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Abstract. In the 1980s, Harada introduced a class of algebras now called Harada
algebras, which give a common generalization of quasi-Frobenius algebras and Nakayama
algebras. In this paper, we classify tilting modules over Harada algebras by giving a
bijection between tilting modules over Harada algebras and tilting modules over direct
products of upper triangular matrix algebras over K. A combinatorial description of
tilting modules over upper triangular matrix algebras over K is known. These facts
allow us to classify tilting modules over a given Harada algebra.

1. Introduction

Two classes of algebras have been studied for a long time. The first is Nakayama
algebras and the second is quasi-Frobenius algebras. In the 1980s, Harada introduced a
class of algebras now called Harada algebras, which give a common generalization of quasi-
Frobenius algebras and Nakayama algebras. Many authors have studied the structure of
Harada algebras (e.g. [7, 8, 17, 18, 19, 20, 21, 22]). Now let us recall that left Harada
algebras as defined from a structural point of view as follows.

Definition 1. Let R be a basic algebra and Pi(R) be a complete set of orthogonal
primitive idempotents of R. We call R a left Harada algebra if Pi(R) can be arranged
such that Pi(R) = {eij}m

i=1,
ni
j=1 where

(a) ei1R is an injective R-module for any i = 1, · · · ,m,
(b) eijR ' ei,j−1J for any i = 1, · · · , m, j = 2, · · · , ni.

Here J is the Jacobson radical of R.
Then we put

Pij := ei1J
j−1 ' eijR (1 ≤ i ≤ m, 1 ≤ j ≤ ni)(1.1)

for simplicity. By the above conditions (1) and (2), we have a chain

Pi1 ⊃ Pi2 ⊃ · · · ⊃ Pini

of indecomposable projective R-modules.

It follows from definition that left Harada algebras satisfy the property QF-3 which
is the condition that the injective hull of the algebra is projective. This property is
called 1-Gorenstein by Auslander (and dominant dimension at least one by Tachikawa)
[5, 12, 14, 15, 24], and often plays an important role in the representation theory. Left
Harada algebras form a class of 1-Gorenstein algebras, and their indecomposable projec-
tive modules have ”nice” structure.

The detailed version of this paper will be submitted for publication elsewhere.
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In this paper, we classify tilting modules over left Harada algebras. Tilting modules
provide a powerful tool in the representation theory of algebras and are due to [4, 9, 10].

Definition 2. Let R be an algebra. An R-module T is called a partial tilting module if
it satisfies the following conditions.

(1) proj.dimT ≤ 1.
(2) Ext1

R(T, T ) = 0.

A partial tilting R-module T is called a tilting module if it satisfies the following condition.

(3) There exists an exact sequence

0 −→ RR −→ T0 −→ T1 −→ 0

where T0, T1 ∈ addT .

We can see from the above definition that tilting modules are a generalization of pro-
generators. Morita theory shows that any progenerator P over an algebra R induces a
categorical equivalence between modR and mod(EndR(P )). This result is generalized by
Brenner-Butler. It says that any tilting module T over an algebra R induces two categor-
ical equivalences between certain full subcategories of modR and of mod(EndR(T )). As
a consequence, R and EndR(T ) share a lot of homological properties (e.g. finiteness of
global dimension). By this reason, tilting modules are important for the study of algebras
and finding a classification of tilting modules over a given algebra is an important problem
in representation theory.

Now we give notion which gives an essential class of tilting modules.

Definition 3. Let T be a module over an algebra R and T ' ⊕n
i=1Ti an indecomposable

decomposition of T . Then we call T basic if Ti and Tj are not isomorphic to each other
for any i 6= j.

Thanks to Morita theory, it is enough to consider basic tilting modules. We denote by
tilt(R) the set of isomorphism classes of basic tilting modules over an algebra R.

The aim of this paper is to give a classification of tilting modules over a left Harada
algebra. We present our main theorem which return the classification of tilting modueles
over left Harada algebras to that of tilting modules over upper triangular matrix algebras
over K. We dente by Tn(K) an n × n upper triangular matrix algebra over K.

Theorem 4. Let R be a left Harada algebra as in Definition 1. Then there is a bijection

tilt(R) −→ tilt(Tn1(K)) × tilt(Tn2(K)) × · · · × tilt(Tnm(K)).

