (rgUg)(rhUh) = rgrhUgUh and UgUh = f(g, h)Ugh

for rg, rh ∈ R and g, h ∈ G; that is, f(g, h) = UgUhU
−1
gh .

3. Galois Extensions with an Inner Galois Group

Let B be a Galois extension of BG with an inner Galois group G whose order |G|
is invertible in B where G = {g ∈ G | g(x) = UgxU−1

g for some Ug ∈ B and for all
x ∈ B}. We shall show that B contains a projective group algebra CGf where C is the
center of B. An equivalent condition is given for a central Galois algebra CGf . Thus
several characterizations are obtained for B generated by {Ug | g ∈ G} over BG. These
characterizations generalize the results for a central Galois algebra with an inner Galois
group ([4], Theorem 6).

Theorem 3.1. ([23], Theorem 2.1) Let B be a Galois extension of BG with an inner
Galois group G, G = {g | g(x) = UgxU−1

g for some Ug ∈ B and for all x ∈ B}, and C the
center of B. Then B contains a projective group algebra CGf of G over C with a factor
set f : G × G −→ units of C.

Proof. We first claim that {Ug | g ∈ G} are linearly independent over C. Let {xi, yi ∈
B | i = 1, 2, ...,m for some integer m} be a G-Galois system such that

∑m
i=1 xig(yi) = δ1,g

for each g ∈ G. Let
∑

g∈G agUg = 0 for some ag ∈ C. Then

m∑
i=1

xi

∑
g∈G

agUgh
−1(yi) = 0 for each h ∈ G and

∑
g∈G

ag

m∑
i=1

xigh−1(yi)Ug =
∑
g∈G

agδ1,gh−1Ug = ahUh.
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Noting that ag ∈ C and Ugh
−1(yi) = gh−1(yi)Ug, we have that

m∑
i=1

xi

∑
g∈G

agUgh
−1(yi) =

∑
g∈G

ag

m∑
i=1

xigh−1(yi)Ug;

and so ahUh = 0. But Uh is invertible in B, so ah = 0 for each h ∈ G. Also, noting
that U−1

gh UgUh is a unit in C, we have a factor set f : G × G −→ units of C by f(g, h) =

U−1
gh UgUh. Thus

∑
g∈G CUg = CGf ⊂ B.

Let Z be the center of G and G the restriction of G to CGf . Then G ∼= G/K where
K = {g ∈ Z | f(g, h) = f(h, g) for all h ∈ G}. Next is necessary and sufficient condition
for a central Galois algebra CGf with an inner Galois group G.

Theorem 3.2. ([23], Theorem 2.2) Let B be a Galois extension of BG with an inner
Galois group G of order n invertible in B and CGf as given in Theorem 3.1. Then CGf

is a central Galois algebra over its center S with an inner Galois group G if and only if
{Ug | g ∈ G} are linearly independent over S where Ug = Ug for each g ∈ G.

Proof. (=⇒) Since CGf is a central Galois algebra with an inner Galois group G,
CGf = SGf ([4], Theorem 6). Thus {Ug | g ∈ G} are linearly independent over S.

(⇐=) Since {Ug | g ∈ G} are linearly independent over S, SGf = ⊕g∈GSUg is a

projective group algebra of G over S with factor set f : G × G −→ units of S in-
duced by f : G × G −→ units of C. Noting that {Ug | g ∈ K} ⊂ S, we have that
CGf = ⊕g∈GSUg = SGf . But CGf is an Azumaya S-algebra (for n is a unit in C), so

SGf is an Azumaya S-algebra. Thus SGf is a central Galois S-algebra with an inner
Galois group G ([5], Theorem 3). Therefore CGf is a central Galois algebra over S with
an inner Galois group G.

Theorem 3.2 can be generalized to a projective group ring RGf of a group G over a
ring R (not necessarily commutative) with a factor set f : G × G −→ units of the center
of R.

Theorem 3.3. ([22], Theorem 3.2) Let RGf be a Galois projective group ring of
G over a ring R, C the center of RGf , and R0 the center of R. Then the following

are equivalent: (1) RGf is a Galois extension of (RGf )
G with an inner Galois group G

induced by {Ug | g ∈ G}. (2) CGf is a central Galois projective group algebra of G over

C with factor set f : G × G −→ units of C induced by f : G × G −→ units of R0. (3)
{Ug | g ∈ G} are free over RC and RC = ⊕

∑
g∈K RUg where Ug = Ug for each g ∈ G

and K = {g ∈ the center of G | f(g, g′) = f(g′, g) for all g′ ∈ G}.

Proof. Let Z be the center of G. We first note that G ∼= G/K where K = {g ∈
Z | f(g, g′) = f(g′, g) for all g′ ∈ G} and that {Ug | g ∈ G} are free over C where Ug = Ug

for each g ∈ G by the argument used in the proof of Theorem 3.1. Next we prove
(1) =⇒ (2) and leave other implications (2) =⇒ (1) and (2) =⇒ (3) =⇒ (2) to readers.
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Since RGf is a Galois extension of (RGf )
G with an inner Galois group G, {Ug | g ∈ G}

are free over RC. Noting that f : G × G −→ units of R0 contained in C, we have that
CGf is a projective group algebra of G over C with factor set f : G × G −→ units

of C where f is induced by f : G × G −→ units of R0. Moreover, since R0Kf ⊂ C,∑
g∈G(R0Kf )Ug ⊂ CGf . But G = G/K, so

RGf =
∑
g∈G

RUg = R(R0Gf ) ⊂ R(
∑
g∈G

CUg) = R(CGf ) ⊂ RGf .

Hence RGf = R(CGf ). Thus G|CGf

∼= G. Next we claim that C is also the center of∑
g∈G CUg (= CGf ). In fact, clearly, C is contained in the center of CGf . Conversely, for

any x ∈ the center of CGf , x is in the center of
∑

g∈G CUg. Also, for any r ∈ R, rx = xr,

so x is in the center of R(
∑

g∈G CUg) which is RGf . Thus x ∈ C. Therefore CGf is an

Azumaya C-algebra; and so CGf is a central Galois C-algebra with an inner Galois group
G|CGf

∼= G ([4], Theorem 6).

We give two examples of Galois extensions with an inner Galois group G.

Example 1.
¯

Let R[i, j, k] be the real quaternion algebra over real field R with inner

automorphism group G = {1, i, j, k} where i(x) = ixi−1, j(x) = jxj−1, and k(x) =
kxk−1 for x ∈ R[i, j, k]. Then R[i, j, k] = R ⊕ Ri ⊕ Rj ⊕ Rk, a projective group algebra
RGf with center R; and so it is a central Galois algebra over R with an inner Galois
group G.

Example 2. Let T = R[i] ⊂ R[i, j, k] as given in Example 1 and Hi = {1, i} ⊂ G.
Then (R[i, j, k])Hi = R[i] and R[i, j, k] is a noncommutative Galois extension of R[i] with
a cyclic Galois group Hi. We note that any Galois algebra with a cyclic Galois group is
commutative ([4], Theorem 11).

B
¯
y using Theorem 3.2, we derive some characterizations for a Galois extension B as

given in Theorem 3.2 which is generated by {Ug | g ∈ G} over BG. We recall that C is the
center of B, S the center of CGf , Z the center of G, and K = {g ∈ Z | f(g, h) = f(h, g)
for all h ∈ G}.

Theorem 3.4. ([23], Theorem 2.3)
¯

Let B be a Galois extension of BG with an inner
Galois group G of order n invertible in B. Then the following are equivalent:

(1) B =
∑

g∈G BGUg, i.e., B is generated by {Ug | g ∈ G} over BG;

(2) B = BGGf , a projective group ring of G over BG with factor set f : G × G −→
units of C;

(3) C = S;
(4)

∑
g∈G CUg, the subring of B generated by {Ug | g ∈ G} over C, is a central Galois

C-algebra with Galois group G ∼= G;
(5)

∑
g∈G CUg is an Azumaya C-algebra;

–26–



(6) K = 〈1〉 and {Ug | g ∈ G} are linearly independent over S.

4. The Azumaya Algebra

Let B be a Galois extension of BG with an inner Galois group G whose order n is
invertible in B as given in Theorem 3.2, G = {g ∈ G | g(x) = UgxU−1

g for some Ug ∈ B and
for all x ∈ B}, C the center of B, Z the center of G, and K = {g ∈ Z | f(g, h) = f(h, g)
for all h ∈ G}. Assume that B is an Azumaya C-algebra. We shall show an equivalent
condition for a central Galois algebra CGf in terms of the Galois extension BK of BG

with Galois group G/K.

Theorem 4.1. ([23], Theorem 3.1) Let B be given in Theorem 3.2. If B is an Azumaya
C-algebra, then VB(BG) = CGf .

Proof. Since n is invertible in B, CGf is a separable subalgebra of the Azumaya C-
algebra B. Hence VB(VB(CGf )) = CGf . Noting that VB(CGf ) = BG, we have that
VB(BG) = CGf .

Theorem 4.2. ([23], Theorem 3.2) Let B be given in Theorem 3.2. Assume B is an
Azumaya C-algebra. Then CGf is a central Galois algebra over its center S with Galois
group G (= G/K) if and only if BK = BG · (CGf ).

Proof. (=⇒) Since CGf is a central Galois algebra with Galois group G (= G/K), CGf

has a G-Galois system. Clearly, CGf ⊂ BG · (CGf ) ⊂ BK and (BG · (CGf ))
G = (BK)G =

BG, so BG · (CGf ) and BK are also Galois extensions with the same Galois system as
CGf by noting that the restrictions of G to BG · (CGf ) and BK are isomorphic with G
(= G/K). Thus BK = BG · (CGf ).

(⇐=) By hypothesis, B is a Galois extension of BG with an inner Galois group G of
order n invertible in B, so BK is a Galois extension of BG with an inner Galois group
G/K. Let S be the center of CGf . Since CGf is a separable C-subalgebra of the Azumaya
C-algebra B, VB(VB(CGf )) = CGf . Hence CGf , BG (= VB(CGf )), and BG · (CGf ) have
the same center S. By hypothesis, BK = BG · (CGf ). Thus S is the center of BK . But
BK is a Galois extension of BG with an inner Galois group G (= G/K), so BK contains
the separable projective group algebra SGf where f : G × G −→ units of S induced by

f : G × G −→ units of C by Theorem 3.1. Thus {Ug | g ∈ G} are linearly independent
over S. Therefore CGf is a central Galois algebra with Galois group G by Theorem 3.2.

Corollary 4.3. ([23], Corollary 3.1) Let B be given in Theorem 4.2. Then BK is a
Galois projective group ring of G over BGS with factor set f : G × G −→ units of C.

Proof. By Theorem 4.2, BK = BG · (CGf ) and CGf = SGf , so BK = BG · (CGf ) =

BG(SGf ) = (BGS)Gf which is a Galois projective group ring of G over BGS with factor

set f : G × G −→ units of C.
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5. The Galois Commutator Subring

We note that a Galois extension with an inner Galois group G is a Hirata separable
extension of BG ([17], Corollary 3). In [17], let B be a Hirata separable Galois extension of
BG with Galois group G and ∆ = VB(BG) = {b ∈ G | ba = ab for each element a ∈ BG},
the commutator subring of BG in B. A sufficient condition was given for ∆ being a
Galois algebra with Galois group G/N where N = {g ∈ G | g(x) = x for all x ∈ ∆}.
We shall study the problem for a Galois extension B of BG with Galois group G such
that ∆ is a Galois extension with Galois group G/N . Such a Galois extension B with
Galois group G will be characterized in terms of a composition of two Galois extensions:
B ⊃ BG · VB(BG) ⊃ BG and in terms of crossed products respectively.

W
¯

e begin with two lemmas whose proofs are straightforward.

Lemma 5.1. ([24], Lemma 3.1) Let T be a ring and G an automorphism group of T .
Then (1) VT (TG) is a G-invariant subring of T and (2) (VT (TG))G is contained in the
center of VT (TG) (hence VT (TG) is an algebra over (VT (TG))G).

Lemma 5.2. ([24], Lemma 3.2) Let B be a Galois extension of BG with Galois group
G and A a G-invariant subring of B under the action of G. If A is a Galois extension of
BG with Galois group induced by and isomorphic with G, then A = B.

Theorem 5.3. ([24], Theorem 3.3) Let B be a Galois extension of BG with Galois
group G, ∆ = VB(BG), and D = ∆G. Then the following statements are equivalent: (1)
∆ is a Galois algebra over D with Galois group induced by and isomorphic with G/N
where N = {g ∈ G | g(x) = x for all x ∈ ∆}. (2) BG∆ is a Galois extension of BG

with Galois group induced by and isomorphic with G/N and ∆ is a finitely generated and
projective module over D. (3) B is a composition of two Galois extensions: B ⊃ BG∆
with Galois group N and BG∆ ⊃ BG with Galois group induced by and isomorphic with

G/N such that J
(∆)
g is a finitely generated projective module over D for each g ∈ G/N

where J
(∆)
g = {b ∈ ∆ | bx = g(x)b for all x ∈ ∆}.

Proof. (1) =⇒ (2) Since the automorphism groups induced by G/N on BG∆ and ∆ are
isomorphic and ∆ is a Galois algebra over D where D = ∆G, BG∆ is a Galois extension
of (BG∆)G (= BG) with Galois group induced by and isomorphic with G/N .

(2) =⇒ (1) Since BG∆ ⊃ BG is a Galois extension with Galois group induced by and
isomorphic with G/N , the crossed product

(BG∆) ∗ (G/N) ∼= HomBG(BG∆, BG∆).

Denoting G/N by G, we have that

α : (BG∆) ∗ G ∼= HomBG(BG∆, BG∆)

by (α(
∑

g∈G agg))(x) =
∑

g∈G agg(x) for each x ∈ BG∆. Then

∆ ∗ G = VBG∆∗G(BG) ∼= VHom
BG (BG∆,BG∆)

(α(BG)).
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It can be verified that VHom
BG (BG∆,BG∆)

(α(BG)) = HomD(∆, ∆) where D = ∆G = ∆G.

But ∆ is a finitely generated and projective module over D, so ∆ is a Galois algebra over
D with Galois group isomorphic with G.

(2) =⇒ (3) Since BG∆ ⊂ BN such that (BG∆)G = BG = (BN)G and BG∆ is a
Galois extension of BG with Galois group induced by and isomorphic with G (= G/N),

BN = BG∆ by Lemma 5.2. Moreover, noting that VBG∆(BG) = ∆ = ⊕
∑

g∈G J
(∆)
g ([12],

Proposition 1 and Theorem 1), we conclude that J
(∆)
g is a finitely generated projective

module over D for each g ∈ G/N .
(3) =⇒ (2) is clear.

By Theorem 5.3, we shall derive some consequences for several well known classes of
Galois extensions. We recall that B is a center Galois extension with Galois group G if its
center C is a Galois algebra over CG with Galois group G|C ∼= G, and B is a commutator
Galois extension of BG with Galois group G if VB(BG) is a Galois extension of (VB(BG))G

with Galois group G|VB(BG)
∼= G.

Corollary 5.4.
¯

Let B be a Galois extension of BG with Galois group G. If B = BGC

such that C is finitely generated and projective over CG, then B a center Galois extension
with Galois group G.

Corollary 5.5.
¯

Let B be a Galois extension of BG with Galois group G. If B = BG∆

such that ∆ is finitely generated and projective over ∆G, then B a commutator Galois
extension with Galois group G.

Remark.
¯

Since a DeMeyer-Kanzaki Galois extension is also a center Galois extension
([4], Lemma 2) and an Azumaya Galois extension is a commutator Galois extension ([1],
Theorem 2), Corollary 5.4 and Corollary 5.5 hold for the classes of DeMeyer-Kanzaki
Galois extensions and Azumaya Galois extensions.

Corollary 5.6. Let B be a Hirata separable Galois extension of BG with Galois group
G. If B = BG∆, then ∆ is a Galois algebra with Galois group induced by and isomorphic
with G/N .

Proof. Since B is a Hirata separable Galois extension of BG with Galois group G, Jg

is a finitely generated and projective rank one module over CG for each g ∈ G ([17],
Theorem 2). The corollary holds by Theorem 5.3.

We continue to characterize a Galois commutator subring ∆ in terms of crossed prod-
ucts.

Theorem 5.7. Keeping the notations of Theorem 5.3, the following statements are
equivalent: (1) ∆ is a Galois algebra over ∆G with Galois group induced by and isomorphic
with G/N where N = {g ∈ G | g(x) = x for all x ∈ ∆}. (2) Let ∆ ∗ (G/N) be the crossed
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product of G/N over ∆ with trivial factor set. Then ∆ ∗ (G/N) is an Azumaya algebra
over ∆G. (3) Let (BG∆) ∗ (G/N) be the crossed product of G/N over BG∆ with trivial
factor set. Then (BG∆) ∗ (G/N) is a Hirata separable extension of BG such that BG is a
direct summand of (BG∆) ∗ (G/N) as a BG-bimodule.

Proof. (1) =⇒ (2) Since ∆ is a Galois algebra over ∆G with Galois group G induced
by and isomorphic with G/N , ∆ ∗G ∼= Hom∆G(∆, ∆) where ∆ is a finitely generated and
projective module over ∆G. Noting that ∆ is an algebra with 1 over ∆G, we have that
Hom∆G(∆, ∆) is an Azumaya algebra over ∆G. Hence ∆ ∗G is an Azumaya algebra over
∆G.

(2) =⇒ (1) By hypothesis, ∆ ∗ G is an Azumaya algebra over ∆G, so ∆ ∗ G is a
Hirata separable extension of ∆ ([8], Theorem 1). Since ∆ is a progenerator of ∆, ∆ is a
progenerator of ∆ ∗G. Thus ∆ is a Galois algebra over ∆G with Galois group isomorphic
with G.

(2) =⇒ (3) Since ∆ ∗ G is an Azumaya algebra over ∆G, BG ⊗∆G (∆ ∗ G) is a Hirata
separable extension of BG; and so, as a homomorphism image of (BG⊗∆G∆)∗G, (BG∆)∗G
is also a Hirata separable extension of BG. Since ∆ ∗ G is an Azumaya algebra over ∆G

again, ∆ is a Galois algebra over ∆G with Galois group G by (2) =⇒ (1). Hence there
exists an element d ∈ ∆ such that trG(d) = 1 ([12], proof of Proposition 5) where trG( ) =∑

g∈G g( ). Thus trG( ) : BG∆ −→ BG −→ 0 is exact as BG-bimodule homomorphism,

and so BG is a direct summand of BG∆ as BG-bimodule homomorphism. Noting that
BG∆ a direct summand of (BG∆) ∗ G as a BG-bimodule, we conclude that so is BG.

(3) =⇒ (2) Since (BG∆) ∗ G is a Hirata separable extension of BG such that BG is a
direct summand of (BG∆) ∗ G as a BG-bimodule, V(BG∆)∗G(BG) is a separable algebra

over the center of (BG∆) ∗ G ([16], Theorem 1). But V(BG∆)∗G(BG) = ∆ ∗ G, so ∆ ∗
G is a separable algebra over the center of (BG∆) ∗ G. We claim that the centers of
∆ ∗ G and (BG∆) ∗ G are ∆G. In fact, by hypothesis, (BG∆) ∗ G is a Hirata separable
extension of BG such that BG is a direct summand of (BG∆) ∗ G as a BG-bimodule
again, V(BG∆)∗G(V(BG∆)∗G(BG)) = BG ([16], Theorem 1). Hence the center of (BG∆) ∗ G

is contained in BG; and so it is contained in the center of BG. Conversely, the center of
BG is clearly contained in the center of (BG∆)∗G. Thus, the center of (BG∆)∗G is equal
to the center of BG. Moreover, since the center of BG is ∆G, the center of (BG∆) ∗ G is
∆G. But the centers of ∆ ∗ G and (BG∆) ∗ G are the same, so the center of (BG∆) ∗ G
is ∆G. Therefore, ∆ ∗ G is an Azumaya algebra over ∆G.

Corollary 5.8. Let B satisfy the equivalent conditions of Theorem 5.7. Then N = 〈1〉
if and only if B = BG∆ such that ∆G = CG where C is the center of B.

Corollary 5.9.
¯

Let B satisfy the equivalent conditions of Theorem 5.7. If N is a

maximal subgroup of G, then ∆ is a commutative Galois algebra over ∆G with a cyclic
Galois group G/N ([4], Theorem 11).
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EXTENSION OF THE MATLIS DUALITY TO A FILTERED
NOETHERIAN RING

N.KAMEYAMA∗

Abstract. A ring theoretic investigation of the Iwasawa algebra is accomplished. There-
fore, we look at a filtered pseudocompact algebra (abbreviation:FPC algebra) which is a
reasonable generalization of the Iwasawa algebra (1.1). It is shown that an FPC algebra
has the Matlis duality between suitable categories. When an FPC algebra is Auslander
regular and with homogeneity condition, we study the local cohomology and local dualty.

Key Words: Iwasawa algebra, pseudocompact algebra, local cohomology, local du-
ality.
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1. Introduction

This paper is a summary of [12]. A class of (non)commutative Iwasawa algebras,
studied as main objects in Iwasawa theory, occupies quite interesting position in that of
noncommutative Noetherian rings. Moreover, they possess a filtered ring structure which
is an algebraic device of topological notion. In the present paper, we study ring theoretic
properties of Iwasawa algebras, through a filtered pseudocompact algebra, FPC algebra,
for short.

Let us explain essential properties of Iwasawa algebras shortly. Let p be a prime number,
and G a compact p-adic analytic group. The Iwasawa algebra is defined by

Λ(G) := lim←−Zp[G/U ],

where U ranges over all open normal subgroups of G. A key fact for us is the following.
Assume that G is a uniform pro-p group. Then Λ(G) is a right and left Noetherian ring
([6], Corollary 7.25) and local Auslander-regular domain ([2], 4.1, 4.3, 5.1, 5.2). It has a J-
adic filtration FΛ(G), where J = radΛ(G), with FiΛ(G) := J−i (i < 0), = Λ(G) (i ≥ 0).
Λ(G) is complete with respect to this filtration ([2], 3.5). Suppose that G is a p-valued
compact p-adic Lie group or a uniform extra-powerful pro-p group, then the filtration
FΛ(G) is Zariskian ([5], §7 or [20], Theorem 3.22, see also [9], Chapter II §2, 2.1.2 Theorem
(4)). For these cases, Λ(G) is a typical example of an FPC algebra.

We can say that a reasonably generalized algebra of the Iwasawa algebra is a pseudo-
compact algebra due, for example, to [3], [19]. There is a duality between the category of
pseudocompact Γ-modules and that of discrete Γ-modules for a pseudocompact algebra
Γ. This is a basic result for homological study of such algebras. To begin with, we make
this duality over for the suitable categories over an FPC algebra (see 1.4). Then we study
the local cohomology and local duality over such algebras. This provides a generalization

The detailed version of this paper will be submitted for publication elsewhere.
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of [20], §§5,6. Further, we expect that the homological properties such that Bass number,
Gorensteiness etc. are within view as module-finite algebras [8].

2. Duality over a filtered pseudocompact algebra

2.1. Assumption. Let Λ be a left and right Noetherian filtered ring with a Zariskian
filtration FΛ = {FiΛ}i∈Z ([9], Chapter II, §2) such that

(a1) Hi = FiΛ is an ideal of Λ for every i ∈ Z,
(a2) Λ is complete with respect to FΛ,
(a3) Λ/Hi is of finite length as a right and left Λ-module for every i ∈ Z.

For further use, it is desirable that Λ is an algebra over a commutative ring. Let
(R, m, k) be a commutative local Noetherian ring and Λ an R-algebra. We consider that
R is a subring of Λ via a structure map R → Λ.

Put Ii := R ∩ Hi(i ∈ Z) and FR = {Ii}(i ∈ Z). Then FR is a filtration of R. We
assume that

(b1) R is complete with respect to FR,
(b2) R/Ii is a finite length R-module for every i ∈ Z,
(b3) mn is open for all n > 0, i.e., mn ⊃ Ii for some i ∈ Z,
(b4) Λ/Hi is a module-finite R/Ii-algebra for every i ∈ Z, i.e., Λ/Hi is a finitely gener-

ated R/Ii-module.

We call an R-algebra satisfying all above assumptions a filtered pseudocompact algebra
and FPC algebra for short. Moreover, Λ/Hi is a finite length R-module for every i.
Therefore all finite length Λ-modules are finite length R-modules.We sometimes consider
a filtered Λ-module (M,FM) as a filtered R-module with the same filtration FM , but
regard as an R-module. We assume that all filtrations are separated.

Let E := ER(k) be an injective hull of k as an R-module. It follows that E is an
injective cogenerator of ModR. Put Ei := {x ∈ E|I−ix = 0} an R-submodule of E for
every i ∈ Z. The assumption (b3) and [13], Theorem 18.4 implies E = ∪Ei, so E is a
filtered R-module with a filtration FE = {Ei}i∈Z .

2.2. Filtration and filtration topology. Let R be a filtered ring and M, N filtered
R-modules. Let FpHOMR(M,N) = {f ∈ HomR(M,N)|f(FiM) ⊂ Fi+pN for all i ∈ Z}.
Put HOMR(M,N) :=

∪
p∈Z FpHOMR(M,N).

In some cases, all homomorphisms are of finite degree. In particular, the following will
be used frequently.

Proposition 1. Let M be a filtered R-module with a filtration FM = {FiM}i∈Z. Assume
that M is of finite length. Then HomR(M,E) = HOMR(M,E).

2.3. Pseudocompact modules and copseudocompact modules. We put the cate-
gory FΛ as follows,

Objects: all filtered Λ-modules,
Morphisms: all Λ-homomorphisms of finite degree, i.e.,

the elements of HOMΛ(M,N) for M , N ∈ FΛ.
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We put M∨ := HOMR(M,E) by regarding M as a filtered R-module with a filtration
{FiM}i∈Z. Then (−)∨ = HOMR(−, E) turns out to be a contravariant functor between F
and Fop. We put (−)′ := HomR(−, E), which induces usual Matlis Duality. Let M be a
filtered Λ-module with a filtration FM . We call M pseudocompact , if M ∼= lim←−M/FiM ,
that is, M is complete ([9], Chapter I, §3, 3.5) and HiM ⊂ FiM for every i ∈ Z (cf. [3],
[19]). Dually, a filtered Λ-module N with a filtration FN is called copseudocompact , if
N ∼= lim−→FiN and H−iFiN = 0 for every i ∈ Z.

Proposition 2. Let M,N ∈ FΛ. Then
(1) If M is pseudocompact, then M∨ ∼= lim−→(M/FiM)∨.
(2) If N is copseudocompact, then N∨ ∼= lim←−(FiN)∨.

2.4. Duality. Let C be a full subcategory of FΛ consisting of all finitely generated pseudo-
compact Λ-modules, and D a full subcategory of FΛ consisting of all finitely cogenerated
copseudocompact Λ-modules. Here, a module is finitely cogenerated if and only if its
socle is essential and finitely generated (cf. [1], Proposition 10.7).

Theorem 3. Let M , N ∈ FΛ. Then
(1) If M is pseudocompact, then M∨ is copseudocompact.
(2) If N is copseudocompact, then N∨ is pseudocompact.
(3) Λ ∼= Λ∨∨ and Λ∨ is Artinian.

Theorem 4. Let M , N ∈ FΛ. Then
(1) If M ∈ C then M∨ ∈ D and M∨∨ ∼= M .
(2) If N ∈ D then N∨ ∈ C and N∨∨ ∼= N .

Proof. (1): Since M is finitely generated, there is an epimorphism f : Λn → M . Dualizing
it, we have a monomorphism f∨ : M∨ → Λ∨n, so M∨ is Artinian, and M∨ ∈ D. We see

M∨∨ ∼= lim←−(M/FiM)∨∨ ∼= lim←−(M/FiM)
′′ ∼= lim←−M/FiM ∼= M.

(2)similarly. ¤

3. Local cohomology

3.1. Depth and Auslander-Buchsbaum Formula. We assume that a FPC algebra Λ
is
1) Auslander regularity with gl.dimΛ=d ([9], Chapter III, §2, 2.1.7),
2) the homogeneity condition,
where the homogeneity condition (cf. [7], (hc13) and (hc14), p.326) is that every simple
left (respectively, right) Λ-module is contained in Ed (respectively, E

′d), where 0 → Λ →
E0 → E1 → · · · → Ed → 0 (respectively, 0 → Λ → E

′0 → E
′1 → · · · → E

′d → 0) is a
minimal injective resolution of Λ as a left (respectively, right) Λ-module. Let J = radΛ
be a Jacobson radical of Λ.

Definition 5. The depth of a finitely generated Λ-module M is defined by

depthM := min{i ≥ 0|Exti
Λ(Λ/J,M) 6= 0}.

It equals ∞, whenever Exti
Λ(Λ/J, M) = 0 for all i ≥ 0.
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The direct consequence of homogeneity condition is the following determination of
depthΛ.

Proposition 6. It holds that depthΛ = d.

Theorem 7. Let M ∈ modΛ. Then

pdM + depthM = depthΛ = d .

3.2. Local cohomology and local duality. Let M be a Λ-module. Put Γ(M) := {x ∈
M |H−ix = 0 for some i ≥ 0}. Then Γ is a left exact additive functor: ModΛ → ModΛ
such that Γ(M) ∼= lim−→HomΛ(Λ/H−i,M).

Definition 8. The local cohomology functors, denoted by H i(−), are the right derived
functors of Γ(−).

The following lemma is indispensable for proving the important property of local coho-
mology modules.

We can determine the structure of the last term Ed of a minimal injective resolution of
Λ.

Proposition 9. Let M ∈ ModΛ. Then, for any i ≥ 1,
(1) H i(M) is a copseudocompact module for some filtration. Moreover, if M is finitely
generated, then H i(M) ∈ D,
(2) H i(M) ∼= lim−→Exti

Λ(Λ/H−p,M).

As is usually done, we describe depth using the local cohomology modules.

Theorem 10. Let M be a finitely generated Λ-module. Then

depth M = min{i ≥ 0 : H i(M) 6= 0}.
Proof. The proof is done by modifying that of [20], Lemma 5.5. Note that H−p ⊂ J for
every p > 0. ¤

We also observe that Λ∨ is copseudocompact. We write X|Y , When X is isomorphic to
a direct summand of copies of Y . Then by the above corollary, we see Ed|Λ∨ and Λ∨|Ed.
As concerns the local cohomology module of Λ, we see

Proposition 11. There is an isomorphism Hd(Λ) ∼= Ed.

Proposition 12. Assume that Λ is basic. Then there is the isomorphisms Λ∨ ∼= Ed ∼=
Hd(Λ).

Proposition 13. Assume that Λ is basic. Let a Λ-module M be in C or D. Then
HomΛ(M,Hd(Λ)) ∼= M∨.

We establish the local duality theorem using the above results. All the assumptions for
Λ given before are preserved, that is, 1.1, 2.1 and to be basic.

