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Abstract. A finite poset P is called simplicial, if it has the smallest element 0̂, and
every interval [0̂, x] is a boolean algebra. The face poset of a simplicial complex is a
typical example. Generalizing the Stanley-Reisner ring of a simplicial complex, Stanley
assigned the graded ring AP to P . This ring has been studied from both combinatorial
and topological perspective. In this paper, we will give a concise description of a dualizing
complex of AP and some related results.

1. Introduction

All posets (partially ordered sets) in this paper will be assumed to be finite. By the
order given by inclusion, the power set of a finite set can be seen as a poset, and it is
called a boolean algebra. We say a poset P is simplicial, if it admits the smallest element
0̂, and the interval [0̂, x] := { y ∈ P | y ≤ x } is isomorphic to a boolean algebra for all
x ∈ P . For the simplicity, we denote rank(x) of x ∈ P just by ρ(x). If P is simplicial and
ρ(x) = m, then [0̂, x] is isomorphic to the boolean algebra 2{1,...,m}.

Let ∆ be a finite simplicial complex (with ∅ ∈ ∆). The face poset (i.e., the set of the
faces of ∆ with order given by inclusion) is a simplicial poset. Any simplicial poset P
is obtained as the face poset of a regular cell complex, which we denote by Γ(P ). For
0̂ 6= x ∈ P , c(x) ∈ Γ(P ) denotes the open cell corresponds to x. Clearly, dim c(x) =

ρ(x) − 1. While the closure c(x) of c(x) is always a simplex, the intersection c(x) ∩ c(y)
for x, y ∈ P is not necessarily a simplex. For example, if two d-simplices are glued along
their boundaries, then it is not a simplicial complex, but gives a simplicial poset.

For x, y ∈ P , set

[x ∨ y] := the set of the minimal elements of { z ∈ P | z ≥ x, y }.

More generally, for x1, . . . , xm ∈ P , [x1∨· · ·∨xm] denotes the set of the minimal elements
of the common upper bounds of x1, . . . , xm.

Set { y ∈ P | ρ(y) = 1 } = {y1, . . . , yn}. For U ⊂ [n] := {1, . . . , n}, we simply denote
[
∨

i∈U yi] by [U ]. If x ∈ [U ], then ρ(x) = #U . For each x ∈ P , there exists a unique U
such that x ∈ [U ]. Let x, x′ ∈ P with x ≥ x′ and ρ(x) = ρ(x′) + 1, and take U,U ′ ⊂ [n]
such that x ∈ [U ] and x′ ∈ [U ′]. Since U = U ′ ∐{i} for some i in this case, we can set

α(i, U) := #{ j ∈ U | j < i } and ε(x, x′) := (−1)α(i,U).

This article is basically a digest version of the preprint [11], which has been submitted to a journal.
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Then ε gives an incidence function of the cell complex Γ(P ), that is, for all x, y ∈ P
with x > y and ρ(x) = ρ(y) + 2, we have ε(x, z) · ε(z, y) + ε(x, z′) · ε(z′, y) = 0, where
{z, z′} = {w ∈ P | x > w > y }.

As is well-known, the Stanley-Reisner ring of a finite simplicial complex is a powerful
tool for combinatorics. Generalizing this idea, Stanley [6] assigned the commutative ring
AP to a simplicial poset P . For the definition of AP , we remark that if [x ∨ y] 6= ∅ then
{ z ∈ P | z ≤ x, y } has the largest element x∧ y. Let k be a field, and S := k[ tx | x ∈ P ]
the polynomial ring in the variables tx. Consider the ideal

IP := ( txty − tx∧y

∑
z∈[x∨y]

tz | x, y ∈ P ) + ( t0̂ − 1 )

of S (if [x ∨ y] = ∅, we interpret that
∑

z∈[x∨y] tz = 0), and set

AP := S/IP .

We denote AP just by A, if there is no danger of confusion. Clearly, dim AP = rank P =
dim Γ(P ) + 1. For a rank 1 element yi ∈ P , set ti := tyi

. If {x} = [U ] for some U ⊂ [n]
with #U ≥ 2, then tx =

∏
i∈U ti in A, and tx is a “dummy variable”. Clearly, A is a

graded ring with deg(tx) = ρ(x). If Γ(P ) is a simplicial complex, then AP is generated
by degree 1 elements, and coincides with the Stanley-Reisner ring of Γ(P ).

