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0. Introduction

To me noncommutative algebraic geometry came from the consideration of noncommu-
tative spaces defined in terms of notions like : noncommutative valuations and pseudoval-
uations, primes in algebras, prime ideals of Noetherian rings or prime torsion theories
for rings or categories. The root of the theory was in the theory of the Brauer group of
a field via suitable subrings of central simple algebras, therefore at first rings satisfying
polynomial identities played a dominating role. For such a ring R the noncommuta-
tive space prompting itself is SpecR, the prime ideal spectrum with its Zariski topology;
in [93], a structure sheaf over SpecR for a noncommutative ring R had been first con-
structed. In the case of rings with polynomial identities this could be tied to arithmetical
pseudo-valuation theory and a corresponding divisor theory leading to a noncommutative
version of a Riemann-Roch theorem for central simple algebras over curves (see [130],
[137] which turned out to be an extension of some idea of E. Witt (see the book by M.
Deuring, Algebra), This combined in the concept of noncommutative geometry in the P.I.
case, the subject being first called that in the publication [137]. Also this theory con-
nected well with maximal orders and Azumaya algebras and it developed into a branch
related to the Brauer group of schemes and varieties. Now the localization theory was
well established for abelian categories, see P. Gabriel [47], while on the other hand a
result of Van Oystaeyen, Verschoren stated that BrProjC = Br(C,K+)-gr where C is
a commutative positively graded ring and (C,K+)-gr is the quotient category of finitely
generated graded C-modules for the torsion theory κ+ associated to the positive cone
C+ = C1⊕, . . . ,⊕Cn⊕, . . . of C. Deleting Br in the formula suggests that ProjC is “iden-
tified” with that quotient category. The J. P. Serre’s global section theorem does relate
the quasi-coherent sheaves over ProjC to that quotient category, in fact when Co = k,
a field, and C = C0[C1], then the quotient category is just finitely generated graded C-
modules modulo finite length modules. So assuming that a noncommutative version of
J.P. Serre’s result exists, the noncommutative geometry of ProjR should be approachable
via the homological algebraic theory of the category (R, κ+)-gr. It turned out that a
noncommutative versions of the global section theorem is available only in case one intro-
duces a noncommutative topology on the localizations spectrum allowing compositions
of localizations that are not again localizations. This leads to the definition of schematic
algebras and it was checked that a very large class of noncommutative rings are schematic,
inducing all interesting quantized algebras and other rings appearing in recent literature.

The paper is in a final form and no version of it will be submitted for publication elsewhere.
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Rings appearing in nature were given by generators and relations and as such they
inherited the filtration defined by the grading filtrations on the free algebra. The definition
of Zariskian filtration, introduced in [79] and the use of the Rees ring (blow-up ring)
then allowed the interplay between algebraic geometry and its projective version much
as in the commutative case. The filter-graded transfer of homological properties and
of the schematic condition provided for a fruitful technical framework to study many
interesting examples, e.g. generalized Weyl algebras, generalized gauge algebra containing
E. Witten’s gauge algebra for gauge theory of slU2, etc... Using Auslander’s regularity
condition it was possible to extend regularity from Azumaya algebras over regular center to
more general noncommutative rings, not necessarily finite over the center; the filter-graded
transfer for Auslander regularity provided many interesting examples of noncommutative
regular algebras (schemes). The study of regular algebras and their classification in low
dimension became a fruitful research direction, recently developing into the direction of
Calabi-Yau algebras (see [26]) etc...