Theorem 14. (Local duality) Let M be an arbitrary finitely generated Λ-module. Then,
for all integers i, there are natural isomorphisms

H i(M) ∼= Extd−i
Λ (M, Λ)∨ and

Exti
Λ(M, Λ) ∼= Hd−i(M)∨.
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Proof. Using the above preparation, we can show the statement by the similar way to the
commutative case. ¤
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ALMOST COMPARABILITY AND RELATED COMPARABILITIES
IN VON NEUMANN REGULAR RINGS
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Abstract. There are many comparabilities in von Neumann regular rings: general
comparability, the comparability axiom, s-comparability, weak comparability, almost
comparability etc.. In the article, we mainly investigate von Neumann regular rings
satisfying almost comparability, comparing with other comparabilities.
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1. Introduction

In the article, we mainly study regular rings satisfying almost comparability, comparing
with other related comparabilities: general comparability, the comparability axiom, s-
comparability, weak comparability. In section 1, we give definitions and histories of the
above related comparabilities. We begin with some notations and elementary definitions
which will be needed in the article. For details, we can refee Goodearl’s book [5].

Throughout this article, R is a ring with identity and R-modules are unitary right
R-modules.

Notation 1. For two R-modules M,N , we use M . N (resp. M .⊕ N , M ≺ N ,
M ≺⊕ N) to mean that there exists an isomorphism from M to a submodule of N (resp.
a direct summand of N , a proper submodule of N , a proper direct summand of N). For
a submodule M of an R-module N , M ≤⊕ N (resp. M < N,M <⊕ N) means that M is
a direct summand of N (resp. a proper submodule of N , a proper direct summand of N).
For a cardinal number k and an R-module M , kM denotes the direct sum of k-copies of
M .

Definition 2. A ring R is said to be (von Neumann) regular if, for each x ∈ R, there
exists an element y of R such that xyx = x, and a ring R is said to be unit-regular if,
for each x ∈ R, there exists a unit element (i.e. an invertible element) u of R such that
xux = x. It is well-known that a regular ring R is unit-regular if and only if A⊕B ∼= A⊕C
implies B ∼= C for any finitely generated projective R-modules A,B,C. An R-module
M is directly finite provided that M is not isomorphic to a proper direct summand of
itself. A ring R is directly finite if the R-module RR is directly finite, and R is said to be
stably finite if the ring Mn(R) of n × n matrices over R is directly finite for all positive

This paper is based on the author’s talk and the detailed proof of some results in this paper will be
submitted for publication elsewhere.
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integers n. It is known that a ring R is stably finite if and only if every finitely generated
projective R-module is directly finite.

Now, we recall definitions and histories of the related comparabilities.

Definition 3. A regular ring R satisfies general comparability if, for each x, y ∈ R, there
exists a central idempotent e ∈ R such that e(xR) . e(yR) and (1−e)(yR) . (1−e)(xR).

General comparability is the typical and oldest comparability, which evolved from oper-
ator algebras and Baer rings. All right self-injective regular rings are typical examples of
regular rings with this comparability, which worked usefully to study these regular rings.

Definition 4. A regular ring R is said to satisfy the comparability axiom if, for each
x, y ∈ R, either xR . yR or yR . xR.

The comparability axiom is a special case of general comparability, which means that
“each two principal right ideals are comparable”. The notion was given by K.R. Goodearl
and D. Handelman in 1975. All prime right self-injective regular rings are typical examples
of regular rings with this comparability, and they investigated these regular rings using
the comparability axiom.

Definition 5. Let s be a positive integer. A regular ring R is said to satisfy s-
comparability if, for each x, y ∈ R, either xR . s(yR) or yR . s(xR). Note that
1-comparability means the comparability axiom above. It is well-known in [4] that s is
either 1 or 2 only for any regular rings with s-comparability.

Connecting with the comparability axiom, s-comparability was also given by K.R.
Goodearl and D. Handelman in 1976 to characterize uniqueness of rank functions on
certain simple regular rings. But, the detailed study of regular rings with s-comparability
became after one of regular rings with weak comparability. In the study of regular rings,
there is a famous outstanding Open Problem: Is every directly finite simple regular ring
always unit-regular? To solve the problem, K.C. O’Meara gave the notion of weak com-
parability and some interesting result, as follows.

Definition 6 ([11]). A regular ring R satisfies weak comparability if, for each nonzero
x ∈ R, there exists a positive integer n such that n(yR) . RR implies yR . xR for all
y ∈ R, where the n depends on x.

Theorem 7 ([11]). Every directly finite simple regular rings with weak comparability are
unit-regular.

After that a criterion of weak comparability for simple regular rings was given, as
follows.

Theorem 8 ([3]). For a simple regular ring R, the following are equivalent:
(a) R has weak comparability.
(b) nA ≺ nB implies A ≺ B for any finitely generated projective R-modules A,B and

any positive integer n.
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2. Almost comparability

In Section 2, we give some fundamental results of almost comparability for finitely
generated projective modules over regular rings satisfying almost comparability. We begin
with the history for almost comparability. The notion of almost comparability for regular
rings was first introduced by Ara and Goodearl [1], for giving an alternative proof of
O’Meara’s Theorem that every directly finite simple regular rings with weak comparability
are unit-regular (Theorem 7). After that the study of almost comparability for simple
regular rings was continued by Ara et al. [3], who showed that, for simple regular rings,
s-comparability for some positive integer s is equivalent to the ring satisfying almost
comparability. Thus directly finite simple regular rings satisfying almost comparability
are unit-regular, from a result in O’Meara [11]. Also, Ara et al. [4] studied regular
rings with s-comparability, and fixed the relation between s-comparability and almost
comparability giving some examples. Here we give the definition of almost comparability,
as follows.

Definition 9 ([1]). A regular ring R satisfies almost comparability if, for each x, y ∈ R,
either xR .a yR or yR .a xR, where xR .a yR (called “almost subisomorphic”) means
that xR . yR ⊕ C for all nonzero principal right ideals C of R.

From the definition of almost comparability, we see that “1-comparability ⇒ almost
comparability ⇒ 2-comparability” obviously. Thus almost comparability is a middle
condition between 1-comparability and 2-comparability. But the converse implications do
not hold from the following examples.

Example 10 ([4]).
(1) There exists a non-simple stably finite regular ring satisfying almost comparability

which is not unit-regular. Hence the ring does not satisfy 1-comparability.
(2) There exists a unit-regular ring with 2-comparability but not almost comparability.

Now we investigate the properties for regular rings satisfying almost comparability,
comparing with 1-comparability or 2-comparability. First we ask if almost comparabil-
ity for regular rings is Morita invariant. To see this, we need the definition of almost
comparability for finitely generated projective modules, as follows.

Definition 11. Let R be a regular ring, and P be a finitely generated projective R-
module. Then P satisfies almost comparability if, for each direct summands A,B of P ,
either A .a B or B .a A, where A .a B means that A . B⊕C for all nonzero principal
right ideals C of R. Also, P satisfies strictly almost comparability if, for each direct
summands A,B of P , either A ≺a B or B ≺a A, where A ≺a B means that A ≺ B ⊕ C
for all nonzero principal right ideals C of R.

For the above definitions, we can tell that the notion of almost comparability is the
just same as one of strictly almost comparability as below, which result can be used as a
criterion for almost comparability.

Lemma 12. Let R be a regular ring, and P be a finitely generated projective R-module.
Then the following are equivalent:

(a) P satisfies almost comparability.
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(b) P satisfies strictly almost comparability.

Lemma 13. Let R be a regular ring satisfying almost comparability. For every nonzero
finitely generated projective R-modules A,B, there exists a nonzero principal right ideal
X of R such that both X . A and X . B. In particular, if S is a simple right ideal of
R, then S . M for all nonzero finitely generated projective R-modules M .

Here, we recall the definition of separativity for a ring and its criterion, which were
born in the study of s-comparability and will be used in proofs of the results after.

Definition 14 ([2]). A ring R is separative if A ⊕ A ∼= A ⊕ B ∼= B ⊕ B implies A ∼= B
for any finitely generated projective R-modules A, B.

Lemma 15 ([2]). For a ring R, the following are equivalent:
(a) R is separative.
(b) For any finitely generated projective R-modules A,B,C, if A ⊕ C ∼= B ⊕ C with

C .⊕ mA and C .⊕ nB for some positive integers m,n, then A ∼= B.

We also recall the definition of exchange rings.

Definition 16. A ring R is said to be an exchange ring if the R-module R satisfies
the exchange property, where an R-module M satisfies the exchange property if for every
R-module A and any decompositions A = M ′ ⊕ N = ⊕i∈IAi with M ′ ∼= M , there exist
submodules A′

i ≤ Ai such that A = M ′ ⊕ (⊕i∈IA
′
i). It is known that regular rings are

typical examples of exchange rings.

For exchange rings with s-comparability, we recall an interesting result as follows.

Lemma 17 ([12]). Any exchange ring with s-comparability is separative. Thus any regular
ring satisfying almost comparability is separative.

Using Lemmas 12,13,15,17 above, we can obtain the following result.

Proposition 18. Let R be a regular ring, and assume that nR satisfies almost comparabil-
ity for some positive integer n. Let A,B,C,D be finitely generated projective R-modules,
all which are subisomorphic to nR.

(1) If A ≺a C and B ≺a D, then A ⊕ B ≺a C ⊕ D.
(2) If A ≺a C and B ≺a D, then either A ⊕ D ≺a B ⊕ C or B ⊕ C ≺a A ⊕ D.

Almost comparability is inherited by direct summands. Hence, using Proposition 18
above and the mathematical induction, we have the following result.

Proposition 19. Let R be a regular ring. Then the following are equivalent:
(a) R satisfies almost comparability.
(b) Any finitely generated projective R-module satisfies almost comparability.
(c) nR satisfies almost comparability for all positive integers n.
(d) There exists a positive integer n such that nR satisfies almost comparability.

By the way, we have almost subisomorphic relations of the family of all finitely generated
submodules between a finitely generated projective R-module over a regular ring R and its
endomorphism ring, as Lemma 20 below shows. To see this, for an R-module MR, we put
add(MR) = {an R-module N | N .⊕ nM for some positive integer n}. Then we see that
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the lemma follows from equivalences of the Hom and Tensor functors by HomR(SMR,−)
and −⊗S SMR between the categories add(MR) and add(SS), where S = EndR(M).

Lemma 20. Let R be a regular ring, and P be a finitely generated projective R-module.
Set a ring T = EndR(P ). Then the following are equivalent:

(a) P satisfies almost comparability.
(b) T satisfies almost comparability.

Combining Proposition 19 with Lemma 20, we can answer whether almost comparabil-
ity for regular rings is Morita invariant, as follows.

Theorem 21. Let R be a regular ring. Then the following are equivalent:
(a) R satisfies almost comparability.
(b) For any finitely generated projective R-module P , EndR(P ) satisfies almost compa-

rability.
(c) Any ring S which is Morita equivalent to R satisfies almost comparability.
(d) For all positive integers n, Mn(R) satisfies almost comparability.
(e) There exists a positive integer n such that Mn(R) satisfies almost comparability.

Also we can show Theorem 22 below, from Proposition 19.

Theorem 22. Let R be a regular ring satisfying almost comparability. Then the family
of all finitely generated projective R-modules satisfies almost comparability, which means
that either A ≺a B or B ≺a A for any finitely generated projective R-modules A,B.

In addtion, more generally, we can extend almost comparability for the family of all
finitely generated projectives to the family of all countably generated projectives, as fol-
lows.

Theorem 23. Let R be a regular ring satisfying almost comparability. Then the family of
all countably generated projective R-modules satisfies almost comparability, which means
that either P ≺a Q or Q ≺a P for any countably generated projective R-modules P,Q.

The results in Theorems 22,23 above can be used in §3.

3. Cancellation and unperforation

In Section 3, we treat the cancellation and unperforation properties for regular rings
satisfying almost comparability. As we mentioned in §2, any directly finite simple regular
rings satisfying almost comparability are unit-regular, but there exists a non-simple stably
finite regular ring R satisfying almost comparability but not unit-regularity, from which
A ⊕ C . B ⊕ C does not imply A . B for some finitely generated projective R-modules
A,B,C. Thus, instead of the above property, we consider the strict cancellation property
for a regular ring R which means that A ⊕ C ≺ B ⊕ C implies A ≺ B for any finitely
generated projective R-modules A,B,C. Obviously, any unit-regular rings always have
the strict cancellation property. First, we ask if any directly finite regular rings satisfy-
ing almost comparability have the strict cancellation property. Then we can show the
following result.
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Theorem 24. Let R be a regular ring satisfying almost comparability, and A,B,C be
directly finite and finitely generated projective R-modules. If A⊕C ≺ B⊕C, then A ≺ B.

From the above, we have the following Corollary 25 as desired.

Corollary 25. Let R be a directly finite regular ring satisfying almost comparability, and
A,B,C be finitely generated projective R-modules. If A ⊕ C ≺ B ⊕ C, then A ≺ B.

We note that Corollary 25 remembers the result in [8] that every directly finite regular
ring with weak comparability has the strict cancellation property. By the way, we can
give a more general result in Theorem 29 below, by using Theorem 24. To see this, we
need the definition and a well-known result for stable range of a ring.

Definition 26. A row (a1, . . . , ar) of elements from a ring R is said to be right unimodular
if

∑r
i=1 aiR = R. Given a positive integer n, a ring R is said to have n in the stable range

provided that for any right unimodular row (a1, . . . , ar) of r ≥ n + 1 elements of R, there
exist elements b1, . . . , br−1 ∈ R such that the row (a1 + arb1, . . . , ar−1 + arbr−1) is right
unimodular. If n is the least positive integer such that R has n in the stable range, then
R is said to have stable range n. It is well-known that a regular ring R has stable range
1 if and only if R is unit-regular.

We notice that the stable range for a ring nearly relates with the cancellation property,
as follows.

Lemma 27 ([13, 14]). Let R be a ring, and A be an R-module such that EndR(A) has n
in the stable range for some positive integer n. If B and C are any R-modules such that
A ⊕ B ∼= A ⊕ C and nA .⊕ B, then B ∼= C.

Here we recall the following interesting result on the stable range for regular rings with
2-comparability.

Lemma 28 ([4]). Let R be a regular ring with 2-comparability, and A be directly finite
and finitely generated projective R-module. Then EndR(A) has stable range at most 2.

Using Theorem 24 and Lemmas 27,28 above, we can show one of main results, as
follows.

Theorem 29. Let R be a regular ring satisfying almost comparability. Let A,B be
projective R-modules, and C be directly finite and finitely generated projective R-module.
If A ⊕ C ≺⊕ B ⊕ C, then A ≺⊕ B.

Next, we treat the following properties.

Definition 30. A ring R has the unperforation property provided that nA . nB implies
A . B for any finitely generated projective R-modules A, B and any positive integer
n. Also, a ring R has the strict unperforation property provided that nA ≺ nB implies
A ≺ B for any finitely generated projective R-modules A,B and any positive integer n.

For the above properties, we can recall some interesting results. Goodearl [6] ensured
the existence of a simple unit-regular ring R with weak comparability which does not have
the unperforation property, and the ring R satisfies 2-comparability too (hence satisfies
almost comparability). Thus, simple directly finite regular rings satisfying either almost
comparability or weak comparability do not have the unperforation property in general.
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On the other hand, it was shown in [9] that every regular ring with weak comparability
has the strict unperforation property. But Ara et al. [4] showed that unit-regular rings
with 2-comparability do not have the strict unperforation property in general. In spite of
the above result, we can show that every regular ring satisfying almost comparability has
the strict unperforation property, as follows.

Theorem 31. Let R be a regular ring satisfying almost comparability, and A,B be finitely
generated projective R-modules. If nA ≺ nB for some positive integer n, then A ≺ B.

Moreover, we can generalize Theorem 31 by using Lemmas below.

Lemma 32. Let R be a regular ring satisfying almost comparability.
(1) Let X1, X2, X3 be finitely generated projective R-modules. If X1 ≺a X2, X2 ≺a X3,

then X1 ≺a X3.
(2) Let X1, · · · , Xn be finitely generated projective R-modules. Then there exists a

positive integer k (1 ≤ k ≤ n) such that Xi ≺a Xk for all i = 1, . . . , n.

Lemma 33 ([7]). Let R be a regular ring with 2-comparability. Then every directly finite
projective R-module is countably generated, and every finite direct sum of directly finite
projective R-modules is directly finite.

Using Lemmas 32,33 and the strict cancellation property (Theorem 29) effectively, we
have the following result.

Theorem 34. Let R be a regular ring satisfying almost comparability, and A,B be
projective R-modules such that A is either finitely generated or directly finite. If nA ≺⊕
nB for some positive integer n, then A ≺ B.

We also can show the following result, by using Theorem 34 above.

Theorem 35. Let R be a regular ring satisfying almost comparability, and A,B be
projective R-modules such that A is either finitely generated or directly finite. Then the
following are equivalent:

(a) A ≺a B.
(b) nA ≺a nB for some positive integer n.
(c) nA ≺a nB for all positive integers n.

Finally, we inform some interesting problems concerned with the above results. By
Corollary 25 and Theorem 31, every directly finite regular ring satisfying almost com-
parability has the strict cancellation property and every regular ring satisfying almost
comparability has the strict unperforation property. Also, any regular rings with weak
comparability have similar results, from talks after Corollary 25 and Definition 30. But,
there exists a unit-regular ring with 2-comparability which does not have the strict un-
perforation property, from the talk before Theorem 31. Also we can construct a directly
finite regular ring R which does not have the strict cancellation property. For example,
we may take R = S × T , where S, T are nonzero stably finite regular rings such that S is
not unit-regular (see Example 10(1)). Thus we have the problems:

(A) Which directly finite regular rings have the strict cancellation property?
(B) Which regular rings have the strict unperforation property?
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AMPLENESS OF TWO-SIDED TILTING COMPLEXES AND FANO
ALGEBRAS

HIROYUKI MINAMOTO

Abstract. From the view point of noncommutative algebraic geometry (NCAG), a two-
sided tilting complex is an analog of a line bundle. In this paper we define the notion of
ampleness for two-sided tilting complexes over finite dimensional algebras of finite global
dimension, and prove its basic properties, which justify the name ”ampleness”. From the
view point of NCAG, Serre functors are considered to be shifted canonical bundles. A
finite dimensional algebra A of finite global dimension is called Fano if the shifted Serre
functor A∗[−d] is anti-ample. Some classes of algebras studies before are Fano. We show
by an example that the property of A∗[−d] from the view point of NCAG captures some
representation theoretic property of the algebra A.

From our view point, we give a structure theorem of AS-regular algebras. AS-regular
algebras are defined to extract a good homological property of polynomial algebras. Our
theorem shows that AS-regular algebra is polynomial algebra in some sense.

1. Introduction

The notion of two-sided tilting complex is introduced independently by Rouquier-
Zimmermann [RZ] and Yekutieli [Y] based on the Rickard’s derived Morita theory [Ric1].
Let A be a ring. A two-sided tilting complex σ is, by definition, the bounded above
complex of A-bimodule such that the derived tensor product −⊗L

A σ gives an autoequiva-
lence of the derived category D (Mod-A). If algebra A is noetherian and has finite global
dimension, then a complex σ of A-bimodules is a two-sided tilting complex if and only if
−⊗L

A σ gives an autoequivalence of Db (mod-A).

−⊗L
A σ : Db (mod-A)

∼−→ Db (mod-A) .

From the view point of noncommutative algebraic geometry(NCAG), one thinks of a
triangulated category T as the derived category Db (coh X) of coherent sheaves of some
”space” X. ¿From this view point, a two-sided tilting complex is an analog of a line
bundle. In algebraic geometry, for line bundles ampleness is an important notion. In
this paper we define the notion of ampleness of tilting complexes over finite dimensional
k-algebras.

We justify this definition by using the theory of noncommutative projective schemes
due to Artin-Zhang [AZ] and Polishchuk [Po]. In the theory of noncommutative projective
schemes, for a graded coherent ring R over k, we attach an imaginary geometric object
proj R =

(
cohproj R, R, (1)

)
. An abelian category cohproj R is considered as the category

of coherent sheaves on proj R.

The final version of this paper will be submitted for publication elsewhere.
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In [Le] and [GL], geometric notions are introduced to study certain class of algebras.
These works are the inspiration for this work.

Notation and convention. Throughout this paper k denotes a field. For a ring A
we denote by Mod-A (resp. mod-A ) the abelian category of right A-modules (resp. the
abelian category of finite right A-modules). For a k-vector space M , we denote by M∗ its
k-dual vector space. Let Db (A) be the derived category of an abelian category A. We
denote the standard t-structure in Db (A) by (D≥0 (A) , D≤0 (A)) , i.e., D≥0 (A) (resp.
D≤0 (A)) is the full subcategory of Db (A) with objects F · such that Hi(F ·) = 0 for i < 0
(resp. i > 0). If there is no danger of confusion, we identify the two-side tilting complex
σ with the autoequivalence − ⊗L

A σ. For example σM := M ⊗L
A σ for M ∈ D (Mod-A)

and σn := σ ⊗L
A · · · ⊗L

A σ (n times) for n ∈ N.

2. Ampleness of two-sided tilting complexes

We start by reformulating the Serre’s criteria of ampleness in the theory of derived
categories. Let X be a variety over k and let T := Db (coh X) be the bounded derived
category of coherent sheaves on X.

Definition 1. Let L be a line bundle on X. The full subcategory T L,≥0 (resp. T L,≤0) of
Db (coh X) consists of objects F · which satisfy

R Hom·(OX ,F · ⊗L Ln) ∈ D≥0(k-vect) for n À 0

(resp. R Hom·(OX ,F · ⊗L Ln) ∈ D≤0(k-vect). for n À 0)

We define T L := (T L,≥0, T L,≤0).

Theorem 2 (Serre’s criteria of ampleness [Har, Propsition III.5.3]). Suppose that X is
proper. Then a line bundle L on X is ample if and only if T L is the standard t-structure
in Db (coh X).

Reversing this observation, to formulate ampleness in the study of derived categories,
we define the following.

Definition 3. Let A be a k-algebra and let σ be a two-sided tilting complex over A. The
full subcategory Dσ,≥0 (resp. Dσ,≤0) of Db (mod-A) consists of objects M · which satisfy

σnM ∈ D≥0(Mod-A) for n À 0

(resp. σnM ∈ D≤0(Mod-A) for n À 0).

We define Dσ := (Dσ,≥0, Dσ,≤0).

Since σnM ' R Hom(A, σnM), we think of A as the ”structure sheaf” in Definition 3.
A two-sided tilting complex σ is called pure if Hi(σ) = 0 for i 6= 0. We give the

definition of ampleness of two-sided tilting complexes.

Definition 4. Let A be a finite dimensional k-algebra and let σ be a two-sided tilting
complex over A.

(1) The two-sided tilting complex σ is called ample if σn is pure for n À 0 and Dσ is
a t-structure in Db(mod-A) .
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(2) The two-sided tilting complex σ is called very ample if Hi(σ) = 0 for i ≥ 1 and σ
is ample.

(3) The two-sided tilting complex σ is called extremely ample if σn is pure for n ≥ 0
and Dσ is a t-structure in Db(mod-A) .

To give a justification of this terminology. we need a bit of notations. Let S = S0 ⊕
S1⊕S2⊕· · · be a N-graded ring. We denote by Gr S the abelian category of graded right
S-modules. An element x of a graded right S-module M is called a torsion element if
xS≥n = 0 for some n ∈ N. We define Tor S to be the full subcategory of Gr S consisting
of those objects M such that each element x ∈ M is a torsion element. Note that if S
is finitely generated over S0 then Tor S is a localizing subcategory of Gr S. In the case
when our graded ring S is finitely generated over S0 we define QGr S to be the quotient
category Gr S/ Tor S.

Definition 5. A right (resp. left) graded S-module M called right (resp. left) coherent
if it satisfies the following two conditions:
(a) M is finitely generated;
(b) for every homomorphism f : ⊕n

i=1S(si) → M of right S-modules, the kernel ker(f) is
finitely generated.

A graded ring S is called right (resp. left) coherent if S and S/S≥1 are right (resp.
left) graded coherent as a right (resp. left) graded S-module. A graded ring S is called
coherent if S is both right and left coherent.

We denote by coh S the full subcategory of Gr S consisting of right coherent S modules.
We define tor S to be the intersection between Tor S and coh S. In the case when S is
right coherent we define cohproj S to be the quotient category coh S/ tor S.

The following is the one of our main theorem.

Theorem 6. Let A be a finite dimensional algebra of finite global dimension. Let σ be a
two-sided tilting complex over A such that Hi(σ) = 0 for i ≥ 1 and σn is pure for n À 0.
Then the followings holds.

(1) There is the following equivalence of k-linear triangulated categories:

D(QGr-T ) ' D(Mod-A).

(2) The following conditions are equivalent.
(a) T is a right graded coherent algebra.
(b) Dσ is a t-structure in Db(mod-A).

(3) If the conditions (a) or (b) holds, then there is the following equivalence of k-linear
triangulated categories:

Db(cohproj T ) ' Db(mod-A).

As a corollary we prove the following.

Corollary 7. Let A be a finite dimensional algebra of finite global dimension and let σ be
a very ample two-sided tilting complex. Then there is a natural equivalence of triangulated
categories

Db (mod-A)
∼−→ Db (cohproj T ) .

where T := TA(H0(σ)) is the tensor algebra of H0(σ) over A.
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In [Be] Beilinson showed that Pn is derived equivalent to a finite dimensional algebra.
This result has been generalized to other varieties. The above corollary gives a partial
converse.

3. Fano algebras

Let A be a finite dimensional k-algebra of finite global dimension. The k-dual A∗ has the
natural A-bimodule structure. It is known that − ⊗L

A A∗ : Db(mod-A) −→ Db(mod-A)
is the Serre functor ([Hap, I.4.6]). For a nonsingular projective variety X over k, the
[dim X]-shifted derived tensor − ⊗L

X ωX [dim X] of the canonical bundle ωX is the Serre
functor of Db (coh X). ¿From a view point of noncommutative algebraic geometry A∗ is
thought as ”shifted canonical bundle”. For example, if (A∗)m ' [n] for some positive

integers m,n, then A is called fractional Calabi-Yau of CY dimension
n

m
, which is named

after analogy to the property of the derived category of a Calabi-Yau variety.

Definition 8. Let A be a finite dimensional k-algebra of finite global dimension, let d be
a integer, and set ω := (A∗[−d]). A is said to be a Fano algebra of Fano dimension d if
the two-sided tilting complex ω−1 is ample. A is said to be an extremely Fano algebra of
Fano dimension d if ω−1 is extremely ample.

Let X be a Fano variety or a variety with ample canonical bundle. Then the cele-
brated Bondal-Orlov’s Theorem [BO, Theorem 3.1] state that the k-linear triangulated
autoequivalence group (up to natural isomorphisms) is described by the term of alge-
braic geometry of X. A weaker version holds for Fano algebras and algebras with ample
”canonical bundle”.

Theorem 9. Let A be a finite dimensional k-algebra of finite global dimension and let d
a natural number. Set ω := A∗[−d]. If the two-sided tilting complex ω or ω−1 is ample,
then every k-linear triangulated autoequivalence F is standard, i.e. there exist a two-sided
tilting complex σ such that there is a natural isomorphism of functors F ' −⊗L

A σ.

Remark 10. It is known that same property holds for hereditary algebras [MY, Theorem
1.8].

The following Theorem gives examples of Fano algebras.

Theorem 11. Let A be a finite dimensional k-algebra of finite global dimension. Set
ω := A∗[−1]. If ωn (resp. ω−n) is pure for n À 0. Then Dω (resp. Dω−1

) is a t-structure
in D(mod-A).

4. A noncommutative algebro-geometric characterization of
representation type of a quiver

Let Q be a connected finite acyclic quiver, i.e., a connected quiver with finitely many
vertexes and finitely many arrows without loops and oriented cycles. Then the path
algebra A = kQ of Q is a finite dimensional k-algebra of global dimension 1. Set ωQ :=
A∗[−1]. Note that −⊗Lω−1

Q is the inverse of the Auslander-Reiten translation in Happel’s
derived version of Auslander-Reiten theory [Hap]. By [Hap, II.4.7] if the quiver Q has
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infinite representation type, then ω−n
Q is pure for any n ≥ 0. Therefor by theorem 11 we

prove the following proposition.

Proposition 12. Let Q be a connected finite acyclic quiver of infinite representation type.
Then the path algebra kQ of Q is a Fano algebra of Fano dimension 1.

If a finite acyclic quiver Q has finite representation type, then its path algebra kQ is
fractional Calabi-Yau. (This fact has been known by specialists. See [MY] for the precise
CY dimension of these algebras.)

Now we have the following characterization of representation type of quivers from the
view point of noncommutative algebraic geometry.

Theorem 13. A finite acyclic quiver has finite representation type if and only if its path
algebra is fractional Calabi-Yau, and a finite acyclic quiver has infinite representation type
if and only if its path algebra is Fano.

Remark 14. For canonical algebras in the sense of Ringel [Rin] the same type characteri-
zation holds.

By Theorem 7 and Theorem 12 we obtain the following corollary.

Corollary 15. Let Q be a finite acyclic quiver of infinite representation type. Then there
is a natural equivalence of triangulated categories

Db(mod-kQ)
∼−→ Db(cohproj Π(Q))

where Π(Q) is the preprojective algebra of Q.

Remark 16. The similar result is proved in [Le].

5. A structure of AS-regular algebras ( joint work with I.Mori. )

Definition 17. A connected graded algebra R is called AS-regular if it has finite global
dimension d and satisfies the following Gorenstein property:

Extq
Gr R (kR, R) ∼=

{
k(e) for some e ∈ Z if q = d

0 otherwise

The integer e is called Gorenstein parameter.

Remark 18. In some paper these algebras are called regular algebra. In Artin-Schelter’s
original definition [AS], (AS-)regular algebras are defined by three conditions: above two
conditions and finiteness of Gelfand-Kirillov dimension.

We use the r-th quasi-Veronese algebra introduced by I.Mori.

Definition 19 ([Mo]). Let r ≥ 1 be a natural number. The r-th quasi-Veronese algebra
R[r] of R is a graded algebra defined by

R[r] :=
⊕
n≥0


Rnr Rnr+1 · · · R(n+1)r−1

Rnr−1 Rnr · · · R(n+1)r−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
R(n−1)r+1 R(n−1)r+2 · · · Rnr


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with the multiplication defined as follows: for (ai,j) ∈ (R[r])p, (bi,j) ∈ (R[r])q where ai,j ∈
Rpr+j−i, bi,j ∈ Rqr+j−i,

(ai,j)(bi,j) :=

(
r−1∑
k=0

ak,jbi,k

)
∈ (R[r]).