Note that A also has a Zn-grading such that deg ti ∈ Nn is the ith unit vector. For
each x ∈ P , the ideal

px := (tz | z 6≤ x)

of A is a prime ideal with dim A/px = ρ(x), since A/px
∼= k[ ti | yi ≤ x ].

Recently, M. Masuda and his coworkers studied AP with a view from toric topology,
since the equivariant cohomology ring of a torus manifold is of the form AP (cf. [4, 5]).
In this paper, we will introduce another approach.

Let R be a noetherian commutative ring, ModR the category of R-modules, and
mod R its full subcategory consisting of finitely generated modules. The dualizing complex
D•

R of R gives the important duality RHomR(−, D•
R) on the bounded derived category

Db(mod R). If R is a (graded) local ring with the maximal ideal m, then the (graded)
Matlis dual of H−i(D•

R) is the local cohomology H i
m(R).

We have a concise description of the dualizing complex AP as follows.

Theorem 1. Let P be a simplicial poset with d = rank P , and set A := AP . The complex

I•
A : 0 → I−d

A → I−d+1
A → · · · → I0

A → 0,

given by

I−i
A :=

⊕
x∈P,

ρ(x)=i

A/px,

and

∂−i
I•A

: I−i
A ⊃ A/px 3 1A/px 7−→

∑
ρ(y)=i−1,

y≤x

ε(x, y) · 1A/py ∈
⊕

ρ(y)=i−1,
y≤x

A/py ⊂ I−i+1
A

is isomorphic to the dualizing complex D•
A of A in Db(Mod A).
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To prove this, it might be possible to use the description of H i
m(A) by Duval ([1]).

However, we will take more conceptual approach. In [8], the author defined a squarefree
module over a polynomial ring, and many applications have been found. (For example,
regarding A as a squarefree module over the polynomial ring SymA1, Duval’s formula of
H i

m(A) mentioned above can be proved quickly. See Remark 15.) We will extend this
notion to modules over A, and use it in the proof of Theorem 1.

The category Sq A of square free A-modules is an abelian category with enough in-
jectives, and A/px is an injective object. Hence I•

A is a complex in Sq A, and D(−) :=
Hom•

A(−, I•
A) gives a duality on Kb(Inj-Sq) (∼= Db(Sq A)). Moreover, via the forgetful

functor Sq A → Mod A, D coincides with the duality RHomA(−, D•
A) on Db(mod A).

As [9, 10], we can assign a squarefree A-module M the constructible sheaf M+ on (the
underlying space of) Γ(P ). In this context, the duality D corresponds to the Poincaré-
Verdier duality for the constructible sheaves on X up to translation. In particular, the
sheafification of the complex I•

A[−1] coincides with the Verdier dualizing complex of X
with the coefficients in k, where [−1] represents a translation by −1.

Using this argument, we can show the following. At least for the Cohen-Macaulay case,
it has been shown in Duval [1]. However our proof gives new perspective.

Corollary 2 (see, Theorem 16). The Cohen-Macaulay (resp. Gorenstein*, Buchsbaum
properties) and Serre’s condition (Si) of AP are topological properties of the underlying
space of Γ(P ). Here we say AP is Gorenstein*, if AP is Gorenstein and the Z-graded
canonical module ωAP

is generated by its degree 0 part.

2. Preparation

In the rest of the paper, P is a simplicial poset with rank P = d. As in the preceding
section, we use the convention that A = AP , { y ∈ P | ρ(y) = 1 } = {y1, . . . , yn}, and
ti := tyi

∈ A.
For a subset U ⊂ [n] = { 1, . . . , n }, AU denotes the localization of A by the multiplica-

tively closed set {
∏

i∈U tai
i | ai ≥ 0 }. If [U ] = ∅, then AU = 0. For x ∈ [U ],

ux :=
tx∏
i∈U ti

∈ AU

is an idempotent. Moreover, ux ·ux′ = 0 for x, x′ ∈ [U ] with x 6= x′, and 1AU
=

∑
x∈[U ] ux.