Let us point out that a good version of geometric product may be found in the general
twisted product of algebras, cf. [83]; its good behaviour with respect to connections
provides a link with the work of A. Connes. The noncommutative geometry developed by
A. Connes after the 1980s was more based in operator theory and C∗-algebras, one could
call it noncommutative differential geometry. The space in this geometry remains virtual
and one imagines the noncommutative algebra as a ring of “functions” defined on the
virtual variety. There are several contact points between both versions of noncommutative
geometry, it remains to be seen whether the phrasing in terms of noncommutative spaces
in algebraic geometry is feasable and useful in the other case.
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1. From Pseudoplaces to Noncommutative Riemann Surfaces

In an arbitrary ring S a couple (P, S ′) where S ′ is a subring of S and P is a prime ideal
of S ′ is called a prime of S if xS ′y ⊂ P with x, y ∈ S yields that x of y is in P . The map
S ′ → S ′/P is a pseudoplace of S. A couple (P, S ′) dominates (P1, S1) if S ′ ⊃ S1 and
P∩S1 = P1, a dominating prime is one that is maximal with respect to domination. The
set Prim(S) of all primes of S has a topology with basis D(F ) = {P ∈ Prim(S), P∩F = ∅}
for F a finite subset of S. For example if K is a field and A a K- central simple algebra,
Ov a valuation ring of K then any maximal Ov-order Λ in A yields a dominating prime
(J(Λ), Λ) where J(Λ) is the Jacobson radical of Λ.

Consider a prime P.I.-ring S with quotient ring (Q(S), which is then a central simple
algebra. A fractional ideal I of S is a twosided S-submodule of Q(S) such that cI ⊂ S
for some nonzero c ∈ Z(S) (the centre of S). S is an arithmetical ring when fractional
ideals commute for the product in Q(S). Let F (S) be the set of fractional ideals of S.
Consider a totally ordered semigroup Γ, a pseudovaluation v on F (S) is a function
v : F (S) → Γ, satisfying :

i) v(IJ) ≥ v(I)v(J) for I, JvF (S)
ii) v(I + J) ≥ inf{v(I), v(J)} for I, J ∈ F (S)
iii) v(S) = 0 and v(o) = ∞
iv) If I ⊂ J then v(I) ≥ v(J) for I, J ∈ F (J)

If moreover we have : (v)v(IJ) = v(I) + v(J), we say v is an arithmetical pseudoval-
uation (a.p.v.).

Any a.p.v. on Q defines a prime (P,QP ) where QP is the idealizer of P in Q and
P = {q ∈ Q, v(SqS) ⊂ 0}. Conversely any prime (P,QP ) where S ⊂ QP defines an
a.p.v., v say, such that P = {q ∈ Q, v(SqS) ⊃ o}.

If the value semi-group of an a.v.p. is a group then the corresponding prime is dominat-
ing. Any prime (P,QP ) of a central simple algebra is said to be discrete if QP contains
an arithmetical ring S and satisfies the a.c.c. on ideals while P is the unique maximal
ideal of Q such that P = πQP for some invertible π in Q. In the discrete case Γ ∼= Z and
QP is itself arithmetical. In particular any maximal order in Q over a dicrete valuation
ring of K = Z(Q) is a discrete prime. A set of discrete primes inducing inequivalent
valuations on K is said to be divisorial if for q ∈ Q we have v(q) = 0 for almost all
a.p.v. associated to the discrete primes in the set, this condition has to be checked only
for q ∈ Z(Q)! The elements of a divisorial set Q are called prime divisors. A divisorial
set Q is associated to be chosen fixed : a divisor δ of Q associated to Q is a formal
product

∏
v∈Q vτv with τv ∈ Z and τv = 0 for almost all v ∈ Q, the exponent τv is called

the order τv = ordvδ.

Consider a subfield ko of an algebraically closed field k. In [137] we consider an affine
curve over ko as a ko-quasivariety Ω(R) for some prime affine P.I. algebra R over ko having
Krull dimension 1. By a result of L. Small such an algebra is a finite module over its
centre. If n = p.i.degR then M ∈ Ω(R)n correspond to m ∈ Ω(C), L = Z(R), such that
R ⊗k kC(m) = Mn(k). For ko 6= k it is still true that kR(M) = R ⊗ko ko(m) is a central
simple algebra and P ∈ Ωn(R) if and only if kR(P ) has degree n (dimension : n2) if and
only if P ∩ C is non split.
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An algebraic function field K in one variable over ko is an extension K of ko such that
ko is algebraically closed in K and K is separable of t.d. over ko.