We define F to be the degree 0 part (R[e]) of e-th quasi Veronese algebra R[e]. Note
that F is a finite dimensional algebra of finite global dimension. Set ω := F ∗[−(d − 1)].

Theorem 20. (1) ω−n is pure for n ≥ 1.
(2) Let T be the tensor algebra TF (ω−1) of ω−1 over F . There is an automorphism φ of

T as graded algebras. such that the e-th quasi Veronese algebra R[e] is isomorphic
to the twisted algebra T φ as graded algebras.

R[e] ∼= TF (ω−1)φ

Artin and Schelter gave the definition of AS-regular algebras to extract good homo-
logical property of polynomial algebras. Our structure theorem shows that AS-regular
algebras are polynomial algebra in some sense. The point is that we do not consider
connected graded algebras over a field k, but consider connected graded algebras over a
finite dimensional algebra F .

As an application we reprove the following statement.

Corollary 21 (Piontkovski [Pi]). An AS-regular algebra R of global dimension 2 is co-
herent.

Remark 22. This corollary is already proved by D. Piontkovski [Pi]. He used the descrip-
tion of AS-regular algebras of global dimension 2 obtained by J. J. Zhang [Z2].

In the case when d = gl. dim R = 0 the above statement is trivial. Since AS-regular
algebra of global dimension 1 is isomorphic to polynomial ring k[x] in one variable, the
case d = 1 is also trivial.

A.Bondal conjectured that all AS-regular algebras are coherent.
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STICKELBERGER RELATIONS AND LOEWY SERIES OF A GROUP
ALGEBRA Map(Fq, Fq)

KAORU MOTOSE

Abstract. In this note, we present a proof of the Stickelberger relation (see [1]) using
Loewy series of a group algebra Map(Fq, Fq) of the additive group of a finite field Fq.
This relation is essential in a proof of the Eisenstein reciprocity law. We also present
partial solutions to the Feit-Thompson conjecture for primes 3 and 5 by a special case
of this law.

Key Words : Gaussian sum, Power residue symbol, Feit-Thompson conjecture.
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§1. Loewy series of group algebras Map(Fq, Fq)

Let F = Fq be the finite field of order q = pf , where p is a prime, and let A = Map(F, K)
be the set of mappings from F to a subring K of a field. We define a convolution product
∗ in A as follows,

(f ∗ g)(α) :=
∑

α+β=γ

f(α)g(β) for f, g ∈ A and α, β, γ ∈ F.

We say a character by a group homomorphism from the multiplicative group F∗ to K.
Let X be the set of characters. We define the trivial character ε by ε(α) = 1 for all α ∈ F∗.
It is convenient to set ε(0) = 1 and χ(0) = 0 for χ 6= ε. In virtue of this definition, we can
see X is contained in A. In case K is a field, X is a group by the usual product, namely,
(λµ)(α) := λ(α)µ(α). This group isomorphic to the group F∗. Let uα be the characteristic
function of α ∈ Fq, namely,

uα(β) :=

{
1 β = α,
0 β 6= α.

This definition shows uα ∗uβ = uα+β and so the set {uα | α ∈ F} is the additive group
of F. Moreover A is a group algebra of the additive group of F over K. It is easy to see
that {uα | α ∈ Fq} are linearly independent over K and

f =
∑
α∈Fq

f(α)uα for f ∈ Map(Fq, K).

§1, §2 in this note is the detailed proof of Theorem 1 in the published paper [3]. The detailed version
of §3 in this note will be submitted for publication elsewhere.
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Thus {uα | α ∈ Fq} is a basis of A. In case q− 1 6= 0 in K, the set {u0}∪X is also a basis
of A because orthogonal relations shows

(q − 1)uα =
∑
η∈X

η(α−1)η for α 6= 0 and χ =
∑
α∈F

χ(α)uα.

In the remainder of this paper, we assume K = Fq. We define Jacobi sums as follows

Jα(λ, µ) =
∑

β+γ=α

λ(β)µ(γ) for λ, µ ∈ X and α, β, γ ∈ F

and we set J(λ, µ) = J1(λ, µ).

Lemma 1. We set λ, µ ∈ X and α ∈ F.

(1) Jα(ε, ε) = 0.
(2) J0(λ, µ) = 0 for λµ 6= ε.
(3) Jα(λ, µ) = λµ(α)J(λ, µ) for α 6= 0.
(4) J(λ, λ−1) = J0(λ, λ−1) = −λ(−1) for λ 6= ε.
(5) J(λ, µ) is contained in the prime field Fp.
(6) λ ∗ µ = J(λ, µ)λµ.

Proof. (1) Jα(ε, ε) = pf = 0.
(2) J0(λ, µ) =

∑
β∈F∗ λ(β)µ(−β) = µ(−1)

∑
β∈F∗ λµ(β) = 0.

(3) Jα(λ, µ) = λµ(α)
∑

β+γ=α λ(βα−1)µ(γα−1) = λµ(α)J(λ, µ).

(4) Using (3), we have

J0(λ, λ−1) − J(λ, λ−1) = J0(λ, λ−1) + (q − 1)J(λ, λ−1) =
∑
α∈F

Jα(λ, λ−1)

= (
∑
β∈F

λ(β))(
∑
γ∈F

λ−1(γ)) = 0.

Thus we have

J(λ, λ−1) = J0(λ, λ−1) =
∑
β∈F

λ(−β)λ−1(β) =
∑
β∈F

λ(−β)λ−1(β)

= λ(−1) ·
∑
β∈F∗

ε(β) = λ(−1)(q − 1) = −λ(−1).

(5) The assertion follows from the equation

J(λ, µ)p =
∑
β∈F

λ(β)pµ(1 − β)p =
∑
β∈F

λ(βp)µ(1 − βp)
∑
γ∈F

λ(γ)µ(1 − γ) = J(λ, µ).

(6) We have J0(λ, µ)u0 − J(λ, µ)λµ(0)u0 = 0 from (2) and (4). Thus using (3), we
obtain our result.

λ ∗ µ =

(∑
β∈F

λ(β)uβ

)(∑
γ∈F

µ(γ)uγ

)
=

∑
β,γ∈F

λ(β)µ(γ)uβ+γ =
∑
α∈F

Jα(λ, µ)uα

= J(λ, µ)λµ + J0(λ, µ)u0 − J(λ, µ)λµ(0)u0 = J(λ, µ)λµ.
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Lemma 2. Let η be a generator of F∗ and φ : ηk → η−k be a generator of X. We set
integers 0 < s, t,m < n = q−1 with t = pe and tm ≡ s mod n. Then J(φs, φt) = −m−1.

Proof. Let L be a permutation on B = {1, . . . , n−1} such that ηL(k) = 1−ηk and set
θ = ηt. Then the order of θ is n. We can easily verify the next equation from the formula
of a geometric series.

θ−`k · (1 − θk)−1 = θ−k + θ−2k + · · · + θ−`k + (1 − θk)−1 for k ∈ B.

The next equation follows from the above formula and t is a power of a prime p.

J(φs, φt) =
n−1∑
k=0

φs(ηk)φt(1 − ηk) =
n−1∑
k=1

φ(ηks · ηL(k)t)

=
n−1∑
k=1

η−ksη−L(k)t =
n−1∑
k=1

η−tmk(1 − ηkt)−1

=
n−1∑
k=1

θ−mk(1 − θk)−1 =
n−1∑
k=1

((
m∑

`=1

θ−`k

)
+ η−L(k)

)

=
m∑

`=1

(
n−1∑
k=1

θ−`k

)
+

n−1∑
k=1

η−L(k) =
m∑

`=1

(−1) +
n−1∑
k=1

ηk

= −m − 1

Proposition 3. µ
[p−1]
0 ∗ µ

[p−1]
1 ∗ · · · ∗ µ

[p−1]
f−1 = γε 6= 0 where µk = φpk

, γ ∈ F and χ[`] is
the `th power by the product ∗.

Proof. In virtue of Lemma 1 (6), the above product is equal to γφq−1 = γε with
γ =

∏
s,t J(φs, φt) where t = pk for k = 0, · · · , f − 1 and s = (` + 1)t − 1 for ` =

0, . . . , p − 2 ((k, `) 6= (0, 0)). Thus it remains only to prove J(φs, φt) 6= 0. In fact, setting
0 < m = q − q/t + ` < n = q − 1, It is easily seen that tm ≡ s mod n and m ≡ ` mod p.
It follows from Lemma 2 that J(φs, φt) = −m − 1 = −` − 1 6= 0 since 0 < ` + 1 < p.

§2. Stickelberger relations

Let m be a natural number. let p be a prime do not divide m, and let f be the order
of p mod m. Moreover let Dm be the ring of algebraic integers in Q(ζm) and let P be a

prime ideal containing p, where ζm = e
2πi
m . Then it is well known that q is the order of

a finite field F = Dm/P. We consider Gaussian sums g(χa) =
∑

a∈F χa(α)ζ
tr(α)
p where χ

is a generator of X and tr(α) is the trace of α. Let ℘ be the ideal generated by P and
{1 − ζk

p |0 < k < p} in the ring of algebraic integers Dmp of Q(ζmp). It is easy to see ℘ is
a prime ideal generated by P and 1 − ζp. We set a∗ = b0 + b1 + · · · + bf−1 for a positive
integer a = b0 + b1p + · · · + bf−1p

f−1.
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Theorem 4. ord℘(g(χa)) = a∗ for 0 < a < q, namely, ℘a∗
divides exactly g(χa).

Proof. Let ν be a natural homomorphism:

Map(F, Dm) → Map(F, Dm/P ), where Dm/P = F,

and < be the ideal generated by P and {u0 − uα|α ∈ F}. Since ν(θ)[p] = 0 for ε 6= θ ∈ X,
We obtain that ν(θ) is contained in ν(<), the radical of the group algebra Map(F, Dm/P )
and so θ ∈ <. By Proposition 3 together with this implies that γχa ∈ <a∗

for the product

of Jacobi sums γ ∈ Dm \ P. The character uβ → ζ
tr(β)
p induces the epimorphism

φ : Map(F, Dm) → Dmp

with φ(<) = ℘ and φ(γχa) = γg(χa). Thus we have ord℘(g(χa)) = a∗. On the other hand,
using ord℘(p) = p − 1 and g(χa)g(χq−1−a) = g(χa)g(χa) = χa(−1)q = χa(−1)pf , we have
the next

ord℘(g(χa)) + ord℘(g(χq−1−a)) = f(p − 1) = a∗ + (q − 1 − a)∗

This completes our proof.

From this theorem we have Stickelberger relation and Eisenstein reciprocity law by
the same method in [1]. Let σt be an automoripism of Q(ζ) for 0 < t < m and (m, t) = 1
such that σt(ζm) = ζt

m.

Theorem 5 (the Stickelberger relation). g(χ)mDm =
∏

σt
σt(P

t) where t runs over 0 <
t < m and (t, m) = 1.

We set ζ` = e
2πi
` for odd prime `, θa =

(
a

)
`

is the `th power residue symbol and
D` is the ring of algebraic integers in Q(ζ`). A non zero and non unit element α ∈ D` is
called primary if α is prime to ` and α ≡ c mod (1 − ζ`)

2 for some c ∈ Z.

Theorem 6 (the Eisenstein reciprocity law). Let ` be an odd prime, a ∈ Z and let α ∈ D`

be primary. Each pair of `, a and α is coprime. Then θa(α) = θα(a).

§3. Partial solutions to the Feit Thompson conjecture for primes 3 and 5

We set p < q are odd primes, and

F =
qp − 1

q − 1
and T =

pq − 1

p − 1
.

Feit Thompson conjectured that F never divides T. If it would be proved, their odd paper
would be greatly simplified (see [4]).

Lemma 7. We set χη =
(

η

)
p
pth power residue symbol, ζ = e

2πi
p and c(q−1) ≡ 1 mod p.

Then η = ζc(ζ − q) is primary in the algebraic integer ring of Q(ζ).

(1) χη(1 − ζ)2(q−1) = χq−1(ζ)q+1. In particular, χη(1 − ζ) = 1 if p divides q + 1.

(2) if F divides T, then χη(p) = 1 and χη(1 − ζ) = χη(u) where u =
∏p−1

k=1
1−ζk

1−ζ
.

In particular, if p divides q + 1, then χη(u) = 1 by (1).
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Using this lemma, we obtain

Corollary 8. F never divides T in either case of the next conditions.

(1) p = 3 and q 6≡ −1 mod 9.
(2) p = 5 and q + 1 = 5` with (`, 5) = 1.
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ON THE STRUCTURE OF SALLY MODULES OF RANK ONE
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Abstract. A complete structure theorem of Sally modules of m-primary ideals I in a
Cohen-Macaulay local ring (A,m) satisfying the equality e1(I) = e0(I) − `A(A/I) + 1 is
given, where e0(I) and e1(I) denote the first two Hilbert coefficients of I.
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1. Introduction

This is based on a joint work with Shiro Goto and Koji Nishida.
Let (A, m) be a Cohen-Macaulay local ring with d = dim A > 0 and assume that the

residue class field k = A/m of A is infinite. Let I be an m-primary ideal in A and choose
a minimal reduction Q = (a1, a2, · · · , ad) of I. Let

R = R(I) := A[It] ⊆ A[t],

T = R(Q) := A[Qt],

R′ = R′(I) := A[It, t−1] ⊆ A[t, t−1],

G = G(I) := R′/t−1R′ ∼=
⊕
n≥0

In/In+1

denote, respectively, the Rees algebras of I and Q, the extended Rees algebras of I and
the associated graded ring of I, where t stands for an indeterminate over A.

Let B = T/mT ∼= k[X1, X2, · · · , Xd], which is the polynomial ring with d indetermi-
nates over the field k. Following W. V. Vasconcelos [10], we then define

S = SQ(I) = IR/IT

and call it the Sally module of I with respect to Q. We notice that the Sally module S is
a finitely generated graded T -module, since R is a module-finite extension of the graded
ring T .

Let `A(∗) stand for the length. Then we have integers {ei(I)}0≤i≤d such that the equality

`A(A/In+1) = e0(I)

(
n + d

d

)
− e1(I)

(
n + d − 1

d − 1

)
+ · · · + (−1)ded(I)

holds true for all n À 0. For each integers 0 ≤ i ≤ d, we call ei = ei(I) the i-th Hilbert
coefficients of I.

The contents of this article are based on [1, 2]. Refer to them for the details.
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The Sally module S was introduced by W. V. Vasconcelos [10], where he gave an elegant
review, in terms of his Sally module, of the works [7, 8, 9] of J. Sally about the structure
of m-primary ideals I with interaction to the structure of the graded ring G and the
Hilbert coefficients ei’s of I.

As is well-known, we have the inequality ([5])

e1 ≥ e0 − `A(A/I)

and C. Huneke [3] showed that e1 = e0 − `A(A/I) if and only if I2 = QI (cf. Corollary
4). When this is the case, both the graded rings G and F(I) =

⊕
n≥0 In/mIn are Cohen-

Macaulay, and the Rees algebra R of I is also a Cohen-Macaulay ring, provided d ≥ 2.
Thus, the ideals I with e1 = e0 − `A(A/I) enjoy very nice properties.

J. Sally firstly investigated the second border, that is the ideals I satisfying the equality
e1 = e0 − `A(A/I) + 1 but e2 6= 0 (cf. [9, 10]). The present research is a continuation of
[9, 10] and aims to give a complete structure theorem of the Sally module of an m-primary
ideal I satisfying the equality e1 = e0 − `A(A/I) + 1.

The main result of this paper is the following Theorem 1. Our contribution in Theorem
1 is the implication (1) ⇒ (3), the proof of which is based on the new result that the
equality I3 = QI2 holds true if e1 = e0 − `A(A/I) + 1 (cf. Theorem 7).

Theorem 1. The following three conditions are equivalent to each other.

(1) e1 = e0 − `A(A/I) + 1.
(2) mS = (0) and rankB S = 1.
(3) S ∼= (X1, X2, · · · , Xc)B as graded T -modules for some 0 < c ≤ d, where {Xi}1≤i≤c

are linearly independent linear forms of the polynomial ring B.

When this is the case, c = `A(I2/QI) and I3 = QI2, and the following assertions hold
true.

(i) depth G ≥ d − c and depthT S = d − c + 1.
(ii) depth G = d − c, if c ≥ 2.
(iii) Suppose c < d. Then

`A(A/In+1) = e0

(
n + d

d

)
− e1

(
n + d − 1

d − 1

)
+

(
n + d − c − 1

d − c − 1

)
for all n ≥ 0. Hence

ei =

{
0 if i 6= c + 1,

(−1)c+1 if i = c + 1

for 2 ≤ i ≤ d.
(iv) Suppose c = d. Then

`A(A/In+1) = e0

(
n + d

d

)
− e1

(
n + d − 1

d − 1

)
for all n ≥ 1. Hence ei = 0 for 2 ≤ i ≤ d.

Thus Theorem 1 settles a long standing problem, although the structure of ideals I with
e1 = e0− `A(A/I)+2 or the structure of Sally modules S with mS = (0) and rankB S = 2
remains unknown.
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Let us now briefly explain how this paper is organized. We shall prove Theorem 1
in Section 3. In Section 2 we will pick up from the paper [1] some auxiliary results on
Sally modules, all of which are known, but let us note them for the sake of the reader’s
convenience. In Section 4 we will construct one example in order to see the ubiquity of
ideals I which satisfy condition (3) in Theorem 1.

In what follows, unless otherwise specified, let (A, m) be a Cohen-Macaulay local ring
with d = dim A > 0. We assume that the field k = A/m is infinite. Let I be an
m-primary ideal in A and let S be the Sally module of I with respect to a minimal
reduction Q = (a1, a2, · · · , ad) of I. We put R = A[It], T = A[Qt], R′ = A[It, t−1], and
G = R′/t−1R′. Let

Ĩ =
∪
n≥1

[In+1 :A In] =
∪
n≥1

[In+1 :A (an
1 , a

n
2 , · · · , an

d)]

denote the Ratliff-Rush closure of I, which is the largest m-primary ideal in A such that
I ⊆ Ĩ and ei(Ĩ) = ei for all 0 ≤ i ≤ d (cf. [6]). We denote by µA(∗) the number of
generators.

2. Auxiliary results

In this section let us firstly summarize some known results on Sally modules, which we
need throughout this paper. See [1] and [10] for the detailed proofs.

The first two results are basic facts on Sally modules developed by Vasconcelos [10].

Lemma 2. The following assertions hold true.

(1) m`S = (0) for integers ` À 0.
(2) The homogeneous components {Sn}n∈Z of the graded T -module S are given by

Sn
∼=

{
(0) if n ≤ 0,

In+1/IQn if n ≥ 1.

(3) S = (0) if and only if I2 = QI.
(4) Suppose that S 6= (0) and put V = S/MS, where M = mT + T+ is the graded

maximal ideal in T . Let Vn (n ∈ Z) denote the homogeneous component of the
finite-dimensional graded T/M-space V with degree n and put Λ = {n ∈ Z | Vn 6=
(0)}. Let q = max Λ. Then we have Λ = {1, 2, · · · , q} and rQ(I) = q + 1, where
rQ(I) = min{n ∈ Z | In+1 = QIn} stands for the reduction number of I with
respect to Q.

(5) S = TS1 if and only if I3 = QI2.

Proof. See [1, Lemma 2.1]. ¤
Proposition 3. Let p = mT . Then the following assertions hold true.

(1) AssT S ⊆ {p}. Hence dimT S = d, if S 6= (0).
(2) `A(A/In+1) = e0

(
n+d

d

)
− (e0 − `A(A/I))·

(
n+d−1

d−1

)
− `A(Sn) for all n ≥ 0.

(3) We have e1 = e0 − `A(A/I) + `Tp (Sp). Hence e1 = e0 − `A(A/I) + 1 if and only if
mS = (0) and rankB S = 1.

(4) Suppose that S 6= (0). Let s = depthT S. Then depth G = s − 1 if s < d. S is a
Cohen-Macaulay T -module if and only if depth G ≥ d − 1.
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Proof. See [1, Proposition 2.2]. ¤
Combining Lemma 2 (3) and Proposition 3, we readily get the following results of

Northcott [5] and Huneke [3].

Corollary 4 ([3, 5]). We have e1 ≥ e0 − `A(A/I). The equality e1 = e0 − `A(A/I) holds
true if and only if I2 = QI. When this is the case, ei = 0 for all 2 ≤ i ≤ d.

The following result is one of the keys for our proof of Theorem 1.

Theorem 5. The following conditions are equivalent.

(1) e1 = e0 − `A(A/I) + 1.
(2) S ∼= a as graded T -modules for some graded ideal a (6= B) of B.

Proof. We have only to show (1) ⇒ (2). We have mS = (0) and rankBS = 1 by Propo-
sition 3 (3). Because S1 6= (0) and S =

∑
n≥1 Sn by Lemma 2, we have S ∼= B(−1) as

graded B-modules once S is B-free.
Suppose that S is not B-free. The B-module S is torsionfree, since AssT S = {mT} by

Proposition 3 (1). Therefore, since rankB S = 1, we see d ≥ 2 and S ∼= a(m) as graded
B-modules for some integer m and some graded ideal a (6= B) in B, so that we get the
exact sequence

0 → S(−m) → B → B/a → 0

of graded B-modules. We may assume that htB a ≥ 2, since B = k[X1, X2, · · · , Xd] is the
polynomial ring over the field k = A/m. We then have m ≥ 0, since am+1 = [a(m)]1 ∼=
S1 6= (0) and a0 = (0). We want to show m = 0.

Because dim B/a ≤ d − 2, the Hilbert polynomial of B/a has degree at most d − 3.
Hence

`A(Sn) = `A(Bm+n) − `A([B/a]m+n)

=

(
m + n + d − 1

d − 1

)
− `A([B/a]m+n)

=

(
n + d − 1

d − 1

)
+ m

(
n + d − 2

d − 2

)
+ (lower terms)

for n À 0. Consequently

`A(A/In+1) = e0

(
n + d

d

)
− (e0 − `A(A/I))·

(
n + d − 1

d − 1

)
− `A(Sn)

= e0

(
n + d

d

)
− (e0 − `A(A/I) + 1)·

(
n + d − 1

d − 1

)
− m

(
n + d − 2

d − 2

)
+(lower terms)

by Proposition 3 (2), so that we get e2 = −m. Thus m = 0, because e2 ≥ 0 by Narita’s
theorem ([4]). ¤

The following result will enable us to reduce the proof of Theorem 1 to the proof of the
fact that I3 = QI2 if e1 = e0 − `A(A/I) + 1.
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Proposition 6. Suppose e1 = e0 − `A(A/I) + 1 and I3 = QI2. Let c = `A(I2/QI). Then
the following assertions hold true.

(1) 0 < c ≤ d and µB(S) = c.
(2) depth G ≥ d − c and depthB S = d − c + 1.
(3) depth G = d − c, if c ≥ 2.
(4) Suppose c < d. Then `A(A/In+1) = e0

(
n+d

d

)
− e1

(
n+d−1

d−1

)
+

(
n+d−c−1

d−c−1

)
for all n ≥ 0.

Hence

ei =

{
0 if i 6= c + 1

(−1)c+1 if i = c + 1

for 2 ≤ i ≤ d.
(5) Suppose c = d. Then `A(A/In+1) = e0

(
n+d

d

)
− e1

(
n+d−1

d−1

)
for all n ≥ 1. Hence

ei = 0 for 2 ≤ i ≤ d.

Proof. We have mS = (0) and rankB S = 1 by Proposition 3 (3), while S = TS1 since
I3 = QI2 (cf. Lemma 2 (5)). Therefore by Theorem 5 we have S ∼= a as graded B-modules
where a = (X1, X2, · · · , Xc)B is an ideal in B generated by linear forms {Xi}1≤i≤c. Hence
0 < c ≤ d, µB(S) = c, and depthB S = d− c+1, so that assertions (1), (2), and (3) follow
(cf. Proposition 3 (4)). Considering the exact sequence

0 → S → B → B/a → 0

of graded B-modules, we get

`A(Sn) = `A(Bn) − `A([B/a]n)

=

(
n + d − 1

d − 1

)
−

(
n + d − c − 1

d − c − 1

)
for all n ≥ 0 (resp. n ≥ 1), if c < d (resp. c = d). Thus assertions (4) and (5) follow (cf.
Proposition 3 (2)). ¤

3. Proof of Theorem 1

The purpose of this section is to prove Theorem 1. See Proposition 3 (3) for the
equivalence of conditions (1) and (2) in Theorem 1. The implication (3) ⇒ (2) is clear.
So, we must show the implication (1) ⇒ (3) together with the last assertions in Theorem
1. Suppose that e1 = e0−`A(A/I)+1. Then, thanks to Theorem 5, we get an isomorphism

ϕ : S → a

of graded B-modules, where a ( B is a graded ideal of B. Notice that once we are able
to show I3 = QI2, the last assertions of Theorem 1 readily follow from Proposition 6.
On the other hand, since a ∼= S = BS1 (cf. Lemma 2 (5)), the ideal a of B is generated
by linearly independent linear forms {Xi}1≤i≤c (0 < c ≤ d) of B and so, the implication
(1) ⇒ (3) in Theorem 1 follows. We have c = `A(I2/QI), because a1

∼= S1 = I2/QI (cf.
Lemma 2 (2)). Thus our Theorem 1 has been proven modulo the following theorem.

Theorem 7. Suppose that e1 = e0 − `A(A/I) + 1. Then I3 = QI2.
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Proof. We proceed by induction on d. Suppose that d = 1. Then S is B-free of rank one
(recall that the B-module S is torsionfree; cf. Proposition 3 (1)) and so, since S1 6= (0)
(cf. Lemma 2 (3)), S ∼= B(−1) as graded B-modules. Thus I3 = QI2 by Lemma 2 (5).

Let us assume that d ≥ 2 and that our assertion holds true for d − 1. Since the field
k = A/m is infinite, without loss of generality we may assume that a1 is a superficial
element of I. Let

A = A/(a1), I = I/(a1), and Q = Q/(a1).

We then have ei(I) = ei for all 0 ≤ i ≤ d − 1, whence

e1(I) = e0(I) − `A(A/I) + 1.

Therefore the hypothesis of induction on d yields I
3

= Q I
2
. Hence, because the element

a1t is a nonzerodivisor on G if depth G > 0, we have I3 = QI2 in that case.
Assume that depth G = 0. Then, thanks to Sally’s technique ([9]), we also have

depth G(I) = 0. Hence `A(I
2
/Q I) = d − 1 by Proposition 6 (2), because e1(I) =

e0(I) − `A(A/I) + 1. Consequently, `A(S1) = `A(I2/QI) ≥ d − 1, because I
2
/Q I is a

homomorphic image of I2/QI. Let us take an isomorphism

ϕ : S → a

of graded B-modules, where a ( B is a graded ideal of B. Then, since

`A(a1) = `A(S1) ≥ d − 1,

the ideal a contains d − 1 linearly independent linear forms, say X1, X2, · · · , Xd−1 of B,
which we enlarge to a basis X1, · · · , Xd−1, Xd of B1. Hence

B = k[X1, X2, · · · , Xd],

so that the ideal a/(X1, X2, · · · , Xd−1)B in the polynomial ring

B/(X1, X2, · · · , Xd−1)B = k[Xd]

is principal. If a = (X1, X2, · · · , Xd−1)B, then I3 = QI2 by Lemma 2 (5), since S = BS1.
However, because `A(I2/QI) = `A(a1) = d − 1, we have depth G ≥ 1 by Proposition 6
(2), which is impossible. Therefore a/(X1, X2, · · · , Xd−1)B 6= (0), so that we have

a = (X1, X2, · · · , Xd−1, X
α
d )B

for some α ≥ 1. Notice that α = 1 or α = 2 by Lemma 2 (4). We must show that α = 1.
Assume that α = 2. Let us write, for each 1 ≤ j ≤ d, Xj = ajt with aj ∈ Q, where

ajt denotes the image of ait ∈ T in B = T/mT . Then a = (a1t, a2t, · · · , ad−1t, (adt)2).
We now choose elements fi ∈ S1 for 1 ≤ i ≤ d − 1 and fd ∈ S2 so that ϕ(fi) = Xi for
1 ≤ i ≤ d − 1 and ϕ(fd) = X2

d . Let zi ∈ I2 for 1 ≤ i ≤ d − 1 and zd ∈ I3 such that
{fi}1≤i≤d−1 and fd are, respectively, the images of {zit}1≤i≤d−1 and zdt

2 in S. We now
consider the relations Xif1 = X1fi in S for 1 ≤ i ≤ d − 1 and X2

df1 = X1fd, that is

aiz1 − a1zi ∈ Q2I

for 1 ≤ i ≤ d − 1 and

a2
dz1 − a1zd ∈ Q3I.
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Notice that
Q3 = a1Q

2 + (a2, a3, · · · , ad−1)
2·(a2, a3, · · · , ad) + a2

dQ

and write
a2

dz1 − a1zd = a1τ1 + τ2 + a2
dτ3

with τ1 ∈ Q2I, τ2 ∈ (a2, a3, · · · , ad−1)
2·(a2, a3, · · · , ad)I, and τ3 ∈ QI. Then

a2
d(z1 − τ3) = a1(τ1 + zd) + τ2 ∈ (a1) + (a2, a3, · · · , ad−1)

2.

Hence z1−τ3 ∈ (a1)+(a2, a3, · · · , ad−1)
2, because the sequence a1, a2, · · · , ad is A-regular.

Let z1 − τ3 = a1h + h′ with h ∈ A and h′ ∈ (a2, a3, · · · , ad−1)
2. Then since

a1[a
2
dh − (τ1 + zd)] = τ2 − a2

dh
′ ∈ (a2, a3, · · · , ad)

3,

we have a2
dh − (τ1 + zd) ∈ (a2, a3, · · · , ad)

3, whence a2
dh ∈ I3.

We need the following.

Remark 8. h 6∈ I but h ∈ Ĩ. Hence Ĩ 6= I.

Proof of Remark 8. If h ∈ I, then a1h ∈ QI, so that z1 = a1h + h′ + τ3 ∈ QI, whence
f1 = 0 in S (cf. Lemma 2 (2)), which is impossible. Let 1 ≤ i ≤ d − 1. Then

aiz1 − a1zi = ai(a1h + h′ + τ3) − a1zi = a1(aih − zi) + ai(h
′ + τ3) ∈ Q2I.

Therefore, because ai(h
′ + τ3) ∈ Q2I, we get

a1(aih − zi) ∈ (a1) ∩ Q2I.