Hence we have a Zn-graded direct sum decomposition

AU =
⊕
x∈[U ]

AU · ux.

Let Gr A be the category of Zn-graded A-modules, and gr A its full subcategory con-
sisting of finitely generated modules. Here a morphism f : M → N in Gr A is an
A-homomorphism with f(Ma) ⊂ Na for all a ∈ Zn. As usual, for M and a ∈ Zn, M(a)
denotes the shifted module of M with M(a)b = Ma+b. For M,N ∈ Gr A,

HomA(M,N) :=
⊕
a∈Zn

HomGr A(M,N(a))
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has a Zn-graded A-module structure. Similarly, Exti
A(M,N) ∈ Gr A can be defined. If

M ∈ gr A, the underlying module of HomA(M,N) is isomorphic to HomA(M,N), and the
same is true for Exti

A(M,N).
If M ∈ Gr A, then M∨ :=

⊕
a∈Zn Homk(M−a, k) can be regarded as a Zn-graded A-

module, and (−)∨ gives an exact contravariant functor from GrA to itself, which is called
the graded Matlis duality functor.

Lemma 3. (1) EA(x) := (AU ·ux)
∨ is injective in Gr A. Conversely, any indecomposable

injective in Gr A is isomorphic to EA(x)(a) for some x ∈ P and a ∈ Zn.
(2) For M ∈ Gr A, set M≥0 :=

⊕
a∈Nn Ma. Then we have a canonical isomorphism

φx : A/px

∼=−→ EA(x)≥0.

The Cěch complex C• of A with respect to t1, . . . , tn is of the form

0 → C0 → C1 → · · · → Cd → 0 with Ci =
⊕
U⊂[n]
#U=i

AU

(note that if #U > d then AU = 0). The differential map is given by

Ci ⊃ AU 3 a 7−→
∑
U ′⊃U

#U ′=i+1

(−1)α(U ′\U,U)fU ′,U(a) ∈
⊕
U ′⊃U

#U ′=i+1

AU ′ ⊂ Ci+1,

where fU ′,U : AU → AU ′ is the natural map.

Since the radical of the ideal (t1, . . . , tn) is the maximal ideal m := (tx | 0̂ 6= x ∈ P ),
the cohomology H i(C•) of C• is isomorphic to the local cohomology H i

m(A). Moreover,
C• is isomorphic to RΓm(A) in Db(Mod A). Here RΓm is the right derived functor of
Γm : Mod A → Mod A given by Γm(M) = {s ∈ M | mis = 0 for i À 0 }. The same is true
in the Zn-graded context. We may regard Γm as a functor from Gr A to itself, and let
∗RΓm be its right derived functor. Then C• ∼= ∗RΓm(A) in Db(Gr A).

Let ∗D•
A be a Zn-graded normalized dualizing complex of A. By the Zn-graded version

of the local duality theorem [2, Theorem V.6.2], we have a quasi-isomorphism (∗D•
A)∨ −→

∗RΓm(A). Taking the Matlis dual, we get a quasi-isomorphism ∗RΓm(A)∨ −→ ∗D•
A. Hence

∗D•
A
∼= ∗RΓm(A)∨ ∼= (C•)∨

in Db(Gr A). Since

(Ci)∨ ∼=
⊕
x∈P

ρ(x)=i

EA(x)

and each EA(x) is injective in Gr A, (C•)∨ actually coincides with ∗D•
A. Hence ∗D•

A is of
the form

0 →
⊕
x∈P

ρ(x)=d

EA(x) →
⊕
x∈P

ρ(x)=d−1

EA(x) → · · · → EA(0̂) → 0,

where the cohomological degree is given by the same way to I•
A. We will show that this

φ is a quasi-isomorphism.
For each i ∈ Z, we have an injection φi : I i

A → ∗Di
A given by the injection φx : A/px →

EA(x) of Lemma 3. Then φ := (φi)i∈Z is a chain map I•
A ↪→ ∗D•.
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Since px is a Zn-graded ideal, ∗D•
A/px

:= Hom•
A(A/px,

∗D•
A) is a Zn-graded (or Zρ(x)-

graded) dualizing complex of A/px, and quasi-isomorphic to its non-negative part I•
A/px

:=

(∗D•
A/px

)≥0 (the latter statement is the polynomial ring case of Theorem 1, and it is a well-

known result). We have the following.