A function algebra in one variable over ko is a central simple K-algebra A. For an
affine prime P.I. algebra over ko there is equivalence between Ω(R) (the space of maximal
ideals) being an affine ko-curve and Q(R) being a function algebra in one variable. The
complement of unramified points in Z(R) is the ramification divisor of Ω(C) for Q, these
correspond to the maximal ideals of C that are split in R.

Let Cko(R) be the set of all ko-valuation rings Ov of K (those are discrete). For every
Ov ∈ Cko(K) we choose and fix a maximal order Λv over Ov and write Cko(Q) for this
set. This choice can’be made such that almost all Λv contain a suitable Azumaya algebra
(obtained as ∩P∈Ωn(R)RP for some R ascending the curve). Write DQ for the group of
divisors generated by Cko(Q). The degree of a divisor δ ∈ DQ, δ = Σfvordvδ, where fv is
the absolute residue class degree u.e. fv = dimk0kv, kv the residue field of Ov. We say
that δ1|δ2 if for all v ∈ Q, ordvδ1 ≤ ordvδ2.

1.1 Lemma. If δ1|δ2 then :

dimko(Γ(δ1(S))/Γ(δ2(S)) = deg δ2 − deg δ1

where for any finite subset S of the algebra of valuation vectors VQ, Γ(δ|S) = {a ∈
R, v(a) ≥ ordvδ, all v ∈ S} (cf. [130], [137]).

In particular if S = VA then we define L(S) as Γ(δ|VA) and l(δ) = dimkoL(δ). Valuation
forms can now also be defined in the noncommutative case and by using the reduced
trace map for Q every valuation form is of the form w(Tr(a−)) for some a ∈ Q and fixed
valuation form w.

1.2 Theorem. Riemann-Roch for n.c. curves Let β ∈ DQ be arbitrary and δ
“canonical” (see Proposition XI.3.9. p. 376 of [137]), then :

degβ + l(β) = l(β−1δ−1) + 1 − gQ

where gQ is a constant, called the genus of Q.

The ring l = ∩{Λv, Λv ∈ Cko(Q)} is the ring of ko-constants it is algebraic over ko and
a central simple algebra finite dimensional over K0 (XI.2.14 of [137]).

1.3 Corollary.

i) `(δ−1) = n − 1 + gQ, n = dimko`.
ii) deg(δ−1) = 2 − 2yQ

iii) gQ = NgK
− N + 1 + 1

2
Σfv(rv − 1), where fv is the residual degree rv the

ramification index of v, N = dim[Q : K].

1.4 Theorem. Let k = ko and X = Ω(R) an affine k-curve with central curve Y =
Ω(Z(R)) then : gX = NgY − N + 1 (since k is algebraically closed Q = Q(R) = Mn(K)
by Tsen’s theorem.

1.5 Remark. If Q = Mr(∆) then gQ = r2g∆−r2 +1. The Brauer group of K (not trivial
if ko is not algebraically closed) yields invariants gQ for every [Q] ∈ BrK. What is the
relation between the commutative geometry of the central curve and these invariants ?

–83–



1.A. Project : Noncommutative Invariants of Varieties

After [130], [137], Van den Bergh, Van Geel obtained a cohomological Riemann-Roch
result for higher dimensional noncommutative varieties. The foregoing question may be
generalized to this higher dimensional situation using the ingredients (invariants) stem-
ming from the Riemann Roch theorem.

In dimension more than two there are noncommutative invariants stemming from the
Brauer group of the function field that is now not trivial even in the case where ko is
algebraically closed. There is some work of M. Artin about maximal orders over surfaces
(see [9]) but a complete noncommutative version of the work of O. Zariski on surfaces
remains to be developed. In general the set of discrete primes of a central simple algebra
provides us with something like s noncommutative Riemann surface. The theory of a.p.v’s
works well if some arithmetical ring is given but it should be extended to more gener-
tal situations using rings in which ideals do not commute and noncommutative (totally
ordered) value groups.