We will construct the above bijection in Section 2, and give outline of the proof in
Section 3.

In Section 4, we give a description of tilting Tn(K)-modules by using non-crossing
partitions of regular polygons. Then we can completely classify tilting modules over a
given left Harada algebra.

In Section 5, we show an example of the classification of tilting modules over left Harada
algebras.

Throughout this paper, an algebra means a finite dimensional associative algebra over
an algebraically closed field K. We always deal with finitely generated right modules over
algebras. We denote by J the Jacobson radical of an algebra R.
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2. Main results

In this section, let R be a left Harada algebra as in Definition 1. We use the notation
(1.1). We consider a factor algebra R = R/I of R which is isomorphic to direct product
of upper triangular matrix algebras over K. R contains important information of R
which is seen in Lemma 10 and Proposition 11. After introducing R, we define a functor
F : modR −→ modR which induces the bijection of Theorem 4, and give the precise
statement of Thorem 4.

We start by giving the ideal I of R. We put

eijR ⊃ Iij := eijJ
ni−j+1 (1 ≤ i ≤ m, 1 ≤ j ≤ ni),

R ⊃ I :=
m⊕

i=1

ni⊕
j=1

Iij.

Obviously I is a right ideal of R. But it can be seen that I is also a left ideal of R. Thus
we have the following lemma.

Lemma 5. I is an ideal of R.

By Lemma 5, we can consider a factor algebra

R := R/I.

We show that R is isomorphic to direct product of upper triangular matrix algebras
over K. To show this, we describe all indecomposable projective R-modules as factor
modules of indecomposable projective R-modules. Since I is contained in J ,

{eij := eij + I | 1 ≤ i ≤ m, 1 ≤ j ≤ ni}

is a complete set of orthogonal primitive idempotents of R. Thus

{eijR | 1 ≤ i ≤ m, 1 ≤ j ≤ ni}

is a complete set of indecomposable projective R-modules. Obviously we have

eijR ' eijR/eini
J ' Pij/(Pini

J).

By the structure of R in Definition 1, indecomposable projective R-modules have the
following unique composition series.

P11/(P1n1J) ⊃ P12/(P1n1J) ⊃ · · · · · · ⊃ P1n1/(Pini
J) ⊃ 0

P21/(P2n2J) ⊃ P22/(P2n2J) ⊃ · · · · · · ⊃ P2n2/(P2n2J) ⊃ 0
...

Pm1/(PmnmJ) ⊃ Pm2/(PmnmJ) ⊃ · · · · · · ⊃ Pmnm/(PmnmJ) ⊃ 0

We note that composition factors of the above composition series are not isomorphic to
each other.

We put

ei := ei1 + ei2 + · · · + eini

for any 1 ≤ i ≤ m. Then by the above argument, we have the following result.

Proposition 6. We have the following algebra isomorphisms.
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(1) eiR ej ' HomR(ejR, eiR) '

{
Tni

(K) (i = j),

0 (i 6= j).

(2) R ' Tn1(K) × Tn2(K) × · · · × Tnm(K).

Next we consider a functor

F := −⊗R R : modR −→ modR.

This functor plays a key role for our main theorem.
Now we state a theorem which gives a bijection between tilt(R) and tilt(R) by using

the functor F .

Theorem 7. We have a bijection

F : tilt(R) 3 T 7−→ F (T ) ∈ tilt(R).

As a consequence of Theorem 7, we have the following result immediately.

Corollary 8. We have a bijection

tilt(R) 3 T 7−→ (F (T )e1, · · · , F (T )em) ∈ tilt(Re1) × · · · × tilt(Rem).

Hence by Proposition 6, we have Theorem 4.

3. Proof of Theorem 7

In this section, we keep the notations from the previous section. We show outline of
the proof of Theorem 7.

First we give a more stronger result than our main theorem. Namely we classify inde-
composable R-modules whose projective dimension is equal to one. Obviously projective
dimension of Pik/Pil is equal to one for any 1 ≤ i ≤ m, 1 ≤ k < l ≤ ni. The following
theorem shows that the converse holds.

Theorem 9. A complete set of isomorphism classes of indecomposable R-modules whose
projective dimension is equal to one is given as follows.

{Pik/Pil | 1 ≤ i ≤ m, 1 ≤ k < l ≤ ni}.