Lemma 4. For all x ∈ P , φ : I•
A → ∗D•

A induces a quasi-isomorphism

I•
A/px

= Hom•
A(A/px, I

•
A) −→ Hom•

A(A/px,
∗D•

A) = ∗D•
A/px

,

3. Squarefree Modules over AP , and The Proof of Theorem 1

Let R = k[x1, . . . , xn] be a polynomial ring, and regard it as a Zn-graded ring. For
a = (a1, . . . , an) ∈ Nn, set supp(a) := { i | ai 6= 0 } ⊂ [n], and let xa denote the monomial∏

xai
i ∈ R.

Definition 5 ([8]). With the above notation, a Zn-graded R-module M is called square-
free, if it is finitely generated, Nn-graded (i.e., M =

⊕
a∈Nn Ma), and the multiplication

map Ma 3 s 7−→ xbs ∈ Ma+b is bijective for all a,b ∈ Nn with supp(a) ⊃ supp(b).

To define a squarefree module over the face ring A = AP of a simplicial poset P , we
equip A with a finer “grading”, where the index set is no longer a monoid.

Recall the convention that { y ∈ P | ρ(y) = 1 } = {y1, . . . , yn} and ti = tyi
∈ A. For

each x ∈ P , set

M(x) :=
⊕
yi≤x

N ex
i ,

where ex
i is a basis element. So M(x) ∼= Nρ(x) as additive monoids. For x, z with x ≤ z,

we have an injection ιz,x : M(x) 3 ex
i 7−→ ez

i ∈ M(z) of monoids. Set

M := lim−→
x∈P

M(x),

where the direct limit is taken with respect to ιz,x : M(x) → M(z) for x, z ∈ P with x ≤ z.
Note that M is no longer a monoid, just a set. Since all ιz,x is an injection, we can regard
M(x) as a subset of M. For each a ∈ M, {x ∈ P | a ∈ M(x)} has the smallest element,
which is denoted by σ(a).

We say a monomial m =
∏

x∈P tnx
x ∈ A, nx ∈ N, is standard, if {x ∈ P | nx 6= 0 } is a

totally ordered set. The set of the standard monomials forms a k-basis of A. Let a,b ∈ M.
If [σ(a) ∨ σ(b)] 6= ∅, then we can take the sum a + b ∈ M(x) for each x ∈ [σ(a) ∨ σ(b)].
Unless [σ(a) ∨ σ(b)] consists of a single element, we cannot define a + b ∈ M. Hence we
denote each a + b ∈ M(x) by (a + b)|x.

Definition 6. M ∈ Mod A is said to be M-graded if the following are satisfied;

(1) M =
⊕

a∈M Ma as k-vector spaces;

(2) For a,b ∈ M, we have

taMb ⊂
⊕

x∈[σ(a)∨σ(b)]

M(a+b)|x.

Hence, if [σ(a) ∨ σ(b)] = ∅, then taMb = 0.
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Clearly, A itself is an M-graded module with Aa = k ta. Since there is a natural map
M → Nn, an M-graded module can be see as a Zn-graded module.

If M is an M-graded A-module, then

M6≤x :=
⊕

a 6∈M(x)

Ma

is an M-graded submodule for all x ∈ P , and

M≤x := M/M 6≤x

is a Zρ(x)-graded module over A/px
∼= k[ ti | yi ≤ x ].

Definition 7. We say an M-graded A-module M is squarefree, if M≤x is a squarefree
module over the polynomial ring A/px

∼= k[ ti | yi ≤ x ] for all x ∈ P .