1.B. Project : Valuations of Weyl Algebras, Enveloping Algebras etc..

The theory of valuations also extends to the non P.I. case; O. Schilling (cf. [117]) already
introduced noncommutative valuations on skewfields not necessarily finite dimensional
over the centre. However, the valuation theory for most quantized algebras nowadays
popular remains unexplored. In a paper with L. Willaert, I investigated valuations of the
Weyl skewfield and this led to the discovery of a subring of the Weyl skewfield having it
as a ring of fractions (therefore in some sense birational to the Weyl algebra K[X][ ∂

∂X
] ∼=

K < X, Y > /(Y X − XY − 1)) and being a kind of antipode for the Weyl algebra. This
ring appearing as the intersection of noncommutative valuation rings is a “duo ring” i.e.
each one sided ideal is two sided and localizations at prime ideals correspond to valuation
over rings. A divisor theory for the Weyl field remained to be worked out. Up to a
particiular application related to Sklyanin algebras, the noncommutative valuation theory
remains to be applied. For example, it is an unpublished consequence of some results in
the Ph. D. thesis of L. Hellström (Lund T. U., Sweden) that one may construct large
families of noncommutative valuations of the skewfield appearing as the ring of fractions
of the enveloping algebra of a finite dimensional Lie algebra. Further characterization of
these n.c. valuations and calculations similar to a divisor calculus should be undertaken
and these results should have meaning in the structure theory of Lie algebras or at least
in the noncommutative geometry of their enveloping algebras. In particular some rings
appearing as intersections of families of n.c. valuation rings could shed new light on the
algebraic structure ?

2. Schematic Algebras and Noncommutative Schemes

Algebraic geometry is built upon the correspondence between quotients of polynomial
rings and varieties embedded in affine (projective) spaces. In noncommutative algebra
the generic algebra i.e. the free algebra, is not too well behaved and the formation of
products (tensor products) is also somewhat problematic. Is it possible to fix a class of
algebras such that most operations from scheme theory may be performed whilst keeping
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a good duality with noncommuative algebra constructions ? For a given noncommutative
algebra one may of course try to extend the algebraic techniques appearing in commutative
algebraic geometry to it without trying to associate a “geometric” space to it. This
works to some extent in several cases but it is perhaps not guaranteed that one is really
studying a noncommutative geometry, it is noncommutative algebra in disguise. I always
wanted some kind of topological space and (coherent) sheaves on it to correspond to the
module of some ring of functions via some noncommutative version of J.P. Serre’s global
section theorem. This led to the introduction of noncommutative topology and schematic
algebras.