Notice that

(a1) ∩ Q2I = (a1) ∩ [a1QI + (a2, a3, · · · , ad)
2I]

= a1QI + [(a1) ∩ (a2, a3, · · · , ad)
2I]

= a1QI + a1(a2, a3, · · · , ad)
2

= a1QI

and we have aih− zi ∈ QI, whence aih ∈ I2 for 1 ≤ i ≤ d− 1. Consequently a2
i h ∈ I3 for

all 1 ≤ i ≤ d, so that h ∈ Ĩ, whence Ĩ 6= I. ¤
Because `A(Ĩ/I) ≥ 1, we have

e1 = e0 − `A(A/I) + 1

= e0(Ĩ) − `A(A/Ĩ) + [1 − `A(Ĩ/I)]

≤ e0(Ĩ) − `A(A/Ĩ)

≤ e1(Ĩ)

= e1,

where e0(Ĩ)− `A(A/Ĩ) ≤ e1(Ĩ) is the inequality of Northcott for the ideal Ĩ (cf. Corollary
4). Hence `A(Ĩ/I) = 1 and e1(Ĩ) = e0(Ĩ) − `A(A/Ĩ), so that

Ĩ = I + (h) and Ĩ2 = QĨ

by Corollary 4 (recall that Q is a reduction of Ĩ also). We then have, thanks to [2,
Proposition 2.6], that I3 = QI2, which is a required contradiction. This completes the
proof of Theorem 1 and that of Theorem 7 as well. ¤
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4. An example

Lastly we construct one example which satisfies condition (3) in Theorem 1. Our goal
is the following. See [2, Section 5] for the detailed proofs.

Theorem 9. Let 0 < c ≤ d be integers. Then there exists an m-primary ideal I in a
Cohen-Macaulay local ring (A, m) such that

d = dim A, e1(I) = e0(I) − `A(A/I) + 1, and c = `A(I2/QI)

for some reduction Q = (a1, a2, · · · , ad) of I.

To construct necessary examples we may assume that c = d.
Let m, d > 0 be integers. Let

U = k[{Xj}1≤j≤m, Y, {Vi}1≤i≤d, {Zi}1≤i≤d]

be the polynomial ring with m + 2d + 1 indeterminates over an infinite field k and let

b = [(Xj | 1 ≤ j ≤ m) + (Y )]·[(Xj | 1 ≤ j ≤ m) + (Y ) + (Vi | 1 ≤ i ≤ d)]

+(ViVj | 1 ≤ i, j ≤ d, i 6= j) + (V 2
i − ZiY | 1 ≤ i ≤ d).

We put C = U/b and denote the images of Xj, Y , Vi, and Zi in C by xj, y, vi, and ai,

respectively. Then dim C = d, since
√

b = (Xj | 1 ≤ j ≤ m) + (Y ) + (Vi | 1 ≤ i ≤ d).
Let M = C+ := (xj | 1 ≤ j ≤ m) + (y) + (vi | 1 ≤ i ≤ d) + (ai | 1 ≤ i ≤ d) be the graded
maximal ideal in C. Let Γ be a subset of {1, 2, · · · ,m}. We put

J = (ai | 1 ≤ i ≤ d) + (xα | α ∈ Γ) + (vi | 1 ≤ i ≤ d) and q = (ai | 1 ≤ i ≤ d).

Then M2 = qM , J2 = qJ + qy, and J3 = qJ2, whence q is a reduction of both M and J ,
and a1, a2, · · · , ad is a homogeneous system of parameters for the graded ring C.

Let A = CM , I = JA, and Q = qA. We are now interested in the Hilbert coefficients e′is
of the ideal I as well as the structure of the associated graded ring and the Sally module
of I. We then have the following, which shows that the ideal I is a required example.

Theorem 10. The following assertions hold true.

(1) A is a Cohen-Macaulay local ring with dim A = d.
(2) S ∼= B+ as graded T -modules, whence `A(I2/QI) = d.
(3) e0(I) = m + d + 2 and e1(I) = ]Γ + d + 1.
(4) ei(I) = 0 for all 2 ≤ i ≤ d.
(5) G is a Buchsbaum ring with depth G = 0 and I(G) = d.

Proof. See [2, Theorem 5.2]. ¤
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THICK SUBCATEGORIES OF THE STABLE CATEGORY OF

COHEN-MACAULAY MODULES

RYO TAKAHASHI

Abstract. Various classification theorems of thick subcategories of a triangulated cat-
egory have been obtained in many areas of mathematics. In this article, as a higher
dimensional version of the classification theorem of thick subcategories of the stable
category of finitely generated representations of a finite p-group due to Benson, Carl-
son and Rickard, we consider classifying thick subcategories of the stable category of
Cohen-Macaulay modules over a Gorenstein local ring. The main result of this article
yields a complete classification of the thick subcategories of the stable category of Cohen-
Macaulay modules over a local hypersurface in terms of specialization-closed subsets of
the prime ideal spectrum of the ring which are contained in its singular locus.

One of the principal approaches to the understanding of the structure of a given category
is classifying its subcategories having a specific property. It has been studied in many areas
of mathematics which include stable homotopy theory, ring theory, algebraic geometry
and modular representation theory. A landmark result in this context was obtained in the
definitive work due to Gabriel [21] in the early 1960s. He proved a classification theorem
of the localizing subcategories of the category of modules over a commutative noetherian
ring by making a one-to-one correspondence between the set of those subcategories and
the set of specialization-closed subsets of the prime ideal spectrum of the ring. A lot of
analogous classification results of subcategories of modules have been obtained by many
authors; see [29, 39, 36, 22, 23, 24] for instance.

For a triangulated category, a high emphasis has been placed on classifying its thick
subcategories, namely, full triangulated subcategories which are closed under taking di-
rect summands. The first classification theorem was obtained in the deep work on stable
homotopy theory due to Devinatz, Hopkins and Smith [18, 28]. They classified the thick
subcategories of the category of compact objects in the p-local stable homotopy cate-
gory. Hopkins [27] and Neeman [38] provided a corresponding classification result of
the thick subcategories of the derived category of perfect complexes (i.e., bounded com-
plexes of finitely generated projective modules) over a commutative noetherian ring by
making a one-to-one correspondence between the set of those subcategories and the set
of specialization-closed subsets of the prime ideal spectrum of the ring. Thomason [43]
generalized the theorem of Hopkins and Neeman to quasi-compact and quasi-separated
schemes, in particular, to arbitrary commutative rings and algebraic varieties. Recently,
Avramov, Buchweitz, Christensen, Iyengar and Piepmeyer [4] gave a classification of the
thick subcategories of the derived category of perfect differential modules over a commu-
tative noetherian ring. On the other hand, Benson, Carlson and Rickard [9] classified
the thick subcategories of the stable category of finitely generated representations of a
finite p-group in terms of closed homogeneous subvarieties of the maximal ideal spectrum

The detailed version of this paper has been submitted for publication elsewhere.
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of the group cohomology ring. Friedlander and Pevtsova [20] extended this classification
theorem to finite group schemes. A recent work of Benson, Iyengar and Krause [11] gives
a new proof of the theorem of Benson, Carlson and Rickard. A lot of other related re-
sults concerning thick subcategories of a triangulated category have been obtained. For
example, see [6, 7, 8, 35, 14, 10, 31, 12, 19, 41].

Here we mention that in most of the classification theorems of subcategories stated
above, the subcategories are classified in terms of certain sets of prime ideals. Each of
them establishes an assignment corresponding each subcatgory to a set of prime ideals,
which is (or should be) called the support of the subcategory.

In the present article, as a higher dimensional version of the work of Benson, Carlson
and Rickard, we consider classifying thick subcategories of the stable category of Cohen-
Macaulay modules over a Gorenstein local ring, through defining a suitable support for
those subcategories. Over a hypersurface we shall give a complete classification of them
in terms of specialization-closed subsets of the prime ideal spectrum of the base ring
contained in its singular locus.

Convention. In the rest of this article, we assume that all rings are commutative and
noetherian, and that all modules are finitely generated. Unless otherwise specified, let
R be a local ring of Krull dimension d. The unique maximal ideal of R and the residue
field of R are denoted by m and k, respectively. By a subcategory, we always mean a full
subcategory which is closed under isomorphism. (A full subcategory X of a category C is
said to be closed under isomorphism provided that for two objects M,N of C if M belongs
to X and N is isomorphic to M in C, then N also belongs to X .) Note that a subcategory
in our sense is uniquely determined by the isomorphism classes of the objects in it.

We begin with recalling the definition of the syzygies of a module.

Definition 1. Let n be a nonnegative integer, and let M be an R-module. Let

· · · ∂n+1→ Fn
∂n→ Fn−1

∂n−1→ · · · ∂2→ F1
∂1→ F0 → M → 0

be a minimal free resolution of M . The nth syzygy of M is defined as the image of the
map ∂n, and we denote it by ΩnM . We simply write ΩM instead of Ω1M . Note that the
nth syzygy of a given R-module is uniquely determined up to isomorphism because so is
a minimal free resolution.

Next, we make a list of several closed properties of a subcategory.

Definition 2. (1) Let C be an additive category and X a subcategory of C.
(i) We say that X is closed under (finite) direct sums provided that if M1, . . . ,Mn

are objects of X , then the direct sum M1 ⊕ · · · ⊕ Mn in C belongs to X .
(ii) We say that X is closed under direct summands provided that if M is an

object of X and N is a direct summand of M in C, then N belongs to X .
(2) Let C be a triangulated category and X a subcategory of C. We say that X is

closed under triangles provided that for each exact triangle L → M → N → ΣL
in C, if two of L,M,N belong to X , then so does the third.

(3) We denote by mod R the category of finitely generated R-modules. Let X be a
subcategory of mod R.
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(i) We say that X is closed under extensions provided that for each exact sequence
0 → L → M → N → 0 in mod R, if L and N belong to X , then so does M .

(ii) We say that X is closed under kernels of epimorphisms provided that for each
exact sequence 0 → L → M → N → 0 in mod R, if M and N belong to X ,
then so does L.

(iii) We say that X is closed under syzygies provided that if M is an R-module in
X , then ΩiM is also in X for all i ≥ 0.

Let us make several definitions of subcategories.

Definition 3. (1) Let C be a category.
(i) We call the subcategory of C which has no object the empty subcategory of C.
(ii) Suppose that C admits the zero object 0. We call the subcategory of C con-

sisting of all objects that are isomorphic to 0 the zero subcategory of C.
(2) A subcategory of a triangulated category is called thick if it is closed under direct

summands and triangles.
(3) A subcategory of mod R is called resolving if it contains R and if it is closed under

direct summands, extensions and kernels of epimorphisms.

Remark 4. (1) A resolving subcategory is a subcategory such that any two “minimal”
resolutions of a module by modules in it have the same length; see [1, Lemma
(3.12)].

(2) Every resolving subcategory of modR contains all free R-modules.
(3) A subcategory of mod R is resolving if and only if it contains R and is closed under

direct summands, extensions and syzygies.

The notion of a resolving subcategory was introduced by Auslander and Bridger [1] in
the late 1960s. A lot of important subcategories of mod R are known to be resolving.
To present examples of a resolving subcategory, let us recall here several definitions of
modules. Let M be an R-module. We say that M is bounded if there exists an integer
s such that βR

i (M) ≤ s for all i ≥ 0, where βR
i (M) denotes the ith Betti number of M .

We say that M has complexity c if c is the least nonnegative integer n such that there
exists a real number r satisfying the inequality βR

i (M) ≤ rin−1 for i À 0. We call M
semidualizing if the natural homomorphism R → HomR(M,M) is an isomorphism and
Exti

R(M,M) = 0 for all i > 0. For a semidualizing R-module C, an R-module M is
called totally C-reflexive if the natural homomorphism M → HomR(HomR(M,C), C) is
an isomorphism and Exti

R(M,C) = 0 = Exti
R(HomR(M,C), C) for all i > 0. A totally

R-reflexive R-module is simply called a totally reflexive R-module. For an ideal I of R
we denote by grade(I,M) the infimum of the integers i with Exti

R(R/I,M) 6= 0. We
say that M has lower complete intersection zero if M is totally reflexive and has finite
complexity. When R is a Cohen-Macaulay local ring, we say that M is Cohen-Macaulay
if depth M = d. Such a module is usually called maximal Cohen-Macaulay, but in this
article, we call it just Cohen-Macaulay. We denote by CM(R) the subcategory of mod R
consisting of all Cohen-Macaulay R-modules.

Example 5. Let n be a nonnegative integer, K an R-module, and I an ideal of R. The
following R-modules form resolving subcategories of mod R.
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(1) The R-modules.
(2) The free R-modules.
(3) The Cohen-Macaulay R-modules, provided that R is Cohen-Macaulay.
(4) The totally C-reflexive R-modules, where C is a fixed semidualizing R-module.
(5) The R-modules M with TorR

i (M,K) = 0 for i > n (respectively, i À 0).
(6) The R-modules M with Exti

R(M,K) = 0 for i > n (respectively, i À 0).
(7) The R-modules M with Exti

R(K,M) = 0 for i À 0, provided that Extj
R(K,R) = 0

for j À 0.
(8) The R-modules M with Exti

R(K,M) = 0 for i < grade K(:= grade(Ann K,R)).
(9) The R-modules M with grade(I,M) ≥ grade(I, R).

(10) The bounded R-modules.
(11) The R-modules having finite complexity.
(12) The R-modules of lower complete intersection dimension zero.

Next we recall the definitions of the nonfree loci of an R-module and a subcategory of
mod R.

Definition 6. (1) We denote by V(X) the nonfree locus of an R-module X, namely,
the set of prime ideals p of R such that Xp is nonfree as an Rp-module.

(2) We denote by V(X ) the nonfree locus of a subcategory X of mod R, namely, the
union of V(X) where X runs through all nonisomorphic R-modules in X .

We denote by Sing R the singular locus of R, namely, the set of prime ideals p of R
such that Rp is not a regular local ring. We denote by S(R) the set of prime ideals p
of R such that the local ring Rp is not a field. Clearly, S(R) contains Sing R. For each
ideal I of R, we denote by V(I) the set of prime ideals of R containing I. Recall that
a subset Z of Spec R is called specialization-closed provided that if p ∈ Z and q ∈ V(p)
then q ∈ Z. Note that every closed subset of Spec R is specialization-closed. Let C be
a category, and let P be a property of subcategories of C. Let X be a subcategory of
C. A subcategory Y of C satisfying P is said to be generated by X if Y is the smallest
subcategory of C satisfying P that contains X . For a subset Φ of Spec R, we denote
by V−1(Φ) the subcategory of mod R consisting of all R-modules M such that V(M) is
contained in Φ. The proposition below gives several basic properties of nonfree loci.

Proposition 7. (1) Let R be a Cohen-Macaulay local ring. Then the nonfree locus
V(CM(R)) coincides with the singular locus Sing R.

(2) One has V(X) = Supp Ext1(X, ΩX) for every R-module X. In particular, the non-
free locus of an R-module is closed in Spec R in the Zariski topology. The nonfree
locus of a subcategory of mod R is not necessarily closed but at least specialization-
closed in Spec R, and is contained in S(R).

(3) One has V(X ) = V(resX ) for every subcategory X of mod R, where resX denotes
the resolving subcategory of mod R generated by X .

(4) Let N be a direct summand of an R-module M . Then one has V(N) ⊆ V(M).
(5) Let 0 → L → M → N → 0 be an exact sequence of R-modules. Then one has

V(L) ⊆ V(M) ∪ V(N) and V(M) ⊆ V(L) ∪ V(N).
(6) For a subset Φ of Spec R, the subcategory V−1(Φ) of mod R is resolving.
(7) For an ideal I of R, one has VR(R/I) = V(I + (0 : I)).
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(8) One has VR(R/p) = V(p) for every p ∈ S(R).
(9) Let Φ be a specialization-closed subset of Spec R contained in S(R). Then one has

R/p ∈ V−1(Φ) for every p ∈ Φ.

We recall the definition of the stable category of Cohen-Macaulay modules over a Cohen-
Macaulay local ring.

Definition 8. (1) Let M,N be R-modules. We denote by FR(M,N) the set of R-
homomorphisms M → N factoring through free R-modules. It is easy to ob-
serve that FR(M,N) is an R-submodule of HomR(M,N). We set HomR(M,N) =
HomR(M,N)/FR(M,N).

(2) Let R be a Cohen-Macaulay local ring. The stable category of CM(R), which is
denoted by CM(R), is defined as follows.
(i) Ob(CM(R)) = Ob(CM(R)).
(ii) HomCM(R)(M,N) = HomR(M,N) for M,N ∈ Ob(CM(R)).

Remark 9. Let R be a Cohen-Macaulay local ring. Then CM(R) is always an additive
category. The direct sum of objects M and N in CM(R) is the direct sum M ⊕ N of M
and N as R-modules. Now, we consider the case where R is Gorenstein. Then CM(R) is
a Frobenius category, and CM(R) is a triangulated category. We recall in the following
how to define an exact triangle in CM(R). For the details, we refer to [26, Section 2 in
Chapter I] or [15, Theorem 4.4.1]. Let M be an object of CM(R). Then, since M is a
Cohen-Macaulay R-module, there exists an exact sequence 0 → M → F → N → 0 of
Cohen-Macaulay R-modules with F free. Defining ΣM = N , we have an automorphism
Σ : CM(R) → CM(R) of categories. This is the suspension functor. Let

0 −−−→ L −−−→ F −−−→ ΣL −−−→ 0

f

y y ∥∥∥
0 −−−→ M

g−−−→ N
h−−−→ ΣL −−−→ 0

be a commutative diagram of Cohen-Macaulay R-modules with exact rows such that F
is free. Then a sequence

L′ f ′
→ M ′ g′→ N ′ h′

→ ΣL′

of morphisms in CM(R) such that there exists a commutative diagram

L
f−−−→ M

g−−−→ N
h−−−→ ΣL

α

y β

y γ

y Σα

y
L′ f ′

−−−→ M ′ g′−−−→ N ′ h′
−−−→ ΣL′

in CM(R) such that α, β, γ are isomorphisms is defined to be an exact triangle in CM(R).

Now, we define the notion of a support for objects and subcategories of the stable
category of Cohen-Macaulay modules.

Definition 10. Let R be a Cohen-Macaulay local ring.
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(1) For an object M of CM(R), we denote by Supp M the set of prime ideals p of
R such that the localization Mp is not isomorphic to the zero module 0 in the
category CM(Rp). We call it the stable support of M .

(2) For a subcategory Y of CM(R), we denote by SuppY the union of Supp M where
M runs through all nonisomorphic objects in Y . We call it the stable support of
Y .

(3) For a subset Φ of Spec R, we denote by Supp−1 Φ the subcategory of CM(R)
consisting of all objects M ∈ CM(R) such that Supp M is contained in Φ.

The notion of a stable support is essentially the same thing as that of a nonfree locus.

Proposition 11. Let R be a Cohen-Macaulay local ring.

(1) Let M be a Cohen-Macaulay R-module. Then one has Supp M = V(M).
(2) Let X be a subcategory of CM(R). Then one has SuppX = V(X ).

(3) Let Y be a subcategory of CM(R). Then one has SuppY = V(Y).

(4) Let Φ be a subset of Spec R. Then one has Supp−1 Φ = V−1(Φ).

Here we recall the definitions of a hypersurface and an abstract hypersurface.

Definition 12. (1) A local ring R is called a hypersurface if there exist a regular local
ring S and an element f of S such that R is isomorphic to S/(f).

(2) A local ring R is called an abstract hypersurface if there exist a complete regular

local ring S and an element f of S such that the completion R̂ of R in the m-adic
topology is isomorphic to S/(f).

Now we can state our main result.

Theorem 13. (1) Let R be a local hypersurface. Then one has the following one-to-
one correspondences:

{nonempty thick subcategories of CM(R)}
Supp

y xSupp−1

{specialization-closed subsets of Spec R contained in Sing R}

V−1

y xV

{resolving subcategories of mod R contained in CM(R)}.
(2) Let R be a d-dimensional Gorenstein singular local ring with residue field k which is

a hypersurface on the punctured spectrum. Then one has the following one-to-one
correspondences:

{thick subcategories of CM(R) containing Ωdk}
Supp

y xSupp−1

{nonempty specialization-closed subsets of Spec R contained in Sing R}

V−1

y xV

{resolving subcategories of mod R contained in CM(R) containing Ωdk}.
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Remark 14. Very recently, after the work in this article was completed, Iyengar announced
in his lecture [32] that thick subcategories of the bounded derived category of finitely gen-
erated modules over a locally complete intersection which is essentially of finite type over a
field are classified in terms of certain subsets of the prime ideal spectrum of the Hochschild
cohomology ring. This provides a classification of thick subcategories of the stable cate-
gory of Cohen-Macaulay modules over such a ring, which is a different classification from
ours.

A singular local hypersurface and a Cohen-Macaulay singular local ring with an isolated
sigularity are trivial examples of a ring which satisfies the assumption of Theorem 13(2).
We make here some nontrivial examples.

Example 15. Let k be a field. The following rings R are Cohen-Macaulay singular local
rings which are hypersurfaces on the punctured spectrums.

(1) Let R = k[[x, y, z]]/(x2, yz). Then R is a 1-dimensional local complete intersection
which is neither a hypersurface nor with an isolated singularity. All the prime
ideals of R are p = (x, y), q = (x, z) and m = (x, y, z). It is easy to observe that
both of the local rings Rp and Rq are hypersurfaces.

(2) Let R = k[[x, y, z, w]]/(y2−xz, yz−xw, z2−yw, zw,w2). Then R is a 1-dimensional
Gorenstein local ring which is neither a complete intersection nor with an isolated
singularity. All the prime ideals are p = (y, z, w) and m = (x, y, z, w). We easily
see that Rp is a hypersurface.

(3) Let R = k[[x, y, z]]/(x2, xy, yz). Then R is a 1-dimensional Cohen-Macaulay local
ring which is neither Gorenstein nor with an isolated singularity. All the prime
ideals are p = (x, y), q = (x, z) and m = (x, y, z). We have that Rp is a hypersur-
face and that Rq is a field.

Applying Theorem 13(1), we observe that over a hypersurface R having an isolated
singularity there are only trivial resolving subcategories of mod R contained in CM(R)
and thick subcategories of CM(R).

Corollary 16. Let R be a hypersurface with an isolated singularity.

(1) All resolving subcategories of mod R contained in CM(R) are add R and CM(R).
(2) All thick subcategories of CM(R) are the empty subcategory, the zero subcategory,

and CM(R).

Here let us consider an example of a hypersurface which does not have an isolated
singularity, and an example of a Gorenstein local ring which is not a hypersurface but a
hypersurface on the punctured spectrum.

Example 17. (1) Let R = k[[x, y]]/(x2) be a one-dimensional hypersurface over a
field k. Then we have

CM(R) = add{R, (x), (x, yn) | n ≥ 1}
by [44, Example (6.5)] or [16, Proposition 4.1]. Set p = (x) and m = (x, y).
We have Sing R = Spec R = {p,m}, hence all specialization-closed subsets of
Spec R (contained in Sing R) are ∅, {m} and Sing R. We have V−1(∅) = add R
and V−1(Sing R) = CM(R). The subcategory V−1({m}) of CM(R) consists of
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all Cohen-Macaulay modules that are free on the punctured spectrum of R, so
it coincides with add{R, (x, yn) | n ≥ 1}. Thus, by Theorem 13(1), all resolving
subcategories of mod R contained in CM(R) are add R, add{R, (x, yn) | n ≥ 1}
and CM(R). All thick subcategories of CM(R) are the empty subcategory, the
zero subcategory, add{(x, yn) | n ≥ 1} and CM(R).

(2) Let R = k[[x, y, z]]/(x2, yz) be a one-dimensional complete intersection over a field
k. Then R is neither a hypersurface nor with an isolated singularity. All prime
ideals of R are p = (x, y), q = (x, z) and m = (x, y, z). It is easy to see that both
Rp and Rq are hypersurfaces. Note that all the nonempty specialization-closed
subsets of Spec R (contained in Sing R) are the following four sets:

V(p), V(q), V(p, q), V(p, q, m).

Theorem 13(2) says that there exist just four thick subcategories of CM(R) con-
taining Ωdk, and exist just four resolving subcategories of mod R contained in
CM(R) containing Ωdk.

Remark 18. Let R be a Gorenstein local ring. In the case where R has an isolated
singularity, a thick subcategory of CM(R) coincides with CM(R) whenever it contains
Ωdk. Example 17 especially says that this statement does not necessarily hold if one
removes the assumption that R has an isolated singularity. Indeed, with the notation of
Example 17(1), add{(x, yn) | n ≥ 1} is a thick subcategory of CM(R) containing Ωdk = m

which does not coincide with CM(R). Example 17(2) also gives three such subcategories.

Using Theorem 13(1), we can show the following proposition. As it says, the subcat-
egories of CM(R) and CM(R) corresponding to a closed subset of Spec R are relatively
“small.”

Proposition 19. Let R be a hypersurface. Then one has the following one-to-one corre-
spondences:{

thick subcategories of CM(R)
generated by one object

}
⊆−−−→

{
nonempty thick subcategories

of CM(R)

}
Supp

y xSupp−1 Supp

y xSupp−1{
closed subsets of Spec R

contained in Sing R

}
⊆−−−→

{
specialization-closed subsets of Spec R

contained in Sing R

}
V−1

y xV V−1

y xV{
resolving subcategories of mod R

generated by one object in CM(R)

}
⊆−−−→

{
resolving subcategories of mod R

contained in CM(R)

}
.

From now on, we make some applications of our Theorem 13. First, we have a vanishing
result of homological and cohomological δ-functors from the category of finitely generated
modules over a hypersurface.

Proposition 20. Let R be a hypersurface and M an R-module. Let A be an abelian
category.
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(1) Let T : mod R → A be a covariant or contravariant homological δ-functor with
Ti(R) = 0 for i À 0. If there exists an R-module M with pdR M = ∞ and
Ti(M) = 0 for i À 0, then Ti(k) = 0 for i À 0.

(2) Let T : mod R → A be a covariant or contravariant cohomological δ-functor with
T i(R) = 0 for i À 0. If there exists an R-module M with pdR M = ∞ and
T i(M) = 0 for i À 0, then T i(k) = 0 for i À 0.

Proof. (1) First of all, note that each Ti preserves direct sums. We easily see that for any
R-module N and any integers n ≥ 0 and i À 0 we have

Ti(Ω
nN) ∼=

{
Ti+n(N) if T is covariant,

Ti−n(N) if T is contravariant.

Consider the subcategory X of CM(R) consisting of all Cohen-Macaulay R-modules X
with Ti(X) = 0 for i À 0. Then it is easily observed that X is a thick subcategory of
CM(R) containing R. Since Ti(Ω

dM) is isomorphic to Ti+d(M) (respectively, Ti−d(M))
for i À 0 if T is covariant (respectively, contravariant), the nonfree Cohen-Macaulay
R-module ΩdM belongs to X . Hence the maximal ideal m belongs to V(ΩdM), which
is contained in V(X ), and we have V(Ωdk) ⊆ {m} ⊆ V(X ). Therefore Ωdk belongs to
V−1(V(X )), which coincides with X by Theorem 13(1). Thus we obtain Ti(Ω

dk) = 0 for
i À 0. Since Ti(Ω

dk) is isomorphic to Ti+d(k) (respectively, Ti−d(k)) for i À 0 if T is
covariant (respectively, contravariant), we have Ti(k) = 0 for i À 0, as desired.

(2) An analogous argument to the proof of (1) shows this assertion. ¤
As a corollary of Proposition 20, we obtain the following vanishing result of Tor and

Ext modules.

Corollary 21. Let R be an abstract hypersurface. Let M and N be R-modules.

(1) The following are equivalent:
(i) TorR

i (M,N) = 0 for i À 0;
(ii) Either pdR M < ∞ or pdR N < ∞.

(2) The following are equivalent:
(i) Exti

R(M,N) = 0 for i À 0;
(ii) Either pdR M < ∞ or idR N < ∞.

The first assertion of Corollary 21 gives another proof of a theorem of Huneke and
Wiegand [30, Theorem 1.9].

Corollary 22 (Huneke-Wiegand). Let R be an abstract hypersurface. Let M and N be
R-modules. If TorR

i (M,N) = TorR
i+1(M,N) = 0 for some i ≥ 0, then either M or N has

finite projective dimension.

Remark 23. Several generalizations of Corollaries 21(1) and 22 to complete intersections
have been obtained by Jorgensen [33, 34], Miller [37] and Avramov and Buchweitz [3].

The assertions of Corollary 21 do not necessarily hold if the ring R is not an abstract
hypersurface.

Example 24. Let k be a field. Consider the artinian complete intersection local
ring R = k[[x, y]]/(x2, y2). Then we can easily verify TorR

i (R/(x), R/(y)) = 0 and
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Exti
R(R/(x), R/(y)) = 0 for all i > 0. But both R/(x) and R/(y) have infinite projective

dimension, and infinite injective dimension by [13, Exercise 3.1.25].

Let H be a property of local rings. Let H-dimR be a numerical invariant for R-modules
satisfying the following conditions.

(1) H-dimR R < ∞.
(2) Let M be an R-module and N a direct summand of M . If H-dimR M < ∞, then

H-dimR N < ∞.
(3) Let 0 → L → M → N → 0 be an exact sequence of R-modules.

(i) If H-dimR L < ∞ and H-dimR M < ∞, then H-dimR N < ∞.
(ii) If H-dimR L < ∞ and H-dimR N < ∞, then H-dimR M < ∞.
(iii) If H-dimR M < ∞ and H-dimR N < ∞, then H-dimR L < ∞.

(4) The following are equivalent:
(i) R satisfies H;
(ii) H-dimR M < ∞ for any R-module M ;
(iii) H-dimR k < ∞.

The conditions (1) and (3) imply the following condition:

(5) Let M be an R-module. If pdR M < ∞, then H-dimR M < ∞.

Indeed, let M be an R-module with pdR M < ∞. Then there is an exact sequence

0 → Fn → Fn−1 → · · · → F1 → F0 → M → 0

of R-modules with each Fi free. The conditions (1) and (3)(ii) imply that H-dimR Fi < ∞
for all 0 ≤ i ≤ n. Decomposing the above exact sequences into short exact sequences and
applying the condition (3)(i), we have H-dimR M < ∞, as required.

We call such a numerical invariant a homological dimension. A lot of homological dimen-
sions are known. For example, projective dimension pdR, complete intersection dimension
CI-dimR (cf. [5]), Gorenstein dimension G-dimR (cf. [1, 17]) and Cohen-Macaulay dimen-
sion CM-dimR (cf. [25]) coincide with H-dimR where H is regular, complete intersection,
Gorenstein and Cohen-Macaulay, respectively. Several other examples of a homological
dimension can be found in [2]. A lot of studies of homological dimensions have been
done so far. For each homological dimension H-dimR, investigating R-modules M with
H-dimR M < ∞ but pdR M = ∞ is one of the most important problems in the studies of
homological dimensions. In this sense, the following proposition says that a hypersurface
does not admit a proper homological dimension.

Proposition 25. With the above notation, let R be a hypersurface not satisfying the
property H. Let M be an R-module. Then H-dimR M < ∞ if and only if pdR M < ∞.