Clearly, A itself, px and A/px for x ∈ P , are squarefree. Let Sq A be the category of
squarefree A-modules and their A-homomorphisms f : M → M ′ with f(Ma) ⊂ M ′

a for
all a ∈ M. For example, I•

A is a complex in Sq A.
The incidence algebra Λ of P over k is a finite dimensional associative k-algebra with

basis { ex,y | x, y ∈ P, x ≥ y } whose multiplication is defined by

ex,y · ez,w =

{
ex,w if y = z;

0 otherwise.

Let mod Λ be the category of finitely generated left Λ-modules.

Proposition 8. We have Sq A ∼= mod Λ. Hence Sq A is an abelian category with enough
injectives and the injective dimension of each object is at most d. An object M ∈ Sq A is
an indecomposable injective if and only if M ∼= A/px for some x ∈ P .

Let Inj-Sq be the full subcategory of Sq A consisting of all injective objects, that is,
finite direct sums of A/px for various x ∈ P . As is well-known, the bounded homotopy
category Kb(Inj-Sq) is equivalent to Db(Sq A). Since

HomA(A/px, A/py) =

{
A/py if x ≥ y,

0 otherwise,

we have Hom•
A(J•, I•

A) ∈ Kb(Inj-Sq) for all J• ∈ Kb(M•). Moreover, Hom•
A(−, I•

A) pre-
serves homotopy equivalences, and gives a functor D : Kb(Inj-Sq) → Kb(Inj-Sq)op.

On the other hand, M• 7−→ Hom•
A(M•, ∗D•

A) gives the functor RHomA(−, ∗D•
A) :

Db(gr A) → Db(gr A)op under the identification Db
gr A(Gr A) ∼= Db(gr A). Combining

U : Kb(Inj-Sq)
∼=−→ Db(Sq A) −→ Db(gr A) given by the forgetful functor Sq A → gr A, we

have the two functors U ◦ D and RHomA(−, ∗D•
A) ◦ U.

(Db(Sq A) ∼=) Kb(Inj-Sq)
U //

D
²²

Db(gr A)

RHomA(−,∗D•
A)

²²
Kb(Inj-Sq)op

U
// Db(gr A)op
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By the chain map φ : I•
A → ∗D•

A constructed in the end of the preceding section, we have
a natural transformation Φ : U ◦ D → RHomA(−, ∗D•

A) ◦ U.

Proposition 9. Φ is a natural isomorphism. Hence U ◦ D ∼= RHomA(−, ∗D•
A) ◦ U.

Proof. For x ∈ P , Φ(A/px) is the chain map HomA(A/px, φ) : Hom•
A(A/px, I

•
A) →

Hom•
A(A/px,

∗D•
A), which is a quasi-isomorphism as shown in Lemma 4. Since any in-

decomposable injectives in Sq A is isomorphic to A/px for some x ∈ P , Φ is a natural
isomorphism by [2, Proposition 7.1]. ¤

The proof of Theorem 1. Since A ∈ Sq A, we have

I•
A = D(A) ∼= RHomA(A, ∗D•

A) = ∗D•
A

by Proposition 9, where the isomorphism in the center is given by Φ(A). If we forget
the Zn-grading, ∗D•

A is quasi-isomorphic to the usual (non-graded) dualizing complex D•
A.

Hence I•
A
∼= D•

A in Db(Mod A). ¤
Remark 10. For x ∈ P with r = ρ(x), set a(x) := (r, r, . . . , r) ∈ Nr ∼= M(x) ⊂ M. If
x ≥ y, then there is a degree a(x) − a(y) ∈ M such that ta(x)−a(y) · ta(y) = ta(x).

By Kb(Inj-Sq) ∼= Db(Sq A), D can be regarded as a duality on Db(Sq A). Then, through
the equivalence Sq R ∼= mod Λ, D coincides with the duality functor D on Db(mod Λ)
defined in [10] up to translation. Hence, for M• ∈ Db(Sq A), the complex D(M•) has the
following description: The term of cohomological degree p is

D(M•)p :=
⊕

i+ρ(x)=−p

(M i
a(x))

∗ ⊗k A/px,

where (−)∗ denotes the k-dual. The differential is given by

(M i
a(x))

∗ ⊗k A/px 3 f ⊗ 1A/px 7−→
∑
y≤x,

ρ(y)=ρ(x)−1

ε(x, y) · fy ⊗ 1A/py + (−1)p · f ◦ ∂i−1
M• ⊗ 1A/px ,

where fy ∈ (Ma(y))
∗ denotes Ma(y) 3 s 7→ f(ta(x)−a(y) · s) ∈ k, and ε(x, y) is the incidence

function.