Next we consider the restriction on F to full subcategories P or Pi of modR which are
defined by

P := {M ∈ modR | proj.dimM ≤ 1}
and

Pi := add{Pij, Pik/Pil | 1 ≤ j ≤ ni, 1 ≤ k < l ≤ ni}
for any 1 ≤ i ≤ m. By Theorem 9, we have

P = add(P1 ∪ P2 ∪ · · · ∪ Pm).

The restriction on F to P has two important properties. First property is the following
lemma which is proved by easy calculations.

Lemma 10. The following hold.

(1) The restriction on F to P induces a bijection from isomorphism classes of P to
that of modR.
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(2) The restriction on F to Pi induces a bijection from isomorphism classes of Pi to
that of mod(Rei).

We remark that the restriction on F to P is not faithful in general, in particular, it is
not an equivalence.

Second property is that F preserves vanishing property of first extension group on P .

Proposition 11. For any M , N ∈ P, Ext1
R(M,N) = 0 if and only if Ext1

R
(F (M), F (N)) =

0.

Finally by using the following well-known charactarization of tilting module, we can
prove Theorem 7.

Proposition 12. [3] Let R be a general algebra. Let T be a partial tilting module. Then
the following are equivalent.

(1) T is a tilting module.
(2) The number of pairwise nonisomorphic indecomposable direct summands of T is

equal to that of pairwise nonisomorphic simple R-modules.

Now we prove Theorem 7. Let T be a basic tilting R-module. It is enough to show
that F (T ) is a basic tilting R-module. First by proj.dimT ≤ 1, we have T ∈ P . Next by
Ext1

R(T, T ) = 0 and Proposition 11, we have Ext1
R
(F (T ), F (T )) = 0. Therefore F (T ) is

a basic partial tilting R-module. Finally by Lemma 10 and Proposition 12, we can see
that the number of pairwise nonisomorphic indecomposable direct summands of F (T ) is
equal to that of pairwise nonisomorphic simple R-modules. Consequently by Proposition
12, F (T ) is a basic tilting R-module. ¤

4. Combinatorial description of tilting Tn(K)-modules

In this section, we show a classification of basic tilting Tn(K)-modules by constructing a
bijection between tilt(Tn(K)) and the set of non-crossing partitions of the regular (n+2)-
polygon. We remark that our classification should be well-known for experts [2, 11, 16, 23].

First we introduce coordinates in the AR-quiver of Tn(K) as follows.

(1,3)

(1,4)

(2,4)

(1,n+1)

(1,n+2)

(2,n+2)

(2,n+1)

(n−1,n+2)

(n−1,n+1) (n,n+2)

??ÄÄÄÄÄÄ ÂÂ?
??

??
?

??ÄÄÄÄÄÄ

ÂÂ?
??

??
?

ÂÂ?
??

??
?

??ÄÄÄÄÄÄ

??ÄÄÄÄÄÄ ÂÂ?
??

??
?

We remark that the vertex (i, j) corresponds the Tn(K)-module

Mij =

j−2
ˇ

1
ˇ

( 0 ··· 0 K ··· K ) /

i
ˇ

1
ˇ

( 0 ··· 0 K ···K )=

j−2
ˇ

i
ˇ

1
ˇ

( 0 ··· 0 K ··· K 0 ··· 0 ) .
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Next we consider a regular (n+2)-polygon Rn+2 whose vertices are numbered as follows.

1
2n+2

i−1
i

i+1

UUUUUiiii

iiiii
UUUUU

We denote by D(Rn+2) the set of all diagonals of Rn+2 except edges of Rn+2. We
call a subset S of D(Rn+2) a non-crossing partition of Rn+2 if S satisfies the following
conditions.

(1) Any two distinct diagonals in S do not cross except at their endpoints.
(2) Rn+2 is divided into triangles by diagonals in S.

We denote by Pn+2 the set of an non-crossing partitions of Rn+2.
Now we construct the correspondence Φ from Pn+2 to tilt(Tn(K)). We take S ∈ Pn+2.

We remark that non-crossing partition of Rn+2 consists of n− 1 diagonals. We denote by
(i, j) the diagonal between i and j for i < j and put

S = {(i1, j1), (i2, j2), · · · , (in−1, jn−1)}.