2.1 Noncommutative Spaces and Localization

Perhaps a few historical remarks concerning the development of this subject. During my
stay at Cambridge University in 1972-73 I worked with D. Murdoch (Vancouver University
B. C.) on localization theory and we constructed the first structure sheaf for a noncommu-
tative ring yielding the ring as global sections, cf. [93]. For me this was connected to the
primes or pseudoprimes I introduced in my thesis and I combined the ideas into a theory
of prime spectra for noncommutative rings in [134] where I also started the projective
theory by constructing Proj for a noncommutative positively graded ring. This was also
related to my search for an answer to a question J. Murre (University of Leiden) asked me
concering a purely algebraic description of the Brauer group of a projective variety during
our stay at Cambridge. Since maximal orders were at the centre of all these problems I
started a seminar on this topic at the University of Antwerp (UIA) which attracted many
students and visitors. With J. Van Geel, E. Nauwelaerts and visitor H. Marubayashi and
later L. Willaert we continued in the direction of primes of noncommutative algebras;
with A. Verschoren and L. Le Bruyn in the direction of localization and noncommutative
schemes, with L. Le Bruyn, E. Jespers, P. Wauters in the direction of graded orders and
later with M. Van den Bergh in projective noncommutative geometry. The work with A.
Verschoren (resulting in the first book with the title “Noncommutative Geometry”, cf.
[137]) was noticed by M. Artin and after a stay of A. Verschoren at the M.I.T. there was
a growing group of people involved in the development, including M. Artin, W. Schelter
etc... Starting from regularity conditions from homological algebra, M. Van den Bergh
then cooperated with M. Artin, J. Tate (cf. [6],[7]) and later with T. Stafford, P. Smith
and many more, specially on low dimensional noncommutative varieties. On the other
hand the graded constructions in the constructions of proj created a cooperation with C.
Nǎstǎsescu on graded ring theory, cfr. [97], [95], [94]. Meanwhile it turned out that the
answer to the question of J. Murre fitted completely in the framework of graded localiza-
tion. After I introduced the graded Brauer group of a Z-graded ring, A. Verschoren and I
described the Brauer group of a projective variety algebraically as the Brauer group of the
category (in modern language) appearing as a quotient category of the finitely generated
graded modules modulo those of finite length i.e. the graded quotient category associated
to the graded localization at the positive cone of the positively graded coordinate ring.
This continued in work on the cohomology of graded rings with S. Caenepeel [32] and
extended to Brauer groups of other actions and conditions leading to the Brauer group of
a quantun group, cf. [33], [34], and later with Y. H. Zhang to a theory of Brauer groups
of braided categories, cf. [142], [143]. After the beginning of the interest in graded rings,
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filtrations also became interesting, particularly because of the use of the Rees (blow up)
ring; this makes for a transfer between graded and filtered ring theory allowing several nice
applications to for example rings of differential operators and (generalized) Weyl algebras
cfr. work with Li Huishi [79], [80], and later with V. Bavula [17] [18]. The connection
with representation theory was also explored at several places and developed mainly by
L. Le Bruyn and M. Van den Bergh e.g. in the geometry of path algebras for quivers
cf. [69],[68]. This shows how the original ideas concerning a kind of noncommutative
geometry has branched into many directions that have achieved nowadays a good level of
popularity.

So originally we considered a noncommutative variety or scheme as a structure sheaf
on the prime spectrum, that prime spectrum was either determined in terms of prime
ideals (Murdoch, Van Oystaeyen) or prime torsion theories (J. Golan, J. Raynand, F.
Van Oystaeyen cf. [47]). However in the noncommutative case, the construction was not
functorial (I remember to have proved, unpublished, that functionality forces commuta-
tivity) but it was possible to view Spec as a (localization) functor on the category of
modules and to relate a ring morphism to a natural transformation of the Spec functor.
This has convinced me that the construction of a (noncommutative) topology was more
essential than the choice of points, in fact one could work with a pointless topology and
sheaf theory over that. This gave rise to the construction of virtual topology and functor
geometry, a very abstract framework for categorical algebraic geometry, cf. [135].

A noncommutative ring R is said to be (affine) schematic if there exists a finite set
of nontrivial Ore sets S1, . . . , Sn such that for every choice of si ∈ Si, i = 1, . . . , n we
have that

∑n
i=1 Rsi = R or equivalently ∩iL(Si) = {R} where L(Si) is the Gabriel

filter of Si. Recall that a left Ore set S of R is a multiplicatively closed subset of
R, 0 6∈ S, 1 ∈ S, such that for given r ∈ R, s ∈ S there exists r′ ∈ R, s′ ∈ S such
that : s′r = r′s and moreover if rs = 0 then there is an s′′ ∈ S such that s′′r = 0.
The right version is defined symmetrically. For an Ore set S the ring of fractions S−1R
exists and in this case the left localization at S and the right localization coincide. For
an R-module M the S-torsion part of M is Ms = {m ∈ M, sm = 0 for some s ∈ S}
and S−1M = S−1R ⊗R M is the (left) localization of M at S. Clearly M/tSM is S-
torsion free i.e. tS(M/tSM) = 0 and we have the standard localization morphism in
jS : M → S−1M with kerjS = tSM and ImjS