Proof. The condition (5) says that pdR M < ∞ implies H-dimR M < ∞. Conversely,
assume H-dimR M < ∞. Let X be the subcategory of CM(R) consisting of all Cohen-
Macaulay R-modules X satisfying H-dimR X < ∞. It follows from the conditions (1),
(2) and (3) that X is a thick subcategory of CM(R) containing R. Theorem 13(1) yields
X = V−1(V(X )). Suppose that pdR M = ∞. Then ΩdM is a nonfree Cohen-Macaulay
R-module. We have an exact sequence

0 → ΩdM → Fd−1 → · · · → F0 → M → 0
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of R-modules such that Fi is free for 0 ≤ i ≤ d − 1. Decomposing this into short exact
sequences and using the conditions (1) and (3), we see that ΩdM belongs to X . Hence
the maximal ideal m of R is in V(X ), and we obtain V(Ωdk) ⊆ {m} ⊆ V(X ). Therefore
Ωdk belongs to V−1(V(X )) = X , namely, H-dimR(Ωdk) < ∞. There is an exact sequence

0 → Ωdk → Gd−1 → · · · → G1 → G0 → k → 0

of R-modules with each Gi free. Decomposing this into short exact sequences and using
the conditions (1) and (3), we get H-dimR k < ∞. Thus the condition (4) implies that R
satisfies the property H, which contradicts our assumption. Consequently, we must have
pdR M < ∞. ¤
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[12] K. Brüning, Thick subcategories of the derived category of a hereditary algebra, Homology, Ho-
motopy Appl. 9 (2007), no. 2, 165–176.

[13] W. Bruns; J. Herzog, Cohen-Macaulay rings, revised edition, Cambridge Studies in Advanced
Mathematics, 39, Cambridge University Press, Cambridge, 1998.

[14] A. B. Buan; H. Krause; Ø. Solberg, Support varieties: an ideal approach, Homology, Homotopy
Appl. 9 (2007), no. 1, 45–74.

[15] R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings,
Preprint (1986), http://hdl.handle.net/1807/16682.

[16] R.-O. Buchweitz; G.-M. Greuel; F.-O. Schreyer, Cohen-Macaulay modules on hypersurface
singularities II, Invent. Math. 88 (1987), no. 1, 165–182.

[17] L. W. Christensen, Gorenstein dimensions, Lecture Notes in Mathematics, 1747, Springer-Verlag,
Berlin, 2000.

[18] E. S. Devinatz; M. J. Hopkins; J. H. Smith, Nilpotence and stable homotopy theory, I, Ann. of
Math. (2) 128 (1988), no. 2, 207–241.

[19] W. Dwyer; J. P. C. Greenlees; S. Iyengar, Finiteness in derived categories of local rings,
Comment. Math. Helv. 81 (2006), no. 2, 383–432.

–77–



[20] E. M. Friedlander; J. Pevtsova, Π-supports for modules for finite group schemes, Duke Math.
J. 139 (2007), no. 2, 317–368.
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NONCOMMUTATIVE ALGEBRAIC GEOMETRY : A SURVEY OF
THE APPROACH VIA SHEAVES ON NONCOMMUTATIVE SPACES

FREDDY M. J. VAN OYSTAEYEN

0. Introduction

To me noncommutative algebraic geometry came from the consideration of noncommu-
tative spaces defined in terms of notions like : noncommutative valuations and pseudoval-
uations, primes in algebras, prime ideals of Noetherian rings or prime torsion theories
for rings or categories. The root of the theory was in the theory of the Brauer group of
a field via suitable subrings of central simple algebras, therefore at first rings satisfying
polynomial identities played a dominating role. For such a ring R the noncommuta-
tive space prompting itself is SpecR, the prime ideal spectrum with its Zariski topology;
in [93], a structure sheaf over SpecR for a noncommutative ring R had been first con-
structed. In the case of rings with polynomial identities this could be tied to arithmetical
pseudo-valuation theory and a corresponding divisor theory leading to a noncommutative
version of a Riemann-Roch theorem for central simple algebras over curves (see [130],
[137] which turned out to be an extension of some idea of E. Witt (see the book by M.
Deuring, Algebra), This combined in the concept of noncommutative geometry in the P.I.
case, the subject being first called that in the publication [137]. Also this theory con-
nected well with maximal orders and Azumaya algebras and it developed into a branch
related to the Brauer group of schemes and varieties. Now the localization theory was
well established for abelian categories, see P. Gabriel [47], while on the other hand a
result of Van Oystaeyen, Verschoren stated that BrProjC = Br(C,K+)-gr where C is
a commutative positively graded ring and (C,K+)-gr is the quotient category of finitely
generated graded C-modules for the torsion theory κ+ associated to the positive cone
C+ = C1⊕, . . . ,⊕Cn⊕, . . . of C. Deleting Br in the formula suggests that ProjC is “iden-
tified” with that quotient category. The J. P. Serre’s global section theorem does relate
the quasi-coherent sheaves over ProjC to that quotient category, in fact when Co = k,
a field, and C = C0[C1], then the quotient category is just finitely generated graded C-
modules modulo finite length modules. So assuming that a noncommutative version of
J.P. Serre’s result exists, the noncommutative geometry of ProjR should be approachable
via the homological algebraic theory of the category (R, κ+)-gr. It turned out that a
noncommutative versions of the global section theorem is available only in case one intro-
duces a noncommutative topology on the localizations spectrum allowing compositions
of localizations that are not again localizations. This leads to the definition of schematic
algebras and it was checked that a very large class of noncommutative rings are schematic,
inducing all interesting quantized algebras and other rings appearing in recent literature.

The paper is in a final form and no version of it will be submitted for publication elsewhere.
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Rings appearing in nature were given by generators and relations and as such they
inherited the filtration defined by the grading filtrations on the free algebra. The definition
of Zariskian filtration, introduced in [79] and the use of the Rees ring (blow-up ring)
then allowed the interplay between algebraic geometry and its projective version much
as in the commutative case. The filter-graded transfer of homological properties and
of the schematic condition provided for a fruitful technical framework to study many
interesting examples, e.g. generalized Weyl algebras, generalized gauge algebra containing
E. Witten’s gauge algebra for gauge theory of slU2, etc... Using Auslander’s regularity
condition it was possible to extend regularity from Azumaya algebras over regular center to
more general noncommutative rings, not necessarily finite over the center; the filter-graded
transfer for Auslander regularity provided many interesting examples of noncommutative
regular algebras (schemes). The study of regular algebras and their classification in low
dimension became a fruitful research direction, recently developing into the direction of
Calabi-Yau algebras (see [26]) etc...

Let us point out that a good version of geometric product may be found in the general
twisted product of algebras, cf. [83]; its good behaviour with respect to connections
provides a link with the work of A. Connes. The noncommutative geometry developed by
A. Connes after the 1980s was more based in operator theory and C∗-algebras, one could
call it noncommutative differential geometry. The space in this geometry remains virtual
and one imagines the noncommutative algebra as a ring of “functions” defined on the
virtual variety. There are several contact points between both versions of noncommutative
geometry, it remains to be seen whether the phrasing in terms of noncommutative spaces
in algebraic geometry is feasable and useful in the other case.
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1. From Pseudoplaces to Noncommutative Riemann Surfaces

In an arbitrary ring S a couple (P, S ′) where S ′ is a subring of S and P is a prime ideal
of S ′ is called a prime of S if xS ′y ⊂ P with x, y ∈ S yields that x of y is in P . The map
S ′ → S ′/P is a pseudoplace of S. A couple (P, S ′) dominates (P1, S1) if S ′ ⊃ S1 and
P∩S1 = P1, a dominating prime is one that is maximal with respect to domination. The
set Prim(S) of all primes of S has a topology with basis D(F ) = {P ∈ Prim(S), P∩F = ∅}
for F a finite subset of S. For example if K is a field and A a K- central simple algebra,
Ov a valuation ring of K then any maximal Ov-order Λ in A yields a dominating prime
(J(Λ), Λ) where J(Λ) is the Jacobson radical of Λ.

Consider a prime P.I.-ring S with quotient ring (Q(S), which is then a central simple
algebra. A fractional ideal I of S is a twosided S-submodule of Q(S) such that cI ⊂ S
for some nonzero c ∈ Z(S) (the centre of S). S is an arithmetical ring when fractional
ideals commute for the product in Q(S). Let F (S) be the set of fractional ideals of S.
Consider a totally ordered semigroup Γ, a pseudovaluation v on F (S) is a function
v : F (S) → Γ, satisfying :

i) v(IJ) ≥ v(I)v(J) for I, JvF (S)
ii) v(I + J) ≥ inf{v(I), v(J)} for I, J ∈ F (S)
iii) v(S) = 0 and v(o) = ∞
iv) If I ⊂ J then v(I) ≥ v(J) for I, J ∈ F (J)

If moreover we have : (v)v(IJ) = v(I) + v(J), we say v is an arithmetical pseudoval-
uation (a.p.v.).

Any a.p.v. on Q defines a prime (P,QP ) where QP is the idealizer of P in Q and
P = {q ∈ Q, v(SqS) ⊂ 0}. Conversely any prime (P,QP ) where S ⊂ QP defines an
a.p.v., v say, such that P = {q ∈ Q, v(SqS) ⊃ o}.

If the value semi-group of an a.v.p. is a group then the corresponding prime is dominat-
ing. Any prime (P,QP ) of a central simple algebra is said to be discrete if QP contains
an arithmetical ring S and satisfies the a.c.c. on ideals while P is the unique maximal
ideal of Q such that P = πQP for some invertible π in Q. In the discrete case Γ ∼= Z and
QP is itself arithmetical. In particular any maximal order in Q over a dicrete valuation
ring of K = Z(Q) is a discrete prime. A set of discrete primes inducing inequivalent
valuations on K is said to be divisorial if for q ∈ Q we have v(q) = 0 for almost all
a.p.v. associated to the discrete primes in the set, this condition has to be checked only
for q ∈ Z(Q)! The elements of a divisorial set Q are called prime divisors. A divisorial
set Q is associated to be chosen fixed : a divisor δ of Q associated to Q is a formal
product

∏
v∈Q vτv with τv ∈ Z and τv = 0 for almost all v ∈ Q, the exponent τv is called

the order τv = ordvδ.

Consider a subfield ko of an algebraically closed field k. In [137] we consider an affine
curve over ko as a ko-quasivariety Ω(R) for some prime affine P.I. algebra R over ko having
Krull dimension 1. By a result of L. Small such an algebra is a finite module over its
centre. If n = p.i.degR then M ∈ Ω(R)n correspond to m ∈ Ω(C), L = Z(R), such that
R ⊗k kC(m) = Mn(k). For ko 6= k it is still true that kR(M) = R ⊗ko ko(m) is a central
simple algebra and P ∈ Ωn(R) if and only if kR(P ) has degree n (dimension : n2) if and
only if P ∩ C is non split.
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An algebraic function field K in one variable over ko is an extension K of ko such that
ko is algebraically closed in K and K is separable of t.d. over ko.

A function algebra in one variable over ko is a central simple K-algebra A. For an
affine prime P.I. algebra over ko there is equivalence between Ω(R) (the space of maximal
ideals) being an affine ko-curve and Q(R) being a function algebra in one variable. The
complement of unramified points in Z(R) is the ramification divisor of Ω(C) for Q, these
correspond to the maximal ideals of C that are split in R.

Let Cko(R) be the set of all ko-valuation rings Ov of K (those are discrete). For every
Ov ∈ Cko(K) we choose and fix a maximal order Λv over Ov and write Cko(Q) for this
set. This choice can’be made such that almost all Λv contain a suitable Azumaya algebra
(obtained as ∩P∈Ωn(R)RP for some R ascending the curve). Write DQ for the group of
divisors generated by Cko(Q). The degree of a divisor δ ∈ DQ, δ = Σfvordvδ, where fv is
the absolute residue class degree u.e. fv = dimk0kv, kv the residue field of Ov. We say
that δ1|δ2 if for all v ∈ Q, ordvδ1 ≤ ordvδ2.

1.1 Lemma. If δ1|δ2 then :

dimko(Γ(δ1(S))/Γ(δ2(S)) = deg δ2 − deg δ1

where for any finite subset S of the algebra of valuation vectors VQ, Γ(δ|S) = {a ∈
R, v(a) ≥ ordvδ, all v ∈ S} (cf. [130], [137]).

In particular if S = VA then we define L(S) as Γ(δ|VA) and l(δ) = dimkoL(δ). Valuation
forms can now also be defined in the noncommutative case and by using the reduced
trace map for Q every valuation form is of the form w(Tr(a−)) for some a ∈ Q and fixed
valuation form w.

1.2 Theorem. Riemann-Roch for n.c. curves Let β ∈ DQ be arbitrary and δ
“canonical” (see Proposition XI.3.9. p. 376 of [137]), then :

degβ + l(β) = l(β−1δ−1) + 1 − gQ

where gQ is a constant, called the genus of Q.

The ring l = ∩{Λv, Λv ∈ Cko(Q)} is the ring of ko-constants it is algebraic over ko and
a central simple algebra finite dimensional over K0 (XI.2.14 of [137]).

1.3 Corollary.

i) `(δ−1) = n − 1 + gQ, n = dimko`.
ii) deg(δ−1) = 2 − 2yQ

iii) gQ = NgK
− N + 1 + 1

2
Σfv(rv − 1), where fv is the residual degree rv the

ramification index of v, N = dim[Q : K].

1.4 Theorem. Let k = ko and X = Ω(R) an affine k-curve with central curve Y =
Ω(Z(R)) then : gX = NgY − N + 1 (since k is algebraically closed Q = Q(R) = Mn(K)
by Tsen’s theorem.

1.5 Remark. If Q = Mr(∆) then gQ = r2g∆−r2 +1. The Brauer group of K (not trivial
if ko is not algebraically closed) yields invariants gQ for every [Q] ∈ BrK. What is the
relation between the commutative geometry of the central curve and these invariants ?
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1.A. Project : Noncommutative Invariants of Varieties

After [130], [137], Van den Bergh, Van Geel obtained a cohomological Riemann-Roch
result for higher dimensional noncommutative varieties. The foregoing question may be
generalized to this higher dimensional situation using the ingredients (invariants) stem-
ming from the Riemann Roch theorem.

In dimension more than two there are noncommutative invariants stemming from the
Brauer group of the function field that is now not trivial even in the case where ko is
algebraically closed. There is some work of M. Artin about maximal orders over surfaces
(see [9]) but a complete noncommutative version of the work of O. Zariski on surfaces
remains to be developed. In general the set of discrete primes of a central simple algebra
provides us with something like s noncommutative Riemann surface. The theory of a.p.v’s
works well if some arithmetical ring is given but it should be extended to more gener-
tal situations using rings in which ideals do not commute and noncommutative (totally
ordered) value groups.

1.B. Project : Valuations of Weyl Algebras, Enveloping Algebras etc..

The theory of valuations also extends to the non P.I. case; O. Schilling (cf. [117]) already
introduced noncommutative valuations on skewfields not necessarily finite dimensional
over the centre. However, the valuation theory for most quantized algebras nowadays
popular remains unexplored. In a paper with L. Willaert, I investigated valuations of the
Weyl skewfield and this led to the discovery of a subring of the Weyl skewfield having it
as a ring of fractions (therefore in some sense birational to the Weyl algebra K[X][ ∂

∂X
] ∼=

K < X, Y > /(Y X − XY − 1)) and being a kind of antipode for the Weyl algebra. This
ring appearing as the intersection of noncommutative valuation rings is a “duo ring” i.e.
each one sided ideal is two sided and localizations at prime ideals correspond to valuation
over rings. A divisor theory for the Weyl field remained to be worked out. Up to a
particiular application related to Sklyanin algebras, the noncommutative valuation theory
remains to be applied. For example, it is an unpublished consequence of some results in
the Ph. D. thesis of L. Hellström (Lund T. U., Sweden) that one may construct large
families of noncommutative valuations of the skewfield appearing as the ring of fractions
of the enveloping algebra of a finite dimensional Lie algebra. Further characterization of
these n.c. valuations and calculations similar to a divisor calculus should be undertaken
and these results should have meaning in the structure theory of Lie algebras or at least
in the noncommutative geometry of their enveloping algebras. In particular some rings
appearing as intersections of families of n.c. valuation rings could shed new light on the
algebraic structure ?

2. Schematic Algebras and Noncommutative Schemes

Algebraic geometry is built upon the correspondence between quotients of polynomial
rings and varieties embedded in affine (projective) spaces. In noncommutative algebra
the generic algebra i.e. the free algebra, is not too well behaved and the formation of
products (tensor products) is also somewhat problematic. Is it possible to fix a class of
algebras such that most operations from scheme theory may be performed whilst keeping

–84–



a good duality with noncommuative algebra constructions ? For a given noncommutative
algebra one may of course try to extend the algebraic techniques appearing in commutative
algebraic geometry to it without trying to associate a “geometric” space to it. This
works to some extent in several cases but it is perhaps not guaranteed that one is really
studying a noncommutative geometry, it is noncommutative algebra in disguise. I always
wanted some kind of topological space and (coherent) sheaves on it to correspond to the
module of some ring of functions via some noncommutative version of J.P. Serre’s global
section theorem. This led to the introduction of noncommutative topology and schematic
algebras.

2.1 Noncommutative Spaces and Localization

Perhaps a few historical remarks concerning the development of this subject. During my
stay at Cambridge University in 1972-73 I worked with D. Murdoch (Vancouver University
B. C.) on localization theory and we constructed the first structure sheaf for a noncommu-
tative ring yielding the ring as global sections, cf. [93]. For me this was connected to the
primes or pseudoprimes I introduced in my thesis and I combined the ideas into a theory
of prime spectra for noncommutative rings in [134] where I also started the projective
theory by constructing Proj for a noncommutative positively graded ring. This was also
related to my search for an answer to a question J. Murre (University of Leiden) asked me
concering a purely algebraic description of the Brauer group of a projective variety during
our stay at Cambridge. Since maximal orders were at the centre of all these problems I
started a seminar on this topic at the University of Antwerp (UIA) which attracted many
students and visitors. With J. Van Geel, E. Nauwelaerts and visitor H. Marubayashi and
later L. Willaert we continued in the direction of primes of noncommutative algebras;
with A. Verschoren and L. Le Bruyn in the direction of localization and noncommutative
schemes, with L. Le Bruyn, E. Jespers, P. Wauters in the direction of graded orders and
later with M. Van den Bergh in projective noncommutative geometry. The work with A.
Verschoren (resulting in the first book with the title “Noncommutative Geometry”, cf.
[137]) was noticed by M. Artin and after a stay of A. Verschoren at the M.I.T. there was
a growing group of people involved in the development, including M. Artin, W. Schelter
etc... Starting from regularity conditions from homological algebra, M. Van den Bergh
then cooperated with M. Artin, J. Tate (cf. [6],[7]) and later with T. Stafford, P. Smith
and many more, specially on low dimensional noncommutative varieties. On the other
hand the graded constructions in the constructions of proj created a cooperation with C.
Nǎstǎsescu on graded ring theory, cfr. [97], [95], [94]. Meanwhile it turned out that the
answer to the question of J. Murre fitted completely in the framework of graded localiza-
tion. After I introduced the graded Brauer group of a Z-graded ring, A. Verschoren and I
described the Brauer group of a projective variety algebraically as the Brauer group of the
category (in modern language) appearing as a quotient category of the finitely generated
graded modules modulo those of finite length i.e. the graded quotient category associated
to the graded localization at the positive cone of the positively graded coordinate ring.
This continued in work on the cohomology of graded rings with S. Caenepeel [32] and
extended to Brauer groups of other actions and conditions leading to the Brauer group of
a quantun group, cf. [33], [34], and later with Y. H. Zhang to a theory of Brauer groups
of braided categories, cf. [142], [143]. After the beginning of the interest in graded rings,
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filtrations also became interesting, particularly because of the use of the Rees (blow up)
ring; this makes for a transfer between graded and filtered ring theory allowing several nice
applications to for example rings of differential operators and (generalized) Weyl algebras
cfr. work with Li Huishi [79], [80], and later with V. Bavula [17] [18]. The connection
with representation theory was also explored at several places and developed mainly by
L. Le Bruyn and M. Van den Bergh e.g. in the geometry of path algebras for quivers
cf. [69],[68]. This shows how the original ideas concerning a kind of noncommutative
geometry has branched into many directions that have achieved nowadays a good level of
popularity.

So originally we considered a noncommutative variety or scheme as a structure sheaf
on the prime spectrum, that prime spectrum was either determined in terms of prime
ideals (Murdoch, Van Oystaeyen) or prime torsion theories (J. Golan, J. Raynand, F.
Van Oystaeyen cf. [47]). However in the noncommutative case, the construction was not
functorial (I remember to have proved, unpublished, that functionality forces commuta-
tivity) but it was possible to view Spec as a (localization) functor on the category of
modules and to relate a ring morphism to a natural transformation of the Spec functor.
This has convinced me that the construction of a (noncommutative) topology was more
essential than the choice of points, in fact one could work with a pointless topology and
sheaf theory over that. This gave rise to the construction of virtual topology and functor
geometry, a very abstract framework for categorical algebraic geometry, cf. [135].

A noncommutative ring R is said to be (affine) schematic if there exists a finite set
of nontrivial Ore sets S1, . . . , Sn such that for every choice of si ∈ Si, i = 1, . . . , n we
have that

∑n
i=1 Rsi = R or equivalently ∩iL(Si) = {R} where L(Si) is the Gabriel

filter of Si. Recall that a left Ore set S of R is a multiplicatively closed subset of
R, 0 6∈ S, 1 ∈ S, such that for given r ∈ R, s ∈ S there exists r′ ∈ R, s′ ∈ S such
that : s′r = r′s and moreover if rs = 0 then there is an s′′ ∈ S such that s′′r = 0.
The right version is defined symmetrically. For an Ore set S the ring of fractions S−1R
exists and in this case the left localization at S and the right localization coincide. For
an R-module M the S-torsion part of M is Ms = {m ∈ M, sm = 0 for some s ∈ S}
and S−1M = S−1R ⊗R M is the (left) localization of M at S. Clearly M/tSM is S-
torsion free i.e. tS(M/tSM) = 0 and we have the standard localization morphism in
jS : M → S−1M with kerjS = tSM and ImjS

∼= M/tSM . In case R is the free algebra
it only has trivial Ore sets i.e. contained in the ground field and hence already invested
in the ring. So free algebras, the generic algebras in the associative situation, are not
schematic. On the other hand all rings frequently encountered in noncommutative algebra
seem to be schematic. For example the ring of generic matrices, the Weyl algebras,
the coordinate ring of quantum 2 × 2-matrices Qq(M2(C)) is schematic (1.2.11 of [131]),
quantum Weyl algebras An(q) (1.2.14 of [131]), rings that are finite modules over their
centre, the Sklyanin algebra SK(a, b, c) (1.2.17 of [131]), E. Witten’s gauge algebras W (C),
(1.2.21 of [131]), quantum sl2 (1.2.23 of [131]). Let A be a K-algebra and positvely graded
such that A = K ⊕A2 ⊕ . . . we write A+ for A1 ⊕A2 ⊕ . . . and K+ for the torsion theory
with Gabriel filter L(K+) = {L left ideal of A,L ⊃ An

+ for some n ∈ N}. We say A is
schematic (projective) if there exists a finite set of homogeneous Ore sets, say I, such
that for every S ∈ I, S ∩ A+ 6= ∅ and such that for any si ∈ Si, i ∈ I, there exists
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an m ∈ N such that (A+)m ⊂
∑

i∈I Asi (or equivalently : ∩ L(Si) = L(K+) where
L(Si) = {L ⊂ A,L ⊃ Asi for some si ∈ Si}, or equivalently κ+ = Λi∈IL(Si) holds in
the lattice of torsion theories on A-gr, the category of graded A-modules). A schematic
positively graded K-algebra need not be affine schematic, we have a weaker notion weakly
affine schematic defined as (projective) schematic plus the fact that the Si ∈ I are such
that A = ∩i∈IS

−1
i A.

If we have a positively filtered K-algebra A with filtration ... ⊂ Fn−1A ⊂ FnA ⊂ . . . ⊂ A
then the associated graded algebra is G(A) = ⊕n∈NFnA|Fn−1

A = K ⊕ F1(A)|K ⊕ . . . and the Rees algebra (or the blow-up algebra of FA) is Ã ∼=∑
n Fn(A)T n ⊂ A[T ]. It is easy to see that G(A) = Ã|ÃT, A = Ã|(T − 1)Ã and T is a

central regular element homogeneous of degree 1 in Ã. In the positively filtered situation
(this is a discrete filtration) the filtration will be Zariskian in the sense of [79] exactly

when Ã is Noetherian which in this case is equivalent to G(A) being Noetherian.

2.1.1 Theorem. If FA is a positive Zariskian filtration on A such that F0A = K, then

if G(A) is schematic it follows that Ã is schematic too.

2.1.2 Corollary. If in the situation of the theorem G(A) is commutative then Ã is
schematic. It follows from this that rings of differential operators on varieties (non-
singular) and enveloping algebras of Lie algebras have schematic Rees rings.

When trying to introduce a scheme theory on ProjA = Y for some positively graded
noncommutative K-algebra A = K ⊕ A1 ⊕ A2 ⊕ . . . ..., a good idea could be to replace
an affine open, something like Y (f) in the commutative case, by a homogeneous Ore
set S of A and the ring of sections (in the commutative case (Af )o) by (S−1A)o. If A
is schematic then we have covered Y by “opens” corresponding to the Si, i ∈ I. For
commutative A if Y (fi) cover Y then Y (ffi) cover Y (f) and for modules of sections we
have Mf = lim

←−
i

{Mffi
, i} where Mf stand for the localization at the multiplicative set

{1, f, f 2, . . .}. The straightforward generalization of this property would require that the
canonical map :

(∗) QκS1 ∧ . . . ∧ κSd
(M) −→ lim

←−



QSi
(M)

&&MMMMMMMMMM

. . . QSi∨Sj
(M)

QSj
(M)

88qqqqqqqqqq


has to be an isomorphism for all M ∈ A-gr. Looking at just two Ore sets S and T , (*)
will be an isomorphism if and only if QS and QT commute, i.e. if and only if : κSQT =
QT κS and κT QS = QSκT . This compatibility does not always hold and the solution is
to introduce more “open sets” i.e. to define a suitable noncommutative Grothendieck
topology defined in terms of localization functors on a suitable category. For ProjA the
category on which the scheme structure is defined is A-gr localized at κT , i.e. (A, κ+)-gr
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or the finitely generated objects in this. Let us write O(A) for the set of homogeneous
left Ore sets S of A such that 1 ∈ S, 0 6∈ S and S ∩ A+ 6= ∅. The free monoid on O(A) is
denoted by D(A). If W = S1, . . . , Sn ∈ W(A) then we write w ∈ W meaning that w is
of the form s1 . . . sn with si ∈ Si, i = 1, . . . , n. The category W is defined by taking the
elements of W (A) for the objects while for words W = S1 . . . Sn,W

′ = T1 . . . Tm we define :
Hom(W ′,W ) = {W ′ → W} or ∅ depending on whether there exists a strictly increasing
map α : {1, . . . , n} → {1, . . . ,m} for which Si = Tα(i) or not. So Hom(W ′W ) is a singleton
if it is not empty. Put QW (M) = (QSn ◦. . .◦QS1)(M) = QSn(A)⊗A . . .⊗QS1(A)⊕AM . To
W we associate a filter of left ideals of A, L(W ) = {L,w ∈ L for some w ∈ W}. For w,w′ ∈
W there are a, b ∈ A such that : aw = bw′ = w′′ ∈ W , also for w ∈ W,a ∈ A there are
w′ ∈ W, b ∈ A such that w′a = bw. For M ∈ A-mod, κW (M) = {x ∈ M,wx = 0 for some
w ∈ W}; this κW is an exact preradical on A-mod and it is not necessarily idempotent.
L(W ) has a cofinal system of graded left ideals so it induces on exact preradical of A-gr.
If W ′ → W in W then L(W ) ⊂ L(W ′) and for every V ∈ W,W ′W → WV , as well
as V W ′ → V W , are morphisms in W . A global cover of Y = ProjA is just a finite
subset {Wi, i ∈ I} of objects of W such that

⋂
i∈I L(Wi) = L(κ+); the existence of at

least one global cover given by words consisting of one letter, is ensured by the schematic
constitution for A. For W ∈ W we let cov(W ) be {WiW → W, i ∈ W}. The category
W together with the sets cov(W ) form a noncommutative Grothendieck topology. Global
covers induce covers because of :

2.1.3 Lemma. If {Wi, i ∈ I} is a global cover then for all V ∈ W we have that L(V ) =⋂
i∈I L(WiV ).

A presheaf Q on W is now a contravariant functor from W to A-gr such that for
all w ∈ W the sections Q(W ) of Q over W form a graded QS(R)-module where S is
the last letter of W . For W = 1 we demand Q(1) to be a Qκ+(A)-module, we write
Γ∗(Q) = Q(1). It is straightforward to define sheaves by introducing separatedness and
glueing conditions.

For any graded A-module M we obtain a structure presheaf Og
M associating to W the

QW (M).

2.1.4 Theorem. For any graded A-module M , A being a schematic K-algebra, the struc-
ture presheaves Og

M and OM = (Og
M)o are in fact sheaves !

The affine-like properties follows from :

2.1.5 Proposition. Let A be a schematic K-algebra and suppose that A = K[A1]. For
every homogeneous Ore set S ∈ O(A) (thus S ∩ A+ 6= ∅) the ring S−1A = QS(A) is
strongly graded.

Recall that a R-graded ring is said to be strongly graded if RnR−n = R0 = R−nRn

for all n, or equivalently R1R−1 = R0 = R−1R1. For a strongly graded ring R − gr ∼= R0-
mod. On the basic opens QS(A) is a (strongly) graded ring and QS(M) is a graded
QS(A)-module ! This need not hold with respect to QW for general W ! To S ∈ O(A) we
associate a basic open Y (S) given by QS(A)-gr equivalent to QS(A)o-fgmod, (fg stands
for finitely generated) the latter may be viewed as “SpecQS(A)o”.
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2.1.6 Definition. A noncommutative projective scheme ProjA is defined by (A, κ+)fg-
gr with a non-commutative Grothendieck topology W with affines Y (Si) generating the
topology by intersections. We may view Y (S) as SpecA(S), where A(S) = (S−1A)o, defined
in a categorical way.

2.2 Noncommutative Topology and Categorical Theory

The correspondence between coherent sheaves and module categories over the ring of
global sections is in the commutative case given by J. P. Serre’s fundamental global
sections theorem. In the noncommutative case a sheaf F on W is quasi-coherent if
there is an affine cover {Ti, i ∈ J} for Y = ProjA together with graded QTi

(A)-modules
Mi such that for any morphism V → W in W we obtain a commutative diagram, the
vertical arrows representing isomorphisms in A-gr.

F(TiW ) //

²²

F(TiV )

²²
QW (Mi) // QV (Mi)

A quasi-coherent F is said to be coherent if all Mi, i ∈ J , one finitely generated QTi
(A)-

modules.