Then we define

Φ(S) := M1,n+2 ⊕

(
n−1⊕
k=1

Mik,jk

)
.

It is shown that this is a basic tilting Tn(K)-module.

Then the following hold.

Theorem 13. The above correspondence Φ is a bijection.

Theorem 13 gives a constructive bijection.

Example 14. We consider n = 3 case. We classify basic tilting T3(K)-modules by using
Theorem 13. The partitions of the regular pentagon into triangles are given as follows.

(1) 1

OOOOOOOOOOOOOO

²²
²²
²²
²²
²²
²²
²²

//
//

//
//

//
//

//

5

oooooooooooooo
2

¡¡
¡¡

¡¡
¡

4

>>>>>>>
3

(2) 1

OOOOOOOOOOOOOO

5

oooooooooooooo
2

¡¡
¡¡

¡¡
¡

jjjjjjjjjjjjjjjjjjjj

4

>>>>>>>
3
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(3) 1

OOOOOOOOOOOOOO

5

oooooooooooooo
2

¡¡
¡¡

¡¡
¡

4

>>>>>>>
3

//////////////

TTTTTTTTTTTTTTTTTTTT

(4) 1

OOOOOOOOOOOOOO

5

oooooooooooooo
2

¡¡
¡¡

¡¡
¡

4

>>>>>>>

²²²²²²²²²²²²²²

jjjjjjjjjjjjjjjjjjjj
3

(5) 1

OOOOOOOOOOOOOO

5

oooooooooooooo

TTTTTTTTTTTTTTTTTTTT 2

¡¡
¡¡

¡¡
¡

4

>>>>>>>
3

Therefore the number of basic tilting T3(K)-modules is equal to 5 and all of basic tilting
T3(K)-modules are given as follows.

(1) ( K K K ) ⊕ ( 0 K K ) ⊕ ( 0 0 K ),
(2) ( K K K ) ⊕ ( K K 0 ) ⊕ ( 0 K 0 ),
(3) ( K K K ) ⊕ ( K 0 0 ) ⊕ ( 0 0 K ),
(4) ( K K K ) ⊕ ( 0 K K ) ⊕ ( 0 K 0 ),
(5) ( K K K ) ⊕ ( K K 0 ) ⊕ ( K 0 0 ).

5. Example

In this section, we show an example of the classifications of tilting modules over Harada
algebras.

Example 15. Let R be a basic QF-algebra whose complete set of orthogonal primitive
idempotents is given by {e, f}. Then we can represent R as the following matrix form.

R '
(

eRe eRf
fRe fRf

)
=:

(
Q A
B W

)
.

Now we consider the block extension (c.f. [8, 22])

R(n1, n2) :=



Q · · · Q A · · · A
. . .

...
...

...
J(Q) Q A · · · A

B · · · B W · · · W
...

...
. . .

...
B · · · B J(W ) W


for n1, n2 ∈ N of R which is a subalgebra of EndR((eR)n1 ⊕ (fR)n2). We can show that

(a) the first and (n1 + 1)-th rows are injective modules,
(b) the i-th row is the Jacobson radical of the (i − 1)-th row for 2 ≤ i ≤ n and

n + 2 ≤ i ≤ n + m.
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In particular R(n1, n2) is a left Harada algebra with m = 2 in Definition 1.
We classify basic tilting R(n1, n2)-modules. By easy calculation, we can see that the

ideal I which is defined in Section 2 of R(n1, n2) is given by

I =



J(Q) · · · J(Q) A · · · A
...

...
...

...
J(Q) · · · J(Q) A · · · A

B · · · B J(W ) · · · J(W )
...

...
...

...
B · · · B J(W ) · · · J(W )


.

Hence we have

R = R/I =



Q/J(Q) · · · Q/J(Q) 0 · · · 0
. . .

...
...

...
0 Q/J(Q) 0 · · · 0
0 · · · 0 W/J(W ) · · · W/J(W )
...

...
. . .

...
0 · · · 0 0 W/J(W )


' Tn1(K)×Tn2(K).

By Theorem 7, The functor

F = −⊗ R : modR −→ modR

induces a bijection

tilt(R(n1, n2)) −→ tilt(Tn1(K)) × tilt(Tn2(K)).

We can obtain all basic tilting R(n1, n2)-modules from the above bijection and Theorem
13.
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