∼= M/tSM . In case R is the free algebra
it only has trivial Ore sets i.e. contained in the ground field and hence already invested
in the ring. So free algebras, the generic algebras in the associative situation, are not
schematic. On the other hand all rings frequently encountered in noncommutative algebra
seem to be schematic. For example the ring of generic matrices, the Weyl algebras,
the coordinate ring of quantum 2 × 2-matrices Qq(M2(C)) is schematic (1.2.11 of [131]),
quantum Weyl algebras An(q) (1.2.14 of [131]), rings that are finite modules over their
centre, the Sklyanin algebra SK(a, b, c) (1.2.17 of [131]), E. Witten’s gauge algebras W (C),
(1.2.21 of [131]), quantum sl2 (1.2.23 of [131]). Let A be a K-algebra and positvely graded
such that A = K ⊕A2 ⊕ . . . we write A+ for A1 ⊕A2 ⊕ . . . and K+ for the torsion theory
with Gabriel filter L(K+) = {L left ideal of A,L ⊃ An

+ for some n ∈ N}. We say A is
schematic (projective) if there exists a finite set of homogeneous Ore sets, say I, such
that for every S ∈ I, S ∩ A+ 6= ∅ and such that for any si ∈ Si, i ∈ I, there exists
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an m ∈ N such that (A+)m ⊂
∑

i∈I Asi (or equivalently : ∩ L(Si) = L(K+) where
L(Si) = {L ⊂ A,L ⊃ Asi for some si ∈ Si}, or equivalently κ+ = Λi∈IL(Si) holds in
the lattice of torsion theories on A-gr, the category of graded A-modules). A schematic
positively graded K-algebra need not be affine schematic, we have a weaker notion weakly
affine schematic defined as (projective) schematic plus the fact that the Si ∈ I are such
that A = ∩i∈IS

−1
i A.

If we have a positively filtered K-algebra A with filtration ... ⊂ Fn−1A ⊂ FnA ⊂ . . . ⊂ A
then the associated graded algebra is G(A) = ⊕n∈NFnA|Fn−1

A = K ⊕ F1(A)|K ⊕ . . . and the Rees algebra (or the blow-up algebra of FA) is Ã ∼=∑
n Fn(A)T n ⊂ A[T ]. It is easy to see that G(A) = Ã|ÃT, A = Ã|(T − 1)Ã and T is a

central regular element homogeneous of degree 1 in Ã. In the positively filtered situation
(this is a discrete filtration) the filtration will be Zariskian in the sense of [79] exactly

when Ã is Noetherian which in this case is equivalent to G(A) being Noetherian.

2.1.1 Theorem. If FA is a positive Zariskian filtration on A such that F0A = K, then

if G(A) is schematic it follows that Ã is schematic too.

2.1.2 Corollary. If in the situation of the theorem G(A) is commutative then Ã is
schematic. It follows from this that rings of differential operators on varieties (non-
singular) and enveloping algebras of Lie algebras have schematic Rees rings.

When trying to introduce a scheme theory on ProjA = Y for some positively graded
noncommutative K-algebra A = K ⊕ A1 ⊕ A2 ⊕ . . . ..., a good idea could be to replace
an affine open, something like Y (f) in the commutative case, by a homogeneous Ore
set S of A and the ring of sections (in the commutative case (Af )o) by (S−1A)o. If A
is schematic then we have covered Y by “opens” corresponding to the Si, i ∈ I. For
commutative A if Y (fi) cover Y then Y (ffi) cover Y (f) and for modules of sections we
have Mf = lim

←−
i

{Mffi
, i} where Mf stand for the localization at the multiplicative set

{1, f, f 2, . . .}. The straightforward generalization of this property would require that the
canonical map :

(∗) QκS1 ∧ . . . ∧ κSd
(M) −→ lim

←−



QSi
(M)