2.2.1 Theorem. If F is a quasi-coherent sheaf on W and Γ∗(F)(= F(1)) denotes its
global section A-module then F is sheaf isomorphic to the structure sheaf of Γ∗(F).

2.2.2 Theorem. (Noncommutative version of J. P. Serre’s global section theorem) For
a schematic K-algebra A, the category of quasi-coherent sheaves on W is equivalent
to (A, κ+)-gr. The category of coherent scheaves on W is equivalent to Proj(A), i.e.
(A, κ+)fg-gr.

These results are due to L. Willaert, F. Van Oystaeyen, see [141] or also Theorem 2.1.5.
in [131].

The Rees ring Ã of a Noetherian positively filtered K-algebra A is isomorphic to∑
FnAT n ⊂ A[T ] and inverting the central homogeneous element of degree 1, T , we

obtain ÃT = A[T, T−1]. We may view Y (T ) in Y = ProjÃ with sections A[T, T−1]fg-gr
= A-modfg ' SpecA.

A filtered K-algebra A as above such that G(A) is a schematic domain has an Ã which

is again a schematic domain; let π : Ã → Ã/T Ã ∼= G(A) be the canonical epimorphism.
The Ore sets S1, . . . , Sn defining the schematic property for G(A) yield Ti = Lπ−1(Si)

plus the special Ore set < T >= ST central in Ã and thus compatible to all the Ti, i =

1, . . . , n. The images T i in A via Ã → A = Ã/(T − 1), Ã are saturated Ore sets such that
σ(T i) = Si where σ : A → G(A) is the principal symbol map sending a ∈ FnA − Fn−1A
to a = a modFn−1A in G(A)n = FnA/Fn−1A. The Rees ring is the homogenization of A
with respect to FA, geometrically this means :

2.2.3 Proposition. For A as above, ProjG(A) is a closed subscheme of Y = ProjÃ and

ProjÃ = ProjG(A) ∪ SpecA (cf. Proposition 2.1.10 of [131]).
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So we may think of ProjG(A) as the part at ∞ for the projective closure of SpecA.
The part SpecA corresponds to the T -torsionfree class of objects from (A, κ+)fg-gr, the
part ProjG(R) corresponds to the T -torsion objects. Using microlocalizations of filtered
rings one may define quantum section, in [131] Section 2.3. many examples of quantum
sections are calculated and given by generators and relations, e.g. for the Weyl algebra
A1(C), enveloping algebras, colour Lie superalgebras, quantized Weyl algebras. We may
look at almost commutative geometry by studying filtered rings A as before, but with
G(A) an affine commutative algebra generated by homogeneous elements of degree one.
For such rings microlocalization functors do commute and sheaf theory becomes more
easy, Section 2.4. in [131].

The latter results provide us with more hints that a completely categorical version of
noncommutative geometrical may be possible in terms of arbitrary localizations (torsion
theories or quotient categories) and a formally defined P noncommutative topology. This
was the aim of [135]. We consider a poset Λ with 0, 1 and take operations ∧,∨ on Λ
satisfying :

A.1. For x, y ∈ Λ, x ∧ y ≤ y
A.2. For x ∈ Λ, x ∧ 1 = 1 ∧ x, 0∧ x = x ∧ 0 = 0, moreover x ∧ . . . ∧ x = 0 if and only if

x = 0
A.3. For x, y, z ∈ Λ, x ∧ y ∧ z = (x ∧ y) ∧ z = x ∧ (y ∧ z)
A.4. For a ≤ b in Λ and x, y ∈ Λ we obtain : x∧ a ≤ x∧ b, a∧ y ≤ b∧ y (it follows that

x ∧ y ≤ x too !)
A.5. For x, y ∈ Λ, y ≤ x ∨ y
A.6. For x ∈ Λ, 1 ∨ x = x ∨ 1 = 1, x ∨ 0 = x = 0 ∨ x, moreover x ∨ . . . ∨ x = 1 if and

only if x = 1
A.7. For x, y, z ∈ Λ, x ∨ (y ∨ z) = x ∨ y ∨ z = (x ∨ y) ∨ z.
A.8. For a ≤ b in Λ and x, y ∈ Λ we obtain : x ∨ a ≤ x ∨ b, a ∨ y ≤ b ∨ y (it follows

that x, y ≤ x ∨ y).
A.9. (weak modularity). Let i∧(Λ) be the ∧-idempotent elements i.e. the x ∈ Λ such

that x ∧ x = x, then for x ∈ i∧(Λ) and x ≤ z in Λ we have :

x ∨ (x ∧ z) ≤ (x ∨ x) ∧ z
x ∨ (z ∧ x) ≤ (z ∨ z) ∧ z

(if Λ satisfies A.1.. . . A.9., then i1(Λ) ⊂ i∨(Λ) where i∨(Λ) consists of z ∈ Λ such
that z ∨ z = z).

A.10. For any global cover 1 = λ1 ∨ . . .∨λn and any z ∈ Λ we have : (x∧λ1)∨ . . .∨ (x∧
λn) = x. The presheaves on Λ with values in a Grothendieck (abelian) category is
again a Grothentieck (abelian) category but this fails for the category of sheaves
(defined suitably), this category is not a topos. If x ∧ x = x for all x in Λ then Λ
is an abelian operation in Λ so the noncommutativity of the topology is exactly
characterized by the existence of nontrivial selfintersection.

The definition of a noncommutative Grothendieck topology may be given by “sym-
metrizaion” of the classical definition. A category C such that for each object U of C
a set Cov(U) is given, consisting of subsets of morphisms with common target U , is a
noncommutative Grothendieck topology if it satisfies the following properties :
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G.1. {U → U} ∈ Cov(U)
G.2. If {Ui → U, i ∈ I) ∈ Cov(U) and {Uij → Ui, j ∈ J} ∈ Cov(U) for all i ∈ I, then

{Uij → U, i ∈ I,∈ J} ∈ Cov(U).
G.3. For given U ′ → U and {Ui → U, i ∈ I} ∈ Cov(U) there is a cover {U ′ ×U Ui →

U ′, i ∈ I} satisfying : for V → Ui, V → U ′ and T → Ui, T → U ′ there exist
V ∧ T → U ′XUUi and T ∧ V → U ′ ×U Ui fitting in the commutative diagram :

U

Ui

88rrrrrrrrrrrrr
U ′

ffLLLLLLLLLLLLL

T

<<yyyyyyyyy

22ffffffffffffffffffffffffffffffffffff U ′ ×U Ui

eeLLLLLLLLLLL

99rrrrrrrrrrr
V

bbEEEEEEEEE

llXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

T ∧ V

bbFFFFFFFFF

88rrrrrrrrrr
V ∧ T

<<xxxxxxxxx

ffLLLLLLLLLL

Taking T = V in the foregoing, one obtains the obvious non-idempotent versions
of the pullback property reducing to G.3. in case T = T ∧ T .

2.2.4 Example. Any modular lattice satisfies A.1. . . . A.9. A distributive lattice
satisfies A.1.. . . A.10. The lattice of all torsion theories on R-mod for a associative ring
R, say R-tors, is a complete modular lattice; we shall look at the torsion theories by their
kernel functors. If the idempotent kernel functors σ, τ are given by their Gabriel filters
L(σ),L(τ) resp. then σ∧ τ and σ∨ τ are defined by L(σ∧ τ),L(σ∨ τ) resp. Define W (R)
is the set of filters obtained by evaluating expressions involving products and intersections
of filters corresponding to elements of R-tors. For w,w′ ∈ W (R) put w ≤ w′ if and only
if L(w′) ⊂ L(w). We define w ∨w′ by L(w)∩L(w′), hence ∨ is a commutative operation
here. Put L(ww′) equal to {L ∈ R,L ⊃ J ′J, J ′ ∈ L(w′), J ∈ L(w)}, this defines w ∧ w′

and the corresponding function QwQw′ .

2.2.5 Proposition. W (R) consists of exact preradicals and it is a noncommutative topol-
ogy with respect to the structures defined above.

A categorical version of noncommutative algebraic geometry can now be developed,
cf. [135]; there are many open questions in this theory, I refer to loc. cit. for many
exercises and research projects. The example obtained from Ore sets has some interesting
applications using Çech-cohomology on the noncommutative topology one may calculate a
moduli space for the left ideals of the Weyl algebra (work of L. Willaert, F. Van Oystaeyen,
recovering a result of L. Le Bruyn). This technique may very probably be applied to
several other quantized algebras where we can calculate enough Ore localizations.

3. Regularity and Filter-Graded Transfer

3.1 Graded Homological Algebra and Regularity

A ling is left regular if every finitely generated R-moduli has finite projective dimension.
For a graded ring R leftgr-regularity is defined in terms of objects of R-gr. For a left
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Noetherien R we have gldimR[X1, . . . , Xn] = n + gldimR and Auslander’s theorem learns
that for a Noetherian R, rgldim = lgldimR. For graded rings the graded versions of several
dimensions can be defined (and used) in the obvious way. For example if R is a graded
Noetherian ring, then the left and right (graded) global dimensions coincide.

3.1.1 Theorem. Let R be a Zariski filtered ring (in the positive case G(R), R, R̃ are
Noetherian rings) then :

(1) If G(R) is left gr-regular then R̃ is left regular
(2) We have :

grgldimR̃ ≤ 1 + grgldimG(R)

gldimR̃ ≤ 1 + gldimG(R)

and equalities hold in case G(R) has finite (gr-)global dimension.

It is now possible to obtain left regularity of a.o. the following rings : A[X, σ.δ] where δ
is a σ-derivation of the left regular A and σ automorphism of A, the crossed product A∗G
where A is left regular and G is poly-infinite cyclic, the crossed product A∗U(g) where A
is a left regular K-algebra and U(g) the K-enveloping algebra of a finite dimensional Lie
algebra g, . . . . For a survey on GKdim and a new dimension, the schematic dimension
Sdim we refer to [131] Section 3.1.

For a left Noetherian R and a finitely generated R-module M we have pdimRM = n <
∞ if and only if Extn+1

R (M,N) = 0 for all finitely generated R-modules N , consequently
Extn

R(M,R) 6= 0. For any R-module M the grade number jR(M) is the unique smallest

integer such that Ext
jR(M)
R (M,R) 6= 0; if such integer does not exist then we put jR(M) =

∞. We say that M satisfies the Auslander condition if for k ≥ 0 and any R-submodule
N of Extk

R(M,R) it follows that jR(N) ≥ k. If we have an exact sequence of R-modules :

0 → M ′ → M → M ′′ → 0

then if M ′, M ′′ satisfy the Auslander condition so does M . In case M satisfies the Aus-
lander condition then jR(M) = inf{jR(M ′), jR(M ′′)}. A left and right Noetherian ring R
of finite global dimension is Auslander regular if every finitely generated left or right
R-module satisfies the Auslander condition.

3.1.2 Theorem. (Li Huishi, F. Van Oystaeyen, cf. [131] Theorem 5) If R is a (left
and right) Zariski filtered ring such that G(R) is Auslander regular then R is Auslander
regular. The theorem yields Auslander regularity of the following rings : U(g) for a
finite dimensional Lie algebra g, the n-th Weyl algebra An(K), the ring D(V ) of C-linear
differential operators on irreducible smooth subvarieties V of affine n-space, the ring D1

of O-linear differential operators on the reular local ring On of convergent power series in
n-variables over C, the stalks EP of the sheaf of microlocal differential operators,. . .

3.1.3 Theorem. Let R be a Zariski filtered ring with G(R) Auslander regular then for

every filtered R-module M with good filtration we have jR(M) = jG(R)(G(M)) = j
eR(M̃)

where M̃ is the Rees module of M with respect to FM .

Concerning Auslander regularity of the Rees ring we obtain the following result :
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3.1.4 Theorem. If R is a filtered ring such that R̃ is Noetherian then Auslander regularity

of R and G(R) implies Auslander regularity of R̃. If moroever R is Zariski filtered and

G(R) is Auslander regular then R̃ is Auslander regular.

Applying the foregoing and some corollaries of it one arrives at the following examples
of Auslander regular rings constructed over an Auslander regular A : A[X, σ] σ an auto-
morphism of A, A[[X, σ]] the X-completion of A[X, σ], A[X, σ, δ] where δ is a σ-derivation
of A, the crossed product A ∗G where G is the poly-infinite cyclic group, A ∗U(g) where
A is a K-algebra and g a Lie algebra of finite K-dimension. In particular one finds that
the following rings are Auslander regular too : coordinate ring of quantum 2×2 matrices,
quantum Weyl algebras An(q), Witten gauge algebras W (C) and “quantum sl2” Wq(sl2).

Using injective resolutions and injective dimension instead of projective resolutions and
projective dimension one obtains a similar theory with respect to so-called Auslander-
Gorenstein regularity.

A lot of work has gone into the classification of low dimensional algebras e.g. M.
Artin, W. Schelter [5]. All 3-dimensional regular algebras have been classified by P. R.
Stephenson. Using Cohen-Macauley modules point and line modules over a 3-dimensional
quadratic algebra are classified by their homological properties. If R is graded and R =
R0[R1] then a (left) point module is a cyclic graded R-module M = ⊕n≥0Mn such that
M = RM0 and the Hilbert series HM(t) is (1− t)−1. A (left) line module is as before but
with HM(t) = (1 − t)−2.

The point modules, force the Hibert series to look as in the commutative case, maybe
too commutative in spirit to yield a good tool in noncommutative geometry. In fact there
exist higher dimensional regular algebras with finitely many, say 20, point modules, even
there are some without points. Some of these nice algebras, having very few point modules
are graded (generic) Clifford algebras.

Put C = C[Y1, . . . , Yn], α ∈ Mn(C) a symmetric matrix (αij) where each αij is a homo-
geneous linear polynomial. The Clifford algebra A(α) associated to α is defined as the
K-algebra with generators {X1, . . . , Xn, Y1, . . . , Yn} and defining relations :{

XiXj + XjXi = αij, for i, j = 1, . . . , n
[Yi, Xj] = 0 = [Yi, Yj] for i, j, = 1 . . . n

The gradation of A(α) is defined by putting Xi ∈ A(α)1 for i = 1, . . . , n and Yj ∈ A(α)2 for
j = 1, . . . , n. Expanding α = α1Y1 + . . . + αnYn where α1, . . . , αn are symmetric matrices
in Mn(K) we associate to α an n-dimensional linear system of quadrics Q1, . . . , Qn ⊂
Pn−1(K), Q = KQ1 + . . . + KQn where Qi = {z ∈ Pn−1, ztαz = 0}. A base point of Q is
any point in the intersection of Q1, . . . , Qn.

3.1.5 Proposition. (L. Le Bruyn, J. of Algebra 177, 1995)A Clifford algebra A(α) is a
quadratic Auslander regular algebra of dimension n if and only if Q has no base points.

For n = 4, M. Van den bergh proved that A(α) has exactly 20 point modules for generic
α, an explicit construction of such algebra was given by M. Van Cliff, K. Van Rompay,
L. Willaert.
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Several references provide a good starting point for reading about low dimensional
regular algebras. Results now exist up to dimension 4 as fas as I know. There are
interesting research problems here e.g. the relation between graded deformations and
so-called rolled up Rees rings (cf. [68]).

3.2 Examples

Several examples of well-known rings popular nowadays have been referred to with refer-
ence to the literature. As an appendix I include some of them with full definition.

4. Applications and other Directions

4.1 Cayley Smooth Orders

As a consequence of project 1.1. there always was a tendency to try to relate noncommu-
tative information to the commutative theory (via the centre of the algebras used). This is
the case too with the theory related to canonical resolutions of quotient singularities. For
a finite group G acting on the vector space Cd (freely away from the origin), the quotient
spqce Cd/G is an isolated singularity and resolutions Y →→ Cd|G were constructed using
the skew groupring C[X1, . . . , Xd]∗G which is an order having the fix-ring C[X1, . . . , Xd]

G

for its centre. In case d = 2 we are in the situation of Kleinian singularities this yields
minimal resolutions. In case d = 3 the skew groupring appears via the superpotential and
commuting matrices (in Physics) or via the McKay quiver. For abelian G the study leads
to “crepant” resolutions, for general G one obtains partial resolutions with remaining
manifold singularities. In [69] L. Le Bruyn obtains lists of types of singularities contained
in partial resolutions of the quotient variety Cd/G.

Smoothness of R-orders , R a commutative ring e.g. the coordinate ring of some
(quotient) variety, is defined in two ways :

(1) J. P. Serre smoothness i.e. the R-order A has finite global dimension plus Auslan-
der regularity and the Cohen-Macauley property

(2) Cayley-smooth of the corresponding G-variety is smooth. The Zariski and étale
covers are used.

Cayley-Hamilton algebras are introduced as algebras with a nice trace map (Definition
1.4. in [69]) and every R-order in a central simple algebra is a CH-algebra. C. Procesi
proved the reconstruction of orders and their centers from the G-equivariant geometry
of the quotient variety in case G = PGLn. The category of CH-algebras of degree n
with trace preserving morphisms constitutes a version of noncommutative geometry. A
Cayley smooth algebra A is an object of the foregoing category with a lifting property
i.e. if R is in the category and I is a nilpotent ideal of B such that B|I is in the category
and the natural B → B|I preserves the trace than any trace preserving ∅ : A → BI
lifts to A → B. These Cayley smooth algebras correspond to smooth PGLn-varieties.
The noncommutative structure sheaf of an R-order is then used as the noncommutative
geometry, as explained in the first part of this survey. Via the representation theory
(marked) quiver settings are associated to the orders which connect the Zariski and étale
structure to quivers (Theorem 7.9. of [69]. This leads to quiver-recognition of isolated
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singularities (Theorem 1.12. loc. cit) and noncommutative desingularizations. We refer
to loc. cit. for complete detail.

4.2 Hopf Algebras and twisted Algebras

The effect of a Hopf algebra structure on the noncommutative geometry remains largely
to be studied. Of course one may consider braided categories and localizations thereof
but this does not connect nicely to something like a noncommutative algebraic group.
For P.I. rings we know that the assumption of a group variety structure on its prime
spectrum makes it into a commutative variety, perhaps one should look for a theory of
noncommutative algebraic semigroups ? In the direction of valuation theory there has
been some work by Aly Farahat, F. Van Oystaeyen on Hopf valuations and related Hopf
orders. An interesting consequence of this theory (cf. [44]) is the appearance of new
maximal orders over specific number rings leading to very concrete examples.

On the other hand, a replacement of the geometric product may be found by using
the twisted product of algebras. A general theory of twisting algebras appeared in the
paper [83] by X. Lopez, F. Panaite, F. Van Oystaeyen. An example is given by A.
Connes quantum space that turns out to be a twisted product of quantum planes. The
twisted product can be iterated under some pentagonal diagramme condition, cf. [89].
The algebraic properties of general twisted products of low dimensional algebras (e.g.
with the quaternions H over the reals) should be further investigated. Since connections
behave well with respect to twisted products some further relations with A. Conne’s
noncommutative geometry remain to be investigated.

4.3 Simple Modules

The classification of simple (left) modules of a noncommutative algebra is a basic prob-
lem relating to representation theory on one side and to some kind of noncommutative
geometry on the other side. For algebras of quantized type (deformations) not many
cases have been completely solved. For example the case of the second Weyl algebras
remained open for a while till V. Bavula, F. Van Oystaeyen obtained a classification by
pairs of elements in twisted Laurent polynomials in [17]. They continued this for rings
of differential operators on surfaces that are products of curves in [18]. The techniques
make use of a gradation and graded module theory as well as G/K-dimension.

5. Appendix : Some Examples

5.1 Quantum 2 × 2-matrices

The C-algebra generated by a, b, c, d with defining relations :

ba = q−2ab, ca = q−2ac, bc = cb,
db = q−2bd, dc = q−2cd, ad − da = (q2 − g−2)bc

is called the algebra of quantum 2×2-matrices Mq(2). Then Mq(2) is a schematic algebra
and a Noetherian domain as it is an iterated Ore extension of a nice kind :

R1 = C[a]
R2 = C[a, b]/(ba − q−2ab)
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R3 = C[a, b, c]/(ba − q−2ab, ca − q−2ac, bc − cb)
R2 = R1[b, ρ1] where the automorphism ρ1 of R1 is determined by ρ1(a) = q−2a.
R3 = R2[c, ρ2] where ρ2(a) = q−2a, ρ2(b) = b
Finally Mq(2) = R3[d, ρ3, δ] where the automorphism ρ3 is determined by ρ3(a) =
a, ρ3(b) = q−2b, ρ3(c) = q−2c and the ρ3-derivation δ is given by δ(a) = (q2−q−2)bc
and δ(b) − δ(c) = 0.

5.2 Quantum Weyl Algebras

Look at (λij) ∈ Mn(k) with λij ∈ k∗, together with a row (q1, . . . , qn), qi ∈ k∗. The
quantum Weyl algebra An(q, Λ) in the R-algebra generated by x1, . . . , xn, y1, . . . , yn

with defining relations : (putting µij = λijqi), for i ⊂ j :

xixj = µijxjxi

xiyj = λjiyjxi

yjyi = λjiyiyj

xjyi = µijyixj

xjyj = qjyixj + 1 +
∑

i<j(qi − 1)yixi

We may again establish that An(q, Λ) is an iterated Ore extension by adding the variables
in the order : x1, y1, x2, y2, . . . , xn, yn. The associated graded rings with respect to the
standard filtrations may be calculated and one obtains the fact that An(q, Λ) is affine
schematic (and its Rees rings too) and also schematic.

5.3 The Sklyanin Algebra

The 3-dimensional algebra generated over k by three homogeneous elements of degree
1, X, Y, Z say, with defining relations :

aXY + bY X + cZ2 = 0
aY Z + bZY + cX2 = 0
aZX + bXZ + cY 2 = 0

(a, b, x ∈ k) is said to be the Sklyanin algebra Sk(a, b, c). This algebra is schematic.

5.4 Color Lie Superalgebras

Consider an abelian group Γ and ε : Γ× Γ → C∗ satisfying : ε(α, β) ε(β, α) = 1, ε(α, β +
γ) = ε(α, β) ε(α, γ), ε(α + β, γ) = ε(α, γ) ε(β, γ).

Let L = ⊕γ∈ΓLγ be a Γ-graded vector space together with a graded bilinear mapping
< . . . , . . . > satisfying for a ∈ Lα, b ∈ Lβ, c ∈ Lγ, α, β, γ ∈ Γ, < a, b >= −ε(α, β) < b, a >
0 = ε(γ, α) < a,< b, c >> +ε(α, β) < b,< c, a >> +ε(β, γ) < c,< a, b >>

Consider the tensor algebra T (L) and let J(L) be the ideal generated by all

a ⊗ b − ε(α, β)b ⊗ a− < a, b >

for a ∈ Lα, b ∈ Lβ. The algebra T (L)/J(L) is the universal enveloping algebra of L,
it is a Γ-graded ring and it has also a positive filtration by taking FnUK(L) to be the
image of T (K)n. ¿From the generalized Poincaré-Birkhoff-Witt theorem it follows that
the associated Z-graded algebra G(U(L)) is a Z × Γ-graded algebra isomorphic to T (L)
modulo the ideal generated by all a ⊗ b − ε(α, β)b ⊗ a, for a ∈ Lα, b ∈ Lβ. We have
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established (Theorem 1.2.19 in [131]) that G(U(L)) is schematic, U(L) is weakly affine
schematic and the Rees ring U(L)∼ is schematic.

5.5 Witten’s Gauge Algebras

Consider the C-algebra W generated by X,Y, Z subjected to the relations :

XY + αY X + βY = 0
Y Z + γZY + δX2 + εX = 0
ZX + ξXZ + ηZ = 0

Total degree on X,Y, Z defines the standard filtration on W . It is not hard to verify that
G(W ) is defined by the relations :

XY + αY X = 0
Y Z + γZY + δX2 = 0
ZX + ξXZ = 0

The algebra G(W ) is quadratic and represents a quantum space in the sense of Y. Manin.

The algebra W (C) is weakly affine schematic, G(W ) and the Rees ring W̃ are schematic.

5.6 Quantum sl2 (Woronowicz)

Let Wq(sl2) be the C-algebra generated by X,Y, Z subjected to the following defining
relations : √

qXZ −√
q−1ZX =

√
q + q−1Z√

q−1XY =
√

qY X = −
√

q + q−1Y

Y Z − ZY = (
√

q −√
q−1)X2 −

√
q + q−1X

(classically q = exp
(

2πi
k+2

)
and k is the Chern coupling constant.

In Wq(sl2) there is a central quadratic element, the deformed Casimir operator C =
√

q−1ZY +
√

qY Z + X2. Put A = 1 − C(
√

q −√
q−1)(

√
q + q−1) and write :

x = (X − (
√

q −√
q−1)

√
q + q−1

−1
c)

√
q + q−1A−1

y = Y (
√

q + q−1
−1

)
√

A
−1

z = Z(
√

q + q−1
−1

)
√

A
−1

which is posible up to inverting the central element A ! The relations rewrite in the
new arguments x, y, z as √

q xz −√
q−1zx = z√

q−1xy −√
q yx = y

q−1zy − qyz = x

One calculates from this the relations for the associated graded rings in the standard
filtration : √

q xz −√
q−1zx = 0√

q−1xy −√
q yx = 0

q−1zy − qyz = 0

The Rees ring Wq(sl2)
∼ can be written by homogenizing the relations between the x, y, z.
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Looking at the Witten algebra W defined by putting δ = 0 and making obvious choices
for the α, β, γ, . . . it is clear that the special Witten algebra then obtained contains A−1

as a normalizing element. This means that Wq(sl2) and the special Witten algebra are
birational in the noncommutative sense (up to inverting a central element in the first
and a normalizing element in the second they yield the same localization but up to the
quadratic extension obtained by adding

√
A. Again G(Wq(sl2)) and the Rees ring Wq(sl2)

∼

are schematic.

All foregoing examples are Auslander regular (3.2.17. of [131]).
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HOMOLOGICAL CONJECTURES AND RADICAL-FULL EXTENSIONS

CHANGCHANG XI

Abstract. This survey paper is based on my lectures giving at the ‘42nd Symposium
on Ring Theory and Representation Theory’ held at Osaka Kyoiku University, Japan,
10-12 October 2009. In this paper, we consider the finitistic dimension and the strong
no loop conjectures (and related other homological conjectures). We approach these
conjectures by the so-called radical-full extensions, and reduce the verification of these
conjectures to the following question: Suppose that B ⊆ A is a radical-full extension
such that the radical of B is a left ideal in A, and that one of these conjectures is true
for A, is it possible to prove that the same conjecture is true for B ? We shall provide
basic definitions and examples, and report current results on the two conjectures in this
direction.
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1. Introduction to two homological conjectures

In the modern representation theory of algebras, homological methods are used quite
often to describe algebraic invariants and properties of modules and algebras. These
homological aspects nowadays become interesting topics, and stimulate many deep inves-
tigations in different directions. It has turned out that many homological conjectures on
algebras and modules arise (see [1]). Among them are the finitistic dimension and the
strong no loop conjectures, on which we will concentrate in the present paper. In this
section, we shall give the precise statements of the conjectures, and mention other related
conjectures; In Section 2, we propose a new idea to understand these two conjectures,
namely we want to approach the conjectures by algebra extensions, in this way, one may
use external information of an algebra with simple representation theory to investigate ho-
mological conjectures for another algebra with usually complicated representation theory,
and show that this new method may be useful for attacking the conjectures. In Section

The detailed version of this paper has been submitted for publication elsewhere.
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3, we introduce a special extension of algebras, namely the radical-full extension, and
reduce the consideration of our homological conjectures to questions related to radical-
full extensions of algebras. We shall give two kinds of examples for obtaining radical-full
extensions. In Section 4 and Section 5, we summarize current results on the finitistic
dimension and the strong no loop conjectures under our setting, respectively.

Let us fix some notations. Let A be a finite-dimensional k-algebra over a field k.
By a module we mean a finitely generated left module, and by A-mod we denote the
category of all A-modules. For a module M ∈ A-mod, we denote by pd(AM) (respectively,
id(AM)) the projective (respectively, injective) dimension of M , and by gl.dim(A) the
global dimension of A. The finitistic dimension of A is defined as

fin.dim(A) = sup{pd(AM) | M ∈ A-mod, pd(AM) < ∞}
The following question on finitistic dimension was mentioned in a paper [2] of H.Bass in

1960, which now becomes a conjecture (see [1]), and will be called the finitistic dimension
conjecture in this paper.

Finitistic dimension conjecture: For a finite-dimensional k-algebra A, fin.dim(A)
is finite.

As is known, this conjecture is related to many other homological conjectures in homo-
logical algebra and in the representation theory of Artin algebras. Among them are the
following:

• Wakamatsu tilting conjecture: Suppose that T is a Wakamatsu tilting A-
module over a finite-dimensional algebra A, If pd(AT ) < ∞, then T is a tilting
A-module.

Recall that an A-module T is called a Wakamatsu tilting module if Extn
A(T, T ) =

0 for all n > 0, and there is an exact sequence

0 → AA → T0
f0−→ T1

f1−→ · · · −→ Tn
fn−→ Tn+1 → · · ·

in A-mod with Ti ∈ add(T ) such that Ext1
A(T, Im(fi)) = 0 for all i ≥ 0, where

add(T ) stands for the additive subcategory of A-mod generated by T , and Im(fi)
denotes the image of fi.

• Tilting complement conjecture: An almost tilting A-module has only finitely
many non-isomorphic indecomposable tiling complements.

Recall that an A-module T is called an almost tilting module if pd(AT ) < ∞,
Exti

A(T, T ) = 0 for all i > 0, and the number of non-isomorphic indecomposable
summands of T is equal to the number of non-isomorphic simple A-modules minus
1. Given an almost tilting module T , an indecomposable A-module M is called a
tilting complement to T if T ⊕ M is a tilting module.

• Nakayama Conjecture: If all injective A-modules Ij in a minimal injective
resolution 0 → AA → I0 → I1 → · · · of A are projective, then A is self-injective,
that is, AA is an injective A-module.

• General Nakayama conjecture: Every indecomposable injective A-module is
isomorphic to a direct summand of some Ij in a minimal injective resolution of A:
0 → AA → I0 → I1 → · · · .
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• Strong Nakayama conjecture: If M is a non-zero A-module, then there is an
n ≥ 0 such that Extn

A(M,A) 6= 0.

• Gorenstein symmetry conjecture: For an algebra A, if id(AA) < ∞, then
id(AA) < ∞.

The relationship between these conjectures is that if the finitistic dimension conjecture
is true for all Artin algebras, then each of these other conjectures is true for all Artin
algebras.

For further discussion on the links between these conjectures, we refer the reader to
[17].