Since H−i(D(M)) ∼= Ext−i
A (M, ∗D•

A) ∼= H i
m(M)∨ in Gr A, we have the following.

Corollary 11. If M ∈ Sq A, then the local cohomology H i
m(M)∨ can be seen as a square-

free module.

4. Sheaves and Poincaré-Verdier duality

The results in this section are parallel to those in [9, 10]. Recall that a simplicial poset
P gives a regular cell complex Γ(P ). Let X be the underlying space of Γ(P ), and c(x)
the open cell corresponding to 0̂ 6= x ∈ P . Hence, for each x ∈ P with ρ(x) ≥ 2, c(x) is
an open subset of X homeomorphic to Rρ(x)−1 (if ρ(x) = 1, then c(x) is a single point),

and X is the disjoint union of the cells c(x). Moreover, x ≥ y if and only if c(x) ⊃ c(y).
As in the preceding section, let Λ be the incidence algebra of P . In [10], we assigned

the constructible sheaf N † on X to N ∈ mod Λ. Through Sq A ∼= mod Λ, we have
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the constructible sheaf M+ on X corresponding to M ∈ Sq A. Here we give a precise
construction for the reader’s convenience. For the sheaf theory, consult [3].

For M ∈ Sq A, set

Spé(M) :=
∪

0̂6=x∈P

c(x) × Ma(x),

where a(x) ∈ M(x) ⊂ M is the one defined in Remark 10. Let π : Spé(M) → X be the
projection map which sends (p,m) ∈ c(x) × Ma(x) ⊂ Spé(M) to p ∈ c(x) ⊂ X. For an
open subset U ⊂ X and a map s : U → Spé(M), we will consider the following conditions:

(∗) π ◦ s = idU and sp = ta(x)−a(y) · sq for all p ∈ c(x) ∩ U , q ∈ c(y) ∩ U with x ≥ y.
Here sp ∈ Ma(x) (resp. sq ∈ Ma(y)) with s(p) = (p, sp) (resp. s(q) = (q, sq)).

(∗∗) There is an open covering U =
∪

i∈I Ui such that the restriction of s to Ui satisfies
(∗) for all i ∈ I.

Now we define a sheaf M+ on X as follows: For an open set U ⊂ X, set

M+(U) := { s | s : U → Spé(M) is a map satisfying (∗∗) }
and the restriction map M+(U) → M+(V ) for U ⊃ V is the natural one. It is easy to
see that M+ is a constructible sheaf with respect to the cell decomposition Γ(P ). For
example, A+ is the k-constant sheaf kX on X, and (A/px)

+ is (the extension to X of) the

k-constant sheaf on the closed cell c(x).
Let Sh(X) be the category of sheaves of k-vector spaces on X. Since the stalk (M+)p

at p ∈ c(x) ⊂ X is isomorphic to Ma(x), the functor (−)+ : Sq A → Sh(X) is exact.
As mentioned in the previous section, D : Db(Sq A) → Db(Sq A)op corresponds to T◦D :

Db(mod Λ) → Db(mod Λ)op, where D is the one defined in [10], and T is the translation
functor (i.e., T(M•)i = M i+1). Through (−)† : mod Λ → Sh(X), D gives the Poincaré-
Verdier duality on Db(Sh(X)), so we have the following.

Theorem 12. For M• ∈ Db(Sq A), we have

T−1 ◦ D(M•)+ ∼= RHom((M•)+,D•
X)

in Db(Sh(X)). In particular, T−1((I•
A)+) ∼= D•

X , where I•
A is the complex constructed in

Theorem 1, and D•
X is the Verdier dualizing complex of X with the coefficients in k.

The next result follows from results in [10].

Theorem 13. For M ∈ Sq A, we have the decomposition H i
m(M) =

⊕
a∈M H i

m(M)−a by
Corollary 11. The the following hold.