Now, we turn to introducing the strong no loop conjecture. In the papers [10] and [6],
it was shown that if the global dimension of a finite-dimensional algebra A is finite, then
Ext1

A(S, S) = 0 for all simple A-modules S. Thus, in this case, the quiver of the algebra
A has no loops. In [6], a strong version of this result was proposed:

Strong no loop conjecture: If a simple A-module S satisfies Ext1
A(S, S) 6= 0, then

pd(AS) = ∞.

We notice that all conjectures listed here are still open.

2. Main ideas and questions

To understand the finitistic dimension and the strong no loop conjectures, we will
use certain extensions of algebras. Our idea is to employ external information of bigger
algebras A with relatively simple representation theory to investigate the conjectures for
subalgebras B with, usually, a relatively complicated representation theory. In this way,
we may work out a method for understanding these conjectures, which is applicable to
general finite-dimension algebras instead of a special class of algebras.

If A and B are algebras such that B is a subalgebra of A with the same identity, then
we say that A is an extension of B. In this case, we also say that B ⊆ A is an extension
of algebras.

We consider the following question:

Let B ⊆ A be an extension of algebras. Suppose that a conjecture is true for A, is it
possible to show that the same conjecture is true for B ?

Clearly, for an arbitrary extension, we could not say much about this question. So we
confront immediately with the following questions that we have to think about:

(a) What kind of extensions should we choose ?
(b) What kind of A should be considered ?
(c) Does such an idea make sense ?

To question (c): On the one hand, every finite-dimensional algebra can be embedded
into a full matrix algebra, this experience tells us that a bigger algebra may have a
relatively simple representation theory and homological property. On the other hand, for
any algebra A given by quiver and relations, if the quiver contains at least two arrows,
then A contains a subalgebra of infinite global dimension and of infinite representation
type. This means that in general subalgebras of an algebra may be more complicated than
the algebra itself. Also, the content of the finitistic dimension conjecture itself does not

–105–



tell us any information or indication about algebras and modules that we are concerning,
so some external information for looking at this “black box” may be needed. From these
points of view, our idea may make sense.

To question (b): Transparently, we should choose algebras for which the conjectures
hold true. Moreover, we would like to replace the bigger algebras A by some algebras that
are “equivalent” to A. For equivalences we here choose stable equivalences of Morita type
and derived equivalences since the finiteness of finitistic dimension is preserved under these
two kinds of equivalences (see [11]). In fact, it is easy to see that stable equivalences of
Morita type even preserve finitistic dimension. This leads us to considering the invariants
and constructions of these equivalences, a topic which we shall not touch in this paper.

To question (a): Of course, we cannot choose arbitrary extensions since they do not
provide us desired information. So we would like to choose certain idealized extensions
and the so-called radical-full extensions, both of which involve the Jacobson radicals of
algebras. This topic will be discussed in the next section.

3. Radical-full extensions

In literature, there are many types of extensions, for example, separable extension,
semisimple extension, H-separable extension, Frobenius extension, and so on. For our
purpose, we shall introduce an extension related to the Jacobson radicals of algebras (see
[12] and [13], for example).

An extension B ⊆ A of Artin algebras is called radical-idealized if rad(B) is a left ideal
in A, and radical-full if rad(BA) = rad(AA), that is, rad(A)= rad(B)A. A special case of
a radical-full extension is the radical-equal extension, that is, an extension B ⊆ A with
rad(B) = rad(A). Similarly, one can define a right version of these notions by using right
modules.

The following propositions show that our approach to the finitistic dimension and the
strong no loop conjectures by radical-full extensions may be useful.

Proposition 1. Let k be a perfect field. Then the following are equivalent:
(1) For all k-algebras A, fin.dim(A) < ∞.
(2) For any radical-idealized, radical-full extension C ⊆ B of k-algebras, if fin.dim(B) <

∞, then fin.dim(C) < ∞.
(3) For any radical-idealized extension C ⊆ B of k-algebras, if fin.dim(B) < ∞, then

fin.dim(C) < ∞.
(4) For any extension C ⊆ B of k-algebras such that rad(C) is an ideal in B, if

fin.dim(B) < ∞, then fin.dim(C) < ∞.

Similarly, for the strong no loop conjecture, we have the following equivalent conditions.
Note that when we say that the strong no loop conjecture is true for an algebra A, we
mean that for every simple A-module S with Ext1

A(S, S) 6= 0, we have pd(AS) = ∞.

Proposition 2. Let k be a perfect field. Then the following are equivalent:
(1) The strong no loop conjecture is true for all k-algebras A.
(2) For any radical-idealized, radical-full extension C ⊆ B of k-algebras, if the strong

no loop conjecture is true for B, then so is it for C.
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(3) For any radical-idealized extension C ⊆ B of k-algebras, if the strong no loop
conjecture is true for B, then so is it for C.

(4) For any radical-idealized extension C ⊆ B of k-algebras such that rad(C) is an ideal
in B, if the strong no loop conjecture is true for B, then so is it for C.

Thus, from the above two propositions, it is sufficient to investigate the question in
Section 2 for radical-idealized and radical-full extensions. An immediate question is how
to get such extensions.

Now let us give three constructions of radical-full extensions.
Suppose that A = kQ/I is a finite-dimensional algebra (over a field k) presented by a

quiver Q = (Q0, Q1) with relations, where I is an admissible ideal in the path algebra kQ
of Q. Note that the composition of two arrows α, β ∈ Q1 is written as αβ, where α comes
first and then β follows. As usual, for i ∈ Q0, we denote by ei the primitive idempotent
element in A corresponding to the vertex i.

(1) Gluing vertices
Suppose we are given a partition of the vertex set Q0, say Q0 = ∪m

j=1Ij. Let fj =
∑

i∈Ij
ei

for j = 1, 2, · · · ,m. Let B be the subalgebra of A generated by f1, f2, · · · , fm and rad(A).
Then we see that B ⊆ A is a radical-equal extension. The quiver of B is obtained from
that of A by gluing all vertices in Ij together for every Ij.

(2) Unifying arrows
Let {1, 2, · · · , n} be a subset of Q0, and let αi be n distinct arrows in Q1 such that

αi has the terminus i and that all αj have a common starting vertex. We define Q0 =
Q0 \ {1, 2, · · · , n}, Q1 = Q1 \ {αi | i = 1, 2, · · · , n}, e =

∑n
i=1 ei, and α =

∑n
i=1 αi. Let B

be the subalgebra of A generated by the idempotent elements e, ej, with j ∈ Q0 and the
arrows α, β, with β ∈ Q1. Note that if αn is a loop in A, then we have αnα = α2. It is
not hard to see that rad(B) is a left ideal in A and rad(A) = rad(B)S = rad(B)A, where
S is the maximal semisimple subalgebra of A generated by all ei with i ∈ Q0. Thus the
extension B ⊆ A is radical-idealized and radical-full. The quiver of B is obtained from
that of A by gluing all vertices in {1, 2, · · · , n} together into one vertex, and unifying all
arrows α1, α2, · · · , αn into one arrow.

(3) Triangulation
Suppose that we are given an algebra B with a decomposition B = S ⊕ rad(B), where

S is a maximal semisimple subalgebra of B. Let n be the nilpotency of rad(B). We define
B̄ = B/radn−1(B), and

A =

(
S 0

rad(B) B̄

)
.

Then there is an embedding of B into A such that this extension is radical-idealized and
radical-full, namely

B ⊆ A, b = s + r 7→
(

s 0
r b̄

)
,

where b̄ is the image of b ∈ B under the canonical surjection from B to B̄.

Now we display two concrete examples to illustrate the first two constructions.

–107–



Example 1. Let A and B be the following two algebras presented by quivers with
relations, respectively:

•
2

•3
•1 •4

³³³)
PPPi ³³³)

PPPiβ

δ

α

γ

αβ = γδ.

• •µ´¶³
µ´¶³?

6

¾
¾

β

δ

α

γ

αβ = γδ, αδ = γβ = α2 = γ2 = γα = αγ = 0.

A : B :

We can see that B is obtained by gluing the vertices 2, 3 and 4 in the quiver of A. Thus
the extension B ⊆ A is radical-equal. Note that A is representation-finite and has finite
global dimension, while the subalgebra B of A is representation-infinite and of infinite
global dimension.

If we unify the arrows α and γ in the quiver of A, then we get the following subalgebra
C of A:

• • •¾
¾ ¾

β

δ

α + γ
(α + γ)β = (α + γ)δ.C :

Thus C ⊆ A is a radical-full extension. Again, the subalgebra C of A is representation-
infinite. Clearly, the radical of C is properly contained in the radical of A.

Example 2. Let A and B be algebras presented by the following quivers with relations,
respectively:

•
2

•3
•16 ½¼
¾»

?
³³³)
PPPi

δ
β

γ
α

αβ − αγδ = α2 = 0.

•µ´¶³
µ´¶³?

6

ε

δ

δ2 = ε3 = δε = 0.

A : B :

Clearly, we see that B can be obtained from A by unifying the arrows α, β and γ into
one arrow ε = (α + β + γ). In this procedure, the arrow δ in the quiver of A becomes a
loop in the quiver of B.

Finally, we mention some facts on radical-full extensions from [12] and [15].
Assume that B ⊆ A is a radical-idealized extension of Artin algebras. Then
(1) for any B-module BX, the B-module Ωj

B(X) is an A-module for j ≥ 2, where Ωi
B

is the i-th syzygy operator of B.
(2) For each A-module Y , we have ΩA(A ⊗B Y ) ' ΩB(Y ) as A-modules.
(3) If the extension is radical-full, then add

(
B
(A/rad(A))

)
= add(B/rad(B)). Thus

every simple B-module is a direct summand of the restriction of a simple A-module to B.

A direct consequence of the facts (1) and (2) is the following proposition.

Proposition 3. Suppose that B ⊆ A is a radical-idealized extension of Artin algebras. If
pd(AB) < ∞, then fin.dim(B) ≤ fin.dim(A) + pd(AB) + 2.

Proof. Let n = pd(AB). Pick a B-module X, define Y := Ωn+2
B (X), which is an

A-module by (1), and consider a minimal projective resolution of BY :

0 → Pm → · · · → P1 → P0 → Y → 0.
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By tensoring this sequence, we get a sequence:

(∗) 0 → A ⊗B Pm → · · · → A ⊗B P1 → A ⊗B P0 → A ⊗B Y → 0.

Since TorB
j (AB, Y ) = TorB

j (AB, Ωn+2
B (X)) = TorB

n+2+j(AB, X) = 0 for j ≥ 1, we see that
this sequence is exact. Furthermore, we can show by the fact (2) that the sequence is also
a minimal projective resolution of the A-module A⊗B Y . Thus pd(BY ) = pd(AA⊗B Y ) ≤
fin.dim(A), and therefore we have the estimation in the proposition.

4. Recent results on the finitistic dimension conjecture

In this section we present some results along the idea of algebra extensions.
In [12], we showed the following result.

Theorem 4. Let C ⊆ B ⊆ A be three Artin algebras with the same identity such that
both C ⊆ B and B ⊆ A are radical-idealized. If A is representation-finite, then C has
finite finitistic dimension.

An open question is to extend this result to a chain containing four or more than four
algebras. A positive answer to this question for finite chain of algebras would solve the
finitistic dimension conjecture [12]. The next result involves global dimension [13].

Theorem 5. Let B ⊆ A be a radical-idealized, radical-full extension of Artin algebras. If
gl.dim(A) ≤ 4, then fin. dim(B) < ∞.

The case of gl.dim(A) ≥ 5 is open. It would be interesting to generalize this result.

When considering an extension, we may automatically think of the notion of relatively
projective modules, and the one of relative global dimension.

Recall that, given an extension B ⊆ A of algebras, an A-module X is called rela-
tively projective if the multiplication map µ : AA ⊗B X −→ AX of A-modules is a split-
epimorphism, that is, there is a homomorphism ϕ : X −→ A ⊗B X of A-modules such
that ϕµ is the identity map on X. In this case we also say that X is (A,B)-projective.
A short exact sequence of A-modules is called (A,B)-exact if it splits as an exact se-
quence of B-modules. The relative projective dimension of an A-module can be defined
by (A,B)-projective modules and exact (A,B)-sequences. We leave the precise formula-
tion of this notion to the reader. We denote by gl.dm(A,B) the relative global dimension
of the extension B ⊆ A. For more details on relative homological algebra one may look
at the paper [4].

It is known that gl.dim(A,B) = 0 if and only if the extension B ⊆ A is semisimple, that
is, every A-module is (A,B)-projective. Examples of semisimple extension are radical-
equal extensions.

Related to (A,B)-projective modules, we have the following results in [15].

Theorem 6. Let B ⊆ A be a radical-idealized extension of Artin algebra. Suppose the
category of all finitely generated (A, B)-projective A-modules is closed under taking A-
syzygies (for example, the extension is semisimple, or AB is projective). If fin.dim(A) <
∞, then fin.dim(B) < ∞.
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In [14] there is another approach to finitistic dimension conjecture, namely we use the
pair eAe ⊆ A with e2 = e ∈ A, and try to understand the finitistic dimension of eAe by
that of A. For details we refer to the paper [14]. Recently, Huard, Lanzilotta and Mendoza
use socle or top layers of a module to approach the finitistic dimension conjecture. Again,
I refer the details to the paper [5].

5. Recent results on the strong no loop conjecture

Concerning the strong no loop conjecture, not much is known. There are only a few
papers dealing with this conjecture in literature. It was verified for monomial algebras
[6], quasi-monomial algebras [3], special biserial algebras and quasi-stratified algebras
[8, 9], and algebras (over an algebraically closed field) of radical-cube-zero with two simple
modules [7].

Along the approach by extensions, we have the following result in [16].

Theorem 7. Let B ⊆ A be a radical-idealized, radical-full extension of Artin algebras. If
gl.dim(A) ≤ 2, then the strong no loop conjecture is true for B.

If we stress the condition on extension, we have the following result.

Theorem 8. Let B ⊆ A be a radical-idealized extension of Artin algebras with gl.dim(A,B) =
0. If the strong no loop conjecture is true for A, then it is true for B.

Thus, if we glue vertices from an algebra A given by quiver and relations, then we get
a new algebra B for which the strong no loop conjecture is true. Moreover, if we start
with algebra of global dimension at most 2 (for example, with an Auslander algebra), and
unify arrows, then the strong no loop conjecture is true for the new algebra.

Finally, we remark that gl.dim(A,B) ≤ 1 for any radical-idealized, radical-full extension
B ⊆ A of Artin algebras. Thus, if we could extend Theorem 6 and Theorem 8 to the
case of gl.dim(A,B) ≤ 1, we would prove both the finitistic dimension conjecture and the
strong no loop conjecture.

References

[1] M. Auslander, I. Reiten and S. Smalø, Represenattion theory of artin algebras, Cambridge Studies in
Advanced Mathematics 36, Cambridge University Press, 1995.

[2] H. Bass, Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer.
Math. Soc. 95 (1960), 466–488.

[3] L. Diracca and S. König, Cohomological reduction by split pairs, J. Pure Appl. Algebra 212(2008),
471-485.

[4] G. Hochschild, Relative homological algebra, Trans. Amer. Math. Soc. 82(1956), 246–269.
[5] F. Huand, M. Lanzilotta and O. Mendoza, Finitistic dimension through infinite projective dimension,

Bull. London Math. Soc. 41(2)(2009), 367-376
[6] K. Igusa, Notes on the no loop conjecture, J. Pure Appl. Algebra 69(1990), 161-176.
[7] B.T. Jensen, Strong no loop conjecture for algebras with two simples and radical cube zero, Colloquium

Math. 102(2008), 1-7.
[8] S.P. Liu and J.-P. Morin, The strong no loop conjecture for special biserial algebras, Proc. Amer.

Math. Soc. 132(12)(2004), 3513-3523.
[9] and Ch. Paquette, Some homological conjectures for quasi-stratified algebras, J. Algebra

301(1)(2006), 240-255.

–110–



[10] H. Lenzing, Nilpotente Elemente in Ringen von endlicher globaler Dimension, Math. Z. 108(1969),
313-324.

[11] S.Y. Pan and C.C. Xi, Finiteness of finitistic dimension is invariant under derived equivalences, J.
Algebra 322 (2009), 21-24.

[12] C.C. Xi, On the finitistic dimension conjecture, I. Related to representation-finite algebras, J. Pure
Appl. Algbera 193 (2004), 1287–305. Erratum to ”On the finitistic dimension conjecture, I. ”, J. Pure
Appl. Algbera 202(1-3) (2005), 325–328.

[13] , On the finitistic dimension conjecture, II. Related to finite global dimension, Adv. Math.
201 (2006), 116–142.

[14] , On the finitistic dimension conjecture, III. Related to the pair eAe ⊆ A, J. Algebra. 319
(2008), 3666–3688.

[15] C.C. Xi and D.M. Xu, The finitistic dimension conjecture and relatively projective modules, Preprint,
2007, available at: http://math.bnu.edu.cn/∼ccxi/.

[16] ,The strong no loop conjecture and radical-full extensions, Preprint, 2009.
[17] K. Yamagata, Frobenius Algebras, In: Handbook of Algebra. Vol.1 (1996), 841-887.

School of Mathematical Sciences
Laboratory of Mathematics and Complex Systems,
Beijing Normal University
Beijing 100875,CHINA

E-mail address: xicc@bnu.edu.cn

–111–



THE CLASSIFICATION OF TILTING MODULES
OVER HARADA ALGEBRAS

KOTA YAMAURA

Abstract. In the 1980s, Harada introduced a class of algebras now called Harada
algebras, which give a common generalization of quasi-Frobenius algebras and Nakayama
algebras. In this paper, we classify tilting modules over Harada algebras by giving a
bijection between tilting modules over Harada algebras and tilting modules over direct
products of upper triangular matrix algebras over K. A combinatorial description of
tilting modules over upper triangular matrix algebras over K is known. These facts
allow us to classify tilting modules over a given Harada algebra.

1. Introduction

Two classes of algebras have been studied for a long time. The first is Nakayama
algebras and the second is quasi-Frobenius algebras. In the 1980s, Harada introduced a
class of algebras now called Harada algebras, which give a common generalization of quasi-
Frobenius algebras and Nakayama algebras. Many authors have studied the structure of
Harada algebras (e.g. [7, 8, 17, 18, 19, 20, 21, 22]). Now let us recall that left Harada
algebras as defined from a structural point of view as follows.

Definition 1. Let R be a basic algebra and Pi(R) be a complete set of orthogonal
primitive idempotents of R. We call R a left Harada algebra if Pi(R) can be arranged
such that Pi(R) = {eij}m

i=1,
ni
j=1 where

(a) ei1R is an injective R-module for any i = 1, · · · ,m,
(b) eijR ' ei,j−1J for any i = 1, · · · , m, j = 2, · · · , ni.

Here J is the Jacobson radical of R.
Then we put

Pij := ei1J
j−1 ' eijR (1 ≤ i ≤ m, 1 ≤ j ≤ ni)(1.1)

for simplicity. By the above conditions (1) and (2), we have a chain

Pi1 ⊃ Pi2 ⊃ · · · ⊃ Pini

of indecomposable projective R-modules.

It follows from definition that left Harada algebras satisfy the property QF-3 which
is the condition that the injective hull of the algebra is projective. This property is
called 1-Gorenstein by Auslander (and dominant dimension at least one by Tachikawa)
[5, 12, 14, 15, 24], and often plays an important role in the representation theory. Left
Harada algebras form a class of 1-Gorenstein algebras, and their indecomposable projec-
tive modules have ”nice” structure.

The detailed version of this paper will be submitted for publication elsewhere.
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In this paper, we classify tilting modules over left Harada algebras. Tilting modules
provide a powerful tool in the representation theory of algebras and are due to [4, 9, 10].

Definition 2. Let R be an algebra. An R-module T is called a partial tilting module if
it satisfies the following conditions.

(1) proj.dimT ≤ 1.
(2) Ext1

R(T, T ) = 0.

A partial tilting R-module T is called a tilting module if it satisfies the following condition.

(3) There exists an exact sequence

0 −→ RR −→ T0 −→ T1 −→ 0

where T0, T1 ∈ addT .

We can see from the above definition that tilting modules are a generalization of pro-
generators. Morita theory shows that any progenerator P over an algebra R induces a
categorical equivalence between modR and mod(EndR(P )). This result is generalized by
Brenner-Butler. It says that any tilting module T over an algebra R induces two categor-
ical equivalences between certain full subcategories of modR and of mod(EndR(T )). As
a consequence, R and EndR(T ) share a lot of homological properties (e.g. finiteness of
global dimension). By this reason, tilting modules are important for the study of algebras
and finding a classification of tilting modules over a given algebra is an important problem
in representation theory.

Now we give notion which gives an essential class of tilting modules.

Definition 3. Let T be a module over an algebra R and T ' ⊕n
i=1Ti an indecomposable

decomposition of T . Then we call T basic if Ti and Tj are not isomorphic to each other
for any i 6= j.

Thanks to Morita theory, it is enough to consider basic tilting modules. We denote by
tilt(R) the set of isomorphism classes of basic tilting modules over an algebra R.

The aim of this paper is to give a classification of tilting modules over a left Harada
algebra. We present our main theorem which return the classification of tilting modueles
over left Harada algebras to that of tilting modules over upper triangular matrix algebras
over K. We dente by Tn(K) an n × n upper triangular matrix algebra over K.

Theorem 4. Let R be a left Harada algebra as in Definition 1. Then there is a bijection

tilt(R) −→ tilt(Tn1(K)) × tilt(Tn2(K)) × · · · × tilt(Tnm(K)).

We will construct the above bijection in Section 2, and give outline of the proof in
Section 3.

In Section 4, we give a description of tilting Tn(K)-modules by using non-crossing
partitions of regular polygons. Then we can completely classify tilting modules over a
given left Harada algebra.

In Section 5, we show an example of the classification of tilting modules over left Harada
algebras.

Throughout this paper, an algebra means a finite dimensional associative algebra over
an algebraically closed field K. We always deal with finitely generated right modules over
algebras. We denote by J the Jacobson radical of an algebra R.
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2. Main results

In this section, let R be a left Harada algebra as in Definition 1. We use the notation
(1.1). We consider a factor algebra R = R/I of R which is isomorphic to direct product
of upper triangular matrix algebras over K. R contains important information of R
which is seen in Lemma 10 and Proposition 11. After introducing R, we define a functor
F : modR −→ modR which induces the bijection of Theorem 4, and give the precise
statement of Thorem 4.

We start by giving the ideal I of R. We put

eijR ⊃ Iij := eijJ
ni−j+1 (1 ≤ i ≤ m, 1 ≤ j ≤ ni),

R ⊃ I :=
m⊕

i=1

ni⊕
j=1

Iij.

Obviously I is a right ideal of R. But it can be seen that I is also a left ideal of R. Thus
we have the following lemma.

Lemma 5. I is an ideal of R.

By Lemma 5, we can consider a factor algebra

R := R/I.

We show that R is isomorphic to direct product of upper triangular matrix algebras
over K. To show this, we describe all indecomposable projective R-modules as factor
modules of indecomposable projective R-modules. Since I is contained in J ,

{eij := eij + I | 1 ≤ i ≤ m, 1 ≤ j ≤ ni}

is a complete set of orthogonal primitive idempotents of R. Thus

{eijR | 1 ≤ i ≤ m, 1 ≤ j ≤ ni}

is a complete set of indecomposable projective R-modules. Obviously we have

eijR ' eijR/eini
J ' Pij/(Pini

J).

By the structure of R in Definition 1, indecomposable projective R-modules have the
following unique composition series.

P11/(P1n1J) ⊃ P12/(P1n1J) ⊃ · · · · · · ⊃ P1n1/(Pini
J) ⊃ 0

P21/(P2n2J) ⊃ P22/(P2n2J) ⊃ · · · · · · ⊃ P2n2/(P2n2J) ⊃ 0
...

Pm1/(PmnmJ) ⊃ Pm2/(PmnmJ) ⊃ · · · · · · ⊃ Pmnm/(PmnmJ) ⊃ 0

We note that composition factors of the above composition series are not isomorphic to
each other.

We put

ei := ei1 + ei2 + · · · + eini

for any 1 ≤ i ≤ m. Then by the above argument, we have the following result.

Proposition 6. We have the following algebra isomorphisms.
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(1) eiR ej ' HomR(ejR, eiR) '

{
Tni

(K) (i = j),

0 (i 6= j).

(2) R ' Tn1(K) × Tn2(K) × · · · × Tnm(K).

Next we consider a functor

F := −⊗R R : modR −→ modR.

This functor plays a key role for our main theorem.
Now we state a theorem which gives a bijection between tilt(R) and tilt(R) by using

the functor F .

Theorem 7. We have a bijection

F : tilt(R) 3 T 7−→ F (T ) ∈ tilt(R).

As a consequence of Theorem 7, we have the following result immediately.

Corollary 8. We have a bijection

tilt(R) 3 T 7−→ (F (T )e1, · · · , F (T )em) ∈ tilt(Re1) × · · · × tilt(Rem).

Hence by Proposition 6, we have Theorem 4.

3. Proof of Theorem 7

In this section, we keep the notations from the previous section. We show outline of
the proof of Theorem 7.

First we give a more stronger result than our main theorem. Namely we classify inde-
composable R-modules whose projective dimension is equal to one. Obviously projective
dimension of Pik/Pil is equal to one for any 1 ≤ i ≤ m, 1 ≤ k < l ≤ ni. The following
theorem shows that the converse holds.

Theorem 9. A complete set of isomorphism classes of indecomposable R-modules whose
projective dimension is equal to one is given as follows.

{Pik/Pil | 1 ≤ i ≤ m, 1 ≤ k < l ≤ ni}.

Next we consider the restriction on F to full subcategories P or Pi of modR which are
defined by

P := {M ∈ modR | proj.dimM ≤ 1}
and

Pi := add{Pij, Pik/Pil | 1 ≤ j ≤ ni, 1 ≤ k < l ≤ ni}
for any 1 ≤ i ≤ m. By Theorem 9, we have

P = add(P1 ∪ P2 ∪ · · · ∪ Pm).

The restriction on F to P has two important properties. First property is the following
lemma which is proved by easy calculations.

Lemma 10. The following hold.

(1) The restriction on F to P induces a bijection from isomorphism classes of P to
that of modR.
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(2) The restriction on F to Pi induces a bijection from isomorphism classes of Pi to
that of mod(Rei).

We remark that the restriction on F to P is not faithful in general, in particular, it is
not an equivalence.

Second property is that F preserves vanishing property of first extension group on P .

Proposition 11. For any M , N ∈ P, Ext1
R(M,N) = 0 if and only if Ext1

R
(F (M), F (N)) =

0.

Finally by using the following well-known charactarization of tilting module, we can
prove Theorem 7.

Proposition 12. [3] Let R be a general algebra. Let T be a partial tilting module. Then
the following are equivalent.

(1) T is a tilting module.
(2) The number of pairwise nonisomorphic indecomposable direct summands of T is

equal to that of pairwise nonisomorphic simple R-modules.

Now we prove Theorem 7. Let T be a basic tilting R-module. It is enough to show
that F (T ) is a basic tilting R-module. First by proj.dimT ≤ 1, we have T ∈ P . Next by
Ext1

R(T, T ) = 0 and Proposition 11, we have Ext1
R
(F (T ), F (T )) = 0. Therefore F (T ) is

a basic partial tilting R-module. Finally by Lemma 10 and Proposition 12, we can see
that the number of pairwise nonisomorphic indecomposable direct summands of F (T ) is
equal to that of pairwise nonisomorphic simple R-modules. Consequently by Proposition
12, F (T ) is a basic tilting R-module. ¤

4. Combinatorial description of tilting Tn(K)-modules

In this section, we show a classification of basic tilting Tn(K)-modules by constructing a
bijection between tilt(Tn(K)) and the set of non-crossing partitions of the regular (n+2)-
polygon. We remark that our classification should be well-known for experts [2, 11, 16, 23].

First we introduce coordinates in the AR-quiver of Tn(K) as follows.

(1,3)

(1,4)

(2,4)

(1,n+1)

(1,n+2)

(2,n+2)

(2,n+1)

(n−1,n+2)

(n−1,n+1) (n,n+2)

??ÄÄÄÄÄÄ ÂÂ?
??

??
?

??ÄÄÄÄÄÄ

ÂÂ?
??

??
?

ÂÂ?
??

??
?

??ÄÄÄÄÄÄ

??ÄÄÄÄÄÄ ÂÂ?
??

??
?

We remark that the vertex (i, j) corresponds the Tn(K)-module

Mij =

j−2
ˇ

1
ˇ

( 0 ··· 0 K ··· K ) /

i
ˇ

1
ˇ

( 0 ··· 0 K ···K )=

j−2
ˇ

i
ˇ

1
ˇ

( 0 ··· 0 K ··· K 0 ··· 0 ) .
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Next we consider a regular (n+2)-polygon Rn+2 whose vertices are numbered as follows.

1
2n+2

i−1
i

i+1

UUUUUiiii

iiiii
UUUUU

We denote by D(Rn+2) the set of all diagonals of Rn+2 except edges of Rn+2. We
call a subset S of D(Rn+2) a non-crossing partition of Rn+2 if S satisfies the following
conditions.

(1) Any two distinct diagonals in S do not cross except at their endpoints.
(2) Rn+2 is divided into triangles by diagonals in S.

We denote by Pn+2 the set of an non-crossing partitions of Rn+2.
Now we construct the correspondence Φ from Pn+2 to tilt(Tn(K)). We take S ∈ Pn+2.

We remark that non-crossing partition of Rn+2 consists of n− 1 diagonals. We denote by
(i, j) the diagonal between i and j for i < j and put

S = {(i1, j1), (i2, j2), · · · , (in−1, jn−1)}.

Then we define

Φ(S) := M1,n+2 ⊕

(
n−1⊕
k=1

Mik,jk

)
.

It is shown that this is a basic tilting Tn(K)-module.

Then the following hold.

Theorem 13. The above correspondence Φ is a bijection.

Theorem 13 gives a constructive bijection.

Example 14. We consider n = 3 case. We classify basic tilting T3(K)-modules by using
Theorem 13. The partitions of the regular pentagon into triangles are given as follows.

(1) 1

OOOOOOOOOOOOOO

²²
²²
²²
²²
²²
²²
²²

//
//

//
//

//
//

//

5

oooooooooooooo
2

¡¡
¡¡

¡¡
¡

4

>>>>>>>
3

(2) 1

OOOOOOOOOOOOOO

5

oooooooooooooo
2

¡¡
¡¡

¡¡
¡

jjjjjjjjjjjjjjjjjjjj

4

>>>>>>>
3

–117–



(3) 1

OOOOOOOOOOOOOO

5

oooooooooooooo
2

¡¡
¡¡

¡¡
¡

4

>>>>>>>
3

//////////////

TTTTTTTTTTTTTTTTTTTT

(4) 1

OOOOOOOOOOOOOO

5

oooooooooooooo
2

¡¡
¡¡

¡¡
¡

4

>>>>>>>

²²²²²²²²²²²²²²

jjjjjjjjjjjjjjjjjjjj
3

(5) 1

OOOOOOOOOOOOOO

5

oooooooooooooo

TTTTTTTTTTTTTTTTTTTT 2

¡¡
¡¡

¡¡
¡

4

>>>>>>>
3

Therefore the number of basic tilting T3(K)-modules is equal to 5 and all of basic tilting
T3(K)-modules are given as follows.

(1) ( K K K ) ⊕ ( 0 K K ) ⊕ ( 0 0 K ),
(2) ( K K K ) ⊕ ( K K 0 ) ⊕ ( 0 K 0 ),
(3) ( K K K ) ⊕ ( K 0 0 ) ⊕ ( 0 0 K ),
(4) ( K K K ) ⊕ ( 0 K K ) ⊕ ( 0 K 0 ),
(5) ( K K K ) ⊕ ( K K 0 ) ⊕ ( K 0 0 ).

5. Example

In this section, we show an example of the classifications of tilting modules over Harada
algebras.

Example 15. Let R be a basic QF-algebra whose complete set of orthogonal primitive
idempotents is given by {e, f}. Then we can represent R as the following matrix form.

R '
(

eRe eRf
fRe fRf

)
=:

(
Q A
B W

)
.

Now we consider the block extension (c.f. [8, 22])

R(n1, n2) :=



Q · · · Q A · · · A
. . .

...
...

...
J(Q) Q A · · · A

B · · · B W · · · W
...

...
. . .

...
B · · · B J(W ) W


for n1, n2 ∈ N of R which is a subalgebra of EndR((eR)n1 ⊕ (fR)n2). We can show that

(a) the first and (n1 + 1)-th rows are injective modules,
(b) the i-th row is the Jacobson radical of the (i − 1)-th row for 2 ≤ i ≤ n and

n + 2 ≤ i ≤ n + m.
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In particular R(n1, n2) is a left Harada algebra with m = 2 in Definition 1.
We classify basic tilting R(n1, n2)-modules. By easy calculation, we can see that the

ideal I which is defined in Section 2 of R(n1, n2) is given by

I =



J(Q) · · · J(Q) A · · · A
...

...
...

...
J(Q) · · · J(Q) A · · · A

B · · · B J(W ) · · · J(W )
...

...
...

...
B · · · B J(W ) · · · J(W )


.

Hence we have

R = R/I =



Q/J(Q) · · · Q/J(Q) 0 · · · 0
. . .

...
...

...
0 Q/J(Q) 0 · · · 0
0 · · · 0 W/J(W ) · · · W/J(W )
...

...
. . .

...
0 · · · 0 0 W/J(W )


' Tn1(K)×Tn2(K).

By Theorem 7, The functor

F = −⊗ R : modR −→ modR

induces a bijection

tilt(R(n1, n2)) −→ tilt(Tn1(K)) × tilt(Tn2(K)).

We can obtain all basic tilting R(n1, n2)-modules from the above bijection and Theorem
13.
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HOMOLOGICAL APPROACH TO THE FACE RING
OF A SIMPLICIAL POSET

KOHJI YANAGAWA*

Abstract. A finite poset P is called simplicial, if it has the smallest element 0̂, and
every interval [0̂, x] is a boolean algebra. The face poset of a simplicial complex is a
typical example. Generalizing the Stanley-Reisner ring of a simplicial complex, Stanley
assigned the graded ring AP to P . This ring has been studied from both combinatorial
and topological perspective. In this paper, we will give a concise description of a dualizing
complex of AP and some related results.

1. Introduction

All posets (partially ordered sets) in this paper will be assumed to be finite. By the
order given by inclusion, the power set of a finite set can be seen as a poset, and it is
called a boolean algebra. We say a poset P is simplicial, if it admits the smallest element
0̂, and the interval [0̂, x] := { y ∈ P | y ≤ x } is isomorphic to a boolean algebra for all
x ∈ P . For the simplicity, we denote rank(x) of x ∈ P just by ρ(x). If P is simplicial and
ρ(x) = m, then [0̂, x] is isomorphic to the boolean algebra 2{1,...,m}.

Let ∆ be a finite simplicial complex (with ∅ ∈ ∆). The face poset (i.e., the set of the
faces of ∆ with order given by inclusion) is a simplicial poset. Any simplicial poset P
is obtained as the face poset of a regular cell complex, which we denote by Γ(P ). For
0̂ 6= x ∈ P , c(x) ∈ Γ(P ) denotes the open cell corresponds to x. Clearly, dim c(x) =

ρ(x) − 1. While the closure c(x) of c(x) is always a simplex, the intersection c(x) ∩ c(y)
for x, y ∈ P is not necessarily a simplex. For example, if two d-simplices are glued along
their boundaries, then it is not a simplicial complex, but gives a simplicial poset.

For x, y ∈ P , set

[x ∨ y] := the set of the minimal elements of { z ∈ P | z ≥ x, y }.

More generally, for x1, . . . , xm ∈ P , [x1∨· · ·∨xm] denotes the set of the minimal elements
of the common upper bounds of x1, . . . , xm.

Set { y ∈ P | ρ(y) = 1 } = {y1, . . . , yn}. For U ⊂ [n] := {1, . . . , n}, we simply denote
[
∨

i∈U yi] by [U ]. If x ∈ [U ], then ρ(x) = #U . For each x ∈ P , there exists a unique U
such that x ∈ [U ]. Let x, x′ ∈ P with x ≥ x′ and ρ(x) = ρ(x′) + 1, and take U,U ′ ⊂ [n]
such that x ∈ [U ] and x′ ∈ [U ′]. Since U = U ′ ∐{i} for some i in this case, we can set

α(i, U) := #{ j ∈ U | j < i } and ε(x, x′) := (−1)α(i,U).

This article is basically a digest version of the preprint [11], which has been submitted to a journal.
* Partially supported by Grant-in-Aid for Scientific Research (c) (no.19540028).

–121–



Then ε gives an incidence function of the cell complex Γ(P ), that is, for all x, y ∈ P
with x > y and ρ(x) = ρ(y) + 2, we have ε(x, z) · ε(z, y) + ε(x, z′) · ε(z′, y) = 0, where
{z, z′} = {w ∈ P | x > w > y }.

As is well-known, the Stanley-Reisner ring of a finite simplicial complex is a powerful
tool for combinatorics. Generalizing this idea, Stanley [6] assigned the commutative ring
AP to a simplicial poset P . For the definition of AP , we remark that if [x ∨ y] 6= ∅ then
{ z ∈ P | z ≤ x, y } has the largest element x∧ y. Let k be a field, and S := k[ tx | x ∈ P ]
the polynomial ring in the variables tx. Consider the ideal

IP := ( txty − tx∧y

∑
z∈[x∨y]

tz | x, y ∈ P ) + ( t0̂ − 1 )

of S (if [x ∨ y] = ∅, we interpret that
∑

z∈[x∨y] tz = 0), and set

AP := S/IP .

We denote AP just by A, if there is no danger of confusion. Clearly, dim AP = rank P =
dim Γ(P ) + 1. For a rank 1 element yi ∈ P , set ti := tyi

. If {x} = [U ] for some U ⊂ [n]
with #U ≥ 2, then tx =

∏
i∈U ti in A, and tx is a “dummy variable”. Clearly, A is a

graded ring with deg(tx) = ρ(x). If Γ(P ) is a simplicial complex, then AP is generated
by degree 1 elements, and coincides with the Stanley-Reisner ring of Γ(P ).

Note that A also has a Zn-grading such that deg ti ∈ Nn is the ith unit vector. For
each x ∈ P , the ideal

px := (tz | z 6≤ x)

of A is a prime ideal with dim A/px = ρ(x), since A/px
∼= k[ ti | yi ≤ x ].

Recently, M. Masuda and his coworkers studied AP with a view from toric topology,
since the equivariant cohomology ring of a torus manifold is of the form AP (cf. [4, 5]).
In this paper, we will introduce another approach.

Let R be a noetherian commutative ring, ModR the category of R-modules, and
mod R its full subcategory consisting of finitely generated modules. The dualizing complex
D•

R of R gives the important duality RHomR(−, D•
R) on the bounded derived category

Db(mod R). If R is a (graded) local ring with the maximal ideal m, then the (graded)
Matlis dual of H−i(D•

R) is the local cohomology H i
m(R).

We have a concise description of the dualizing complex AP as follows.

Theorem 1. Let P be a simplicial poset with d = rank P , and set A := AP . The complex

I•
A : 0 → I−d

A → I−d+1
A → · · · → I0

A → 0,

given by

I−i
A :=

⊕
x∈P,

ρ(x)=i

A/px,

and

∂−i
I•A

: I−i
A ⊃ A/px 3 1A/px 7−→

∑
ρ(y)=i−1,

y≤x

ε(x, y) · 1A/py ∈
⊕

ρ(y)=i−1,
y≤x

A/py ⊂ I−i+1
A

is isomorphic to the dualizing complex D•
A of A in Db(Mod A).
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To prove this, it might be possible to use the description of H i
m(A) by Duval ([1]).

However, we will take more conceptual approach. In [8], the author defined a squarefree
module over a polynomial ring, and many applications have been found. (For example,
regarding A as a squarefree module over the polynomial ring SymA1, Duval’s formula of
H i

m(A) mentioned above can be proved quickly. See Remark 15.) We will extend this
notion to modules over A, and use it in the proof of Theorem 1.

The category Sq A of square free A-modules is an abelian category with enough in-
jectives, and A/px is an injective object. Hence I•

A is a complex in Sq A, and D(−) :=
Hom•

A(−, I•
A) gives a duality on Kb(Inj-Sq) (∼= Db(Sq A)). Moreover, via the forgetful

functor Sq A → Mod A, D coincides with the duality RHomA(−, D•
A) on Db(mod A).

As [9, 10], we can assign a squarefree A-module M the constructible sheaf M+ on (the
underlying space of) Γ(P ). In this context, the duality D corresponds to the Poincaré-
Verdier duality for the constructible sheaves on X up to translation. In particular, the
sheafification of the complex I•

A[−1] coincides with the Verdier dualizing complex of X
with the coefficients in k, where [−1] represents a translation by −1.

Using this argument, we can show the following. At least for the Cohen-Macaulay case,
it has been shown in Duval [1]. However our proof gives new perspective.

Corollary 2 (see, Theorem 16). The Cohen-Macaulay (resp. Gorenstein*, Buchsbaum
properties) and Serre’s condition (Si) of AP are topological properties of the underlying
space of Γ(P ). Here we say AP is Gorenstein*, if AP is Gorenstein and the Z-graded
canonical module ωAP

is generated by its degree 0 part.

2. Preparation

In the rest of the paper, P is a simplicial poset with rank P = d. As in the preceding
section, we use the convention that A = AP , { y ∈ P | ρ(y) = 1 } = {y1, . . . , yn}, and
ti := tyi

∈ A.
For a subset U ⊂ [n] = { 1, . . . , n }, AU denotes the localization of A by the multiplica-

tively closed set {
∏

i∈U tai
i | ai ≥ 0 }. If [U ] = ∅, then AU = 0. For x ∈ [U ],

ux :=
tx∏
i∈U ti

∈ AU

is an idempotent. Moreover, ux ·ux′ = 0 for x, x′ ∈ [U ] with x 6= x′, and 1AU
=

∑
x∈[U ] ux.

Hence we have a Zn-graded direct sum decomposition

AU =
⊕
x∈[U ]

AU · ux.

Let Gr A be the category of Zn-graded A-modules, and gr A its full subcategory con-
sisting of finitely generated modules. Here a morphism f : M → N in Gr A is an
A-homomorphism with f(Ma) ⊂ Na for all a ∈ Zn. As usual, for M and a ∈ Zn, M(a)
denotes the shifted module of M with M(a)b = Ma+b. For M,N ∈ Gr A,

HomA(M,N) :=
⊕
a∈Zn

HomGr A(M,N(a))
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has a Zn-graded A-module structure. Similarly, Exti
A(M,N) ∈ Gr A can be defined. If

M ∈ gr A, the underlying module of HomA(M,N) is isomorphic to HomA(M,N), and the
same is true for Exti

A(M,N).
If M ∈ Gr A, then M∨ :=

⊕
a∈Zn Homk(M−a, k) can be regarded as a Zn-graded A-

module, and (−)∨ gives an exact contravariant functor from GrA to itself, which is called
the graded Matlis duality functor.

Lemma 3. (1) EA(x) := (AU ·ux)
∨ is injective in Gr A. Conversely, any indecomposable

injective in Gr A is isomorphic to EA(x)(a) for some x ∈ P and a ∈ Zn.
(2) For M ∈ Gr A, set M≥0 :=

⊕
a∈Nn Ma. Then we have a canonical isomorphism

φx : A/px

∼=−→ EA(x)≥0.

The Cěch complex C• of A with respect to t1, . . . , tn is of the form

0 → C0 → C1 → · · · → Cd → 0 with Ci =
⊕
U⊂[n]
#U=i

AU

(note that if #U > d then AU = 0). The differential map is given by

Ci ⊃ AU 3 a 7−→
∑
U ′⊃U

#U ′=i+1

(−1)α(U ′\U,U)fU ′,U(a) ∈
⊕
U ′⊃U

#U ′=i+1

AU ′ ⊂ Ci+1,

where fU ′,U : AU → AU ′ is the natural map.

Since the radical of the ideal (t1, . . . , tn) is the maximal ideal m := (tx | 0̂ 6= x ∈ P ),
the cohomology H i(C•) of C• is isomorphic to the local cohomology H i

m(A). Moreover,
C• is isomorphic to RΓm(A) in Db(Mod A). Here RΓm is the right derived functor of
Γm : Mod A → Mod A given by Γm(M) = {s ∈ M | mis = 0 for i À 0 }. The same is true
in the Zn-graded context. We may regard Γm as a functor from Gr A to itself, and let
∗RΓm be its right derived functor. Then C• ∼= ∗RΓm(A) in Db(Gr A).

Let ∗D•
A be a Zn-graded normalized dualizing complex of A. By the Zn-graded version

of the local duality theorem [2, Theorem V.6.2], we have a quasi-isomorphism (∗D•
A)∨ −→

∗RΓm(A). Taking the Matlis dual, we get a quasi-isomorphism ∗RΓm(A)∨ −→ ∗D•
A. Hence

∗D•
A
∼= ∗RΓm(A)∨ ∼= (C•)∨

in Db(Gr A). Since

(Ci)∨ ∼=
⊕
x∈P

ρ(x)=i

EA(x)

and each EA(x) is injective in Gr A, (C•)∨ actually coincides with ∗D•
A. Hence ∗D•

A is of
the form

0 →
⊕
x∈P

ρ(x)=d

EA(x) →
⊕
x∈P

ρ(x)=d−1

EA(x) → · · · → EA(0̂) → 0,

where the cohomological degree is given by the same way to I•
A. We will show that this

φ is a quasi-isomorphism.
For each i ∈ Z, we have an injection φi : I i

A → ∗Di
A given by the injection φx : A/px →

EA(x) of Lemma 3. Then φ := (φi)i∈Z is a chain map I•
A ↪→ ∗D•.
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Since px is a Zn-graded ideal, ∗D•
A/px

:= Hom•
A(A/px,

∗D•
A) is a Zn-graded (or Zρ(x)-

graded) dualizing complex of A/px, and quasi-isomorphic to its non-negative part I•
A/px

:=

(∗D•
A/px

)≥0 (the latter statement is the polynomial ring case of Theorem 1, and it is a well-

known result). We have the following.

Lemma 4. For all x ∈ P , φ : I•
A → ∗D•

A induces a quasi-isomorphism

I•
A/px

= Hom•
A(A/px, I

•
A) −→ Hom•

A(A/px,
∗D•

A) = ∗D•
A/px

,

3. Squarefree Modules over AP , and The Proof of Theorem 1

Let R = k[x1, . . . , xn] be a polynomial ring, and regard it as a Zn-graded ring. For
a = (a1, . . . , an) ∈ Nn, set supp(a) := { i | ai 6= 0 } ⊂ [n], and let xa denote the monomial∏

xai
i ∈ R.

Definition 5 ([8]). With the above notation, a Zn-graded R-module M is called square-
free, if it is finitely generated, Nn-graded (i.e., M =

⊕
a∈Nn Ma), and the multiplication

map Ma 3 s 7−→ xbs ∈ Ma+b is bijective for all a,b ∈ Nn with supp(a) ⊃ supp(b).

To define a squarefree module over the face ring A = AP of a simplicial poset P , we
equip A with a finer “grading”, where the index set is no longer a monoid.

Recall the convention that { y ∈ P | ρ(y) = 1 } = {y1, . . . , yn} and ti = tyi
∈ A. For

each x ∈ P , set

M(x) :=
⊕
yi≤x

N ex
i ,

where ex
i is a basis element. So M(x) ∼= Nρ(x) as additive monoids. For x, z with x ≤ z,

we have an injection ιz,x : M(x) 3 ex
i 7−→ ez

i ∈ M(z) of monoids. Set

M := lim−→
x∈P

M(x),

where the direct limit is taken with respect to ιz,x : M(x) → M(z) for x, z ∈ P with x ≤ z.
Note that M is no longer a monoid, just a set. Since all ιz,x is an injection, we can regard
M(x) as a subset of M. For each a ∈ M, {x ∈ P | a ∈ M(x)} has the smallest element,
which is denoted by σ(a).

We say a monomial m =
∏

x∈P tnx
x ∈ A, nx ∈ N, is standard, if {x ∈ P | nx 6= 0 } is a

totally ordered set. The set of the standard monomials forms a k-basis of A. Let a,b ∈ M.
If [σ(a) ∨ σ(b)] 6= ∅, then we can take the sum a + b ∈ M(x) for each x ∈ [σ(a) ∨ σ(b)].
Unless [σ(a) ∨ σ(b)] consists of a single element, we cannot define a + b ∈ M. Hence we
denote each a + b ∈ M(x) by (a + b)|x.

Definition 6. M ∈ Mod A is said to be M-graded if the following are satisfied;

(1) M =
⊕

a∈M Ma as k-vector spaces;

(2) For a,b ∈ M, we have

taMb ⊂
⊕

x∈[σ(a)∨σ(b)]

M(a+b)|x.

Hence, if [σ(a) ∨ σ(b)] = ∅, then taMb = 0.
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Clearly, A itself is an M-graded module with Aa = k ta. Since there is a natural map
M → Nn, an M-graded module can be see as a Zn-graded module.

If M is an M-graded A-module, then

M6≤x :=
⊕

a 6∈M(x)

Ma

is an M-graded submodule for all x ∈ P , and

M≤x := M/M 6≤x

is a Zρ(x)-graded module over A/px
∼= k[ ti | yi ≤ x ].

Definition 7. We say an M-graded A-module M is squarefree, if M≤x is a squarefree
module over the polynomial ring A/px

∼= k[ ti | yi ≤ x ] for all x ∈ P .

Clearly, A itself, px and A/px for x ∈ P , are squarefree. Let Sq A be the category of
squarefree A-modules and their A-homomorphisms f : M → M ′ with f(Ma) ⊂ M ′

a for
all a ∈ M. For example, I•

A is a complex in Sq A.
The incidence algebra Λ of P over k is a finite dimensional associative k-algebra with

basis { ex,y | x, y ∈ P, x ≥ y } whose multiplication is defined by

ex,y · ez,w =

{
ex,w if y = z;

0 otherwise.

Let mod Λ be the category of finitely generated left Λ-modules.

Proposition 8. We have Sq A ∼= mod Λ. Hence Sq A is an abelian category with enough
injectives and the injective dimension of each object is at most d. An object M ∈ Sq A is
an indecomposable injective if and only if M ∼= A/px for some x ∈ P .

Let Inj-Sq be the full subcategory of Sq A consisting of all injective objects, that is,
finite direct sums of A/px for various x ∈ P . As is well-known, the bounded homotopy
category Kb(Inj-Sq) is equivalent to Db(Sq A). Since

HomA(A/px, A/py) =

{
A/py if x ≥ y,

0 otherwise,

we have Hom•
A(J•, I•

A) ∈ Kb(Inj-Sq) for all J• ∈ Kb(M•). Moreover, Hom•
A(−, I•

A) pre-
serves homotopy equivalences, and gives a functor D : Kb(Inj-Sq) → Kb(Inj-Sq)op.

On the other hand, M• 7−→ Hom•
A(M•, ∗D•

A) gives the functor RHomA(−, ∗D•
A) :

Db(gr A) → Db(gr A)op under the identification Db
gr A(Gr A) ∼= Db(gr A). Combining

U : Kb(Inj-Sq)
∼=−→ Db(Sq A) −→ Db(gr A) given by the forgetful functor Sq A → gr A, we

have the two functors U ◦ D and RHomA(−, ∗D•
A) ◦ U.

(Db(Sq A) ∼=) Kb(Inj-Sq)
U //

D
²²

Db(gr A)

RHomA(−,∗D•
A)

²²
Kb(Inj-Sq)op

U
// Db(gr A)op
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By the chain map φ : I•
A → ∗D•

A constructed in the end of the preceding section, we have
a natural transformation Φ : U ◦ D → RHomA(−, ∗D•

A) ◦ U.

Proposition 9. Φ is a natural isomorphism. Hence U ◦ D ∼= RHomA(−, ∗D•
A) ◦ U.

Proof. For x ∈ P , Φ(A/px) is the chain map HomA(A/px, φ) : Hom•
A(A/px, I

•
A) →

Hom•
A(A/px,

∗D•
A), which is a quasi-isomorphism as shown in Lemma 4. Since any in-

decomposable injectives in Sq A is isomorphic to A/px for some x ∈ P , Φ is a natural
isomorphism by [2, Proposition 7.1]. ¤

The proof of Theorem 1. Since A ∈ Sq A, we have

I•
A = D(A) ∼= RHomA(A, ∗D•

A) = ∗D•
A

by Proposition 9, where the isomorphism in the center is given by Φ(A). If we forget
the Zn-grading, ∗D•

A is quasi-isomorphic to the usual (non-graded) dualizing complex D•
A.

Hence I•
A
∼= D•

A in Db(Mod A). ¤
Remark 10. For x ∈ P with r = ρ(x), set a(x) := (r, r, . . . , r) ∈ Nr ∼= M(x) ⊂ M. If
x ≥ y, then there is a degree a(x) − a(y) ∈ M such that ta(x)−a(y) · ta(y) = ta(x).

By Kb(Inj-Sq) ∼= Db(Sq A), D can be regarded as a duality on Db(Sq A). Then, through
the equivalence Sq R ∼= mod Λ, D coincides with the duality functor D on Db(mod Λ)
defined in [10] up to translation. Hence, for M• ∈ Db(Sq A), the complex D(M•) has the
following description: The term of cohomological degree p is

D(M•)p :=
⊕

i+ρ(x)=−p

(M i
a(x))

∗ ⊗k A/px,

where (−)∗ denotes the k-dual. The differential is given by

(M i
a(x))

∗ ⊗k A/px 3 f ⊗ 1A/px 7−→
∑
y≤x,

ρ(y)=ρ(x)−1

ε(x, y) · fy ⊗ 1A/py + (−1)p · f ◦ ∂i−1
M• ⊗ 1A/px ,

where fy ∈ (Ma(y))
∗ denotes Ma(y) 3 s 7→ f(ta(x)−a(y) · s) ∈ k, and ε(x, y) is the incidence

function.

Since H−i(D(M)) ∼= Ext−i
A (M, ∗D•

A) ∼= H i
m(M)∨ in Gr A, we have the following.

Corollary 11. If M ∈ Sq A, then the local cohomology H i
m(M)∨ can be seen as a square-

free module.

4. Sheaves and Poincaré-Verdier duality

The results in this section are parallel to those in [9, 10]. Recall that a simplicial poset
P gives a regular cell complex Γ(P ). Let X be the underlying space of Γ(P ), and c(x)
the open cell corresponding to 0̂ 6= x ∈ P . Hence, for each x ∈ P with ρ(x) ≥ 2, c(x) is
an open subset of X homeomorphic to Rρ(x)−1 (if ρ(x) = 1, then c(x) is a single point),

and X is the disjoint union of the cells c(x). Moreover, x ≥ y if and only if c(x) ⊃ c(y).
As in the preceding section, let Λ be the incidence algebra of P . In [10], we assigned

the constructible sheaf N † on X to N ∈ mod Λ. Through Sq A ∼= mod Λ, we have
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the constructible sheaf M+ on X corresponding to M ∈ Sq A. Here we give a precise
construction for the reader’s convenience. For the sheaf theory, consult [3].

For M ∈ Sq A, set

Spé(M) :=
∪

0̂6=x∈P

c(x) × Ma(x),

where a(x) ∈ M(x) ⊂ M is the one defined in Remark 10. Let π : Spé(M) → X be the
projection map which sends (p,m) ∈ c(x) × Ma(x) ⊂ Spé(M) to p ∈ c(x) ⊂ X. For an
open subset U ⊂ X and a map s : U → Spé(M), we will consider the following conditions:

(∗) π ◦ s = idU and sp = ta(x)−a(y) · sq for all p ∈ c(x) ∩ U , q ∈ c(y) ∩ U with x ≥ y.
Here sp ∈ Ma(x) (resp. sq ∈ Ma(y)) with s(p) = (p, sp) (resp. s(q) = (q, sq)).

(∗∗) There is an open covering U =
∪

i∈I Ui such that the restriction of s to Ui satisfies
(∗) for all i ∈ I.

Now we define a sheaf M+ on X as follows: For an open set U ⊂ X, set

M+(U) := { s | s : U → Spé(M) is a map satisfying (∗∗) }
and the restriction map M+(U) → M+(V ) for U ⊃ V is the natural one. It is easy to
see that M+ is a constructible sheaf with respect to the cell decomposition Γ(P ). For
example, A+ is the k-constant sheaf kX on X, and (A/px)

+ is (the extension to X of) the

k-constant sheaf on the closed cell c(x).
Let Sh(X) be the category of sheaves of k-vector spaces on X. Since the stalk (M+)p

at p ∈ c(x) ⊂ X is isomorphic to Ma(x), the functor (−)+ : Sq A → Sh(X) is exact.
As mentioned in the previous section, D : Db(Sq A) → Db(Sq A)op corresponds to T◦D :

Db(mod Λ) → Db(mod Λ)op, where D is the one defined in [10], and T is the translation
functor (i.e., T(M•)i = M i+1). Through (−)† : mod Λ → Sh(X), D gives the Poincaré-
Verdier duality on Db(Sh(X)), so we have the following.

Theorem 12. For M• ∈ Db(Sq A), we have

T−1 ◦ D(M•)+ ∼= RHom((M•)+,D•
X)

in Db(Sh(X)). In particular, T−1((I•
A)+) ∼= D•

X , where I•
A is the complex constructed in

Theorem 1, and D•
X is the Verdier dualizing complex of X with the coefficients in k.

The next result follows from results in [10].

Theorem 13. For M ∈ Sq A, we have the decomposition H i
m(M) =

⊕
a∈M H i

m(M)−a by
Corollary 11. The the following hold.

(a) There is an isomorphism

H i(X,M+) ∼= H i+1
m (M)0 for all i ≥ 1,

and an exact sequence

0 → H0
m(M)0 → M0 → H0(X,M+) → H1

m(M)0 → 0.

(b) If 0 6= a ∈ M with x = σ(a), then

H i
m(M)−a

∼= H i−1
c (Ux,M

+|Ux)

for all i ≥ 0. Here Ux =
∪

z≥x c(z) is an open set of X, and H•
c (−) stands for the

cohomology with compact support.
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Let H̃ i(X; k) denote the ith reduced cohomology of X with coefficients in k. That is,
H̃ i(X; k) ∼= H i(X; k) for all i ≥ 1, and H̃0(X; k) ⊕ k ∼= H0(X; k), where H i(X; k) is
the usual cohomology of X. Recall that H i(X; k) is isomorphic to the sheaf cohomology
H i(X, kX). In the Stanley-Reisner ring case, (the latter half of) the next result is nothing
other than a famous formula of Hochster.

Corollary 14 (Duval [1, Theorem 5.9]). We have

[H i
m(A)]0 ∼= H̃ i−1(X; k) and [H i

m(A)]−a
∼= H i−1

c (Ux; k)

for all i ≥ 0 and all 0 6= a ∈ M with x = σ(a).
Here, [H i

m(A)]−a is also isomorphic to the ith cohomology of the cochain complex

K•
x : 0 → Kρ(x)

x → Kρ(x)+1
x → · · · → Kd

x → 0 with Ki
x =

⊕
z≥x

ρ(z)=i

k bz

(bz is a basis element) whose differential map is given by

bz 7−→
∑
w≥z

ρ(w)=ρ(z)+1

ε(w, z) bw.

For this description, a can be 0 ∈ M. In this case, x = 0̂.

Duval uses the latter description, and he denotes H i(K•
x) by H i−ρ(x)−1(lkP x).

Proof. The former half follows from Theorem 13. The latter part follows from that
H i

m(A) ∼= H−i(D(A))∨ and that (D(A)∨)−a = K•
x as complexes of k-vector spaces by

Remark 10. ¤
Remark 15. Consider the polynomial ring T := Sym A1

∼= k[t1, . . . , tn] (note that T is not
a subring of A). Since A is a squarefree module over T , the Zn-graded Hilbert function
of H i

m(A) can be computed by [8, Theorem 2.10], and [1, Theorem 5.9] (essentially, the
latter half of Corollary 14) follows rather quickly.

Similarly, we can easily describe DT (A) ∼= RHomT (A,D•
T ), and it coincides with I•

A as
a complex of T -modules. That is, the dualizing complex D•

A becomes much easier if we
regard it as a complex of T -modules.

Theorem 16 (c.f. Duval [1]). Set d := rank P = dim X +1. Then we have the following.

(a) A is Cohen-Macaulay if and only if Hi(D•
X) = 0 for all i 6= −d+1, and H̃ i(X; k) =

0 for all i 6= d − 1.
(b) Assume that A is Cohen-Macaulay and d ≥ 2. Then A is Gorenstein*, if and only

if H−d+1(D•
X) ∼= kX . (When d = 1, A is Gorenstein* if and only if X consists of

exactly two points.)
(c) A is Buchsbaum if and only if Hi(D•

X) = 0 for all i 6= −d + 1.
(d) Set

dj :=


dim(suppH−j(D•

X)) if H−j(D•
X) 6= 0,

−1 if H−j(D•
X) = 0 and H̃j(X; k) 6= 0,

−∞ if H−j(D•
X) = 0 and H̃j(X; k) = 0.
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Here suppF = { p ∈ X | Fp 6= 0 } for a sheaf F on X. Then, for 2 ≤ i < d, A
satisfies Serre’s condition (Si) if and only if dj ≤ j − i for all j < d − 1.

Hence, Cohen-Macaulay (resp. Gorenstein*, Buchsbaum) property and Serre’s condition
(Si) of A are topological properties of X, while it may depend on char(k).
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