(a) There is an isomorphism

H i(X,M+) ∼= H i+1
m (M)0 for all i ≥ 1,

and an exact sequence

0 → H0
m(M)0 → M0 → H0(X,M+) → H1

m(M)0 → 0.

(b) If 0 6= a ∈ M with x = σ(a), then

H i
m(M)−a

∼= H i−1
c (Ux,M

+|Ux)

for all i ≥ 0. Here Ux =
∪

z≥x c(z) is an open set of X, and H•
c (−) stands for the

cohomology with compact support.
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Let H̃ i(X; k) denote the ith reduced cohomology of X with coefficients in k. That is,
H̃ i(X; k) ∼= H i(X; k) for all i ≥ 1, and H̃0(X; k) ⊕ k ∼= H0(X; k), where H i(X; k) is
the usual cohomology of X. Recall that H i(X; k) is isomorphic to the sheaf cohomology
H i(X, kX). In the Stanley-Reisner ring case, (the latter half of) the next result is nothing
other than a famous formula of Hochster.

Corollary 14 (Duval [1, Theorem 5.9]). We have

[H i
m(A)]0 ∼= H̃ i−1(X; k) and [H i

m(A)]−a
∼= H i−1

c (Ux; k)

for all i ≥ 0 and all 0 6= a ∈ M with x = σ(a).
Here, [H i

m(A)]−a is also isomorphic to the ith cohomology of the cochain complex

K•
x : 0 → Kρ(x)

x → Kρ(x)+1
x → · · · → Kd

x → 0 with Ki
x =

⊕
z≥x

ρ(z)=i

k bz

(bz is a basis element) whose differential map is given by

bz 7−→
∑
w≥z

ρ(w)=ρ(z)+1

ε(w, z) bw.

For this description, a can be 0 ∈ M. In this case, x = 0̂.

Duval uses the latter description, and he denotes H i(K•
x) by H i−ρ(x)−1(lkP x).

Proof. The former half follows from Theorem 13. The latter part follows from that
H i

m(A) ∼= H−i(D(A))∨ and that (D(A)∨)−a = K•
x as complexes of k-vector spaces by

Remark 10. ¤
Remark 15. Consider the polynomial ring T := Sym A1

∼= k[t1, . . . , tn] (note that T is not
a subring of A). Since A is a squarefree module over T , the Zn-graded Hilbert function
of H i

m(A) can be computed by [8, Theorem 2.10], and [1, Theorem 5.9] (essentially, the
latter half of Corollary 14) follows rather quickly.

Similarly, we can easily describe DT (A) ∼= RHomT (A,D•
T ), and it coincides with I•

A as
a complex of T -modules. That is, the dualizing complex D•

A becomes much easier if we
regard it as a complex of T -modules.

Theorem 16 (c.f. Duval [1]). Set d := rank P = dim X +1. Then we have the following.

(a) A is Cohen-Macaulay if and only if Hi(D•
X) = 0 for all i 6= −d+1, and H̃ i(X; k) =

0 for all i 6= d − 1.
(b) Assume that A is Cohen-Macaulay and d ≥ 2. Then A is Gorenstein*, if and only

if H−d+1(D•
X) ∼= kX . (When d = 1, A is Gorenstein* if and only if X consists of

exactly two points.)
(c) A is Buchsbaum if and only if Hi(D•

X) = 0 for all i 6= −d + 1.
(d) Set

dj :=


dim(suppH−j(D•

X)) if H−j(D•
X) 6= 0,

−1 if H−j(D•
X) = 0 and H̃j(X; k) 6= 0,

−∞ if H−j(D•
X) = 0 and H̃j(X; k) = 0.
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Here suppF = { p ∈ X | Fp 6= 0 } for a sheaf F on X. Then, for 2 ≤ i < d, A
satisfies Serre’s condition (Si) if and only if dj ≤ j − i for all j < d − 1.

Hence, Cohen-Macaulay (resp. Gorenstein*, Buchsbaum) property and Serre’s condition
(Si) of A are topological properties of X, while it may depend on char(k).
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