&&MMMMMMMMMM

. . . QSi∨Sj
(M)

QSj
(M)

88qqqqqqqqqq


has to be an isomorphism for all M ∈ A-gr. Looking at just two Ore sets S and T , (*)
will be an isomorphism if and only if QS and QT commute, i.e. if and only if : κSQT =
QT κS and κT QS = QSκT . This compatibility does not always hold and the solution is
to introduce more “open sets” i.e. to define a suitable noncommutative Grothendieck
topology defined in terms of localization functors on a suitable category. For ProjA the
category on which the scheme structure is defined is A-gr localized at κT , i.e. (A, κ+)-gr

–87–



or the finitely generated objects in this. Let us write O(A) for the set of homogeneous
left Ore sets S of A such that 1 ∈ S, 0 6∈ S and S ∩ A+ 6= ∅. The free monoid on O(A) is
denoted by D(A). If W = S1, . . . , Sn ∈ W(A) then we write w ∈ W meaning that w is
of the form s1 . . . sn with si ∈ Si, i = 1, . . . , n. The category W is defined by taking the
elements of W (A) for the objects while for words W = S1 . . . Sn,W

′ = T1 . . . Tm we define :
Hom(W ′,W ) = {W ′ → W} or ∅ depending on whether there exists a strictly increasing
map α : {1, . . . , n} → {1, . . . ,m} for which Si = Tα(i) or not. So Hom(W ′W ) is a singleton
if it is not empty. Put QW (M) = (QSn ◦. . .◦QS1)(M) = QSn(A)⊗A . . .⊗QS1(A)⊕AM . To
W we associate a filter of left ideals of A, L(W ) = {L,w ∈ L for some w ∈ W}. For w,w′ ∈
W there are a, b ∈ A such that : aw = bw′ = w′′ ∈ W , also for w ∈ W,a ∈ A there are
w′ ∈ W, b ∈ A such that w′a = bw. For M ∈ A-mod, κW (M) = {x ∈ M,wx = 0 for some
w ∈ W}; this κW is an exact preradical on A-mod and it is not necessarily idempotent.
L(W ) has a cofinal system of graded left ideals so it induces on exact preradical of A-gr.
If W ′ → W in W then L(W ) ⊂ L(W ′) and for every V ∈ W,W ′W → WV , as well
as V W ′ → V W , are morphisms in W . A global cover of Y = ProjA is just a finite
subset {Wi, i ∈ I} of objects of W such that

⋂
i∈I L(Wi) = L(κ+); the existence of at

least one global cover given by words consisting of one letter, is ensured by the schematic
constitution for A. For W ∈ W we let cov(W ) be {WiW → W, i ∈ W}. The category
W together with the sets cov(W ) form a noncommutative Grothendieck topology. Global
covers induce covers because of :

2.1.3 Lemma. If {Wi, i ∈ I} is a global cover then for all V ∈ W we have that L(V ) =⋂
i∈I L(WiV ).

A presheaf Q on W is now a contravariant functor from W to A-gr such that for
all w ∈ W the sections Q(W ) of Q over W form a graded QS(R)-module where S is
the last letter of W . For W = 1 we demand Q(1) to be a Qκ+(A)-module, we write
Γ∗(Q) = Q(1). It is straightforward to define sheaves by introducing separatedness and
glueing conditions.

For any graded A-module M we obtain a structure presheaf Og
M associating to W the

QW (M).

2.1.4 Theorem. For any graded A-module M , A being a schematic K-algebra, the struc-
ture presheaves Og

M and OM = (Og
M)o are in fact sheaves !

The affine-like properties follows from :

2.1.5 Proposition. Let A be a schematic K-algebra and suppose that A = K[A1]. For
every homogeneous Ore set S ∈ O(A) (thus S ∩ A+ 6= ∅) the ring S−1A = QS(A) is
strongly graded.

Recall that a R-graded ring is said to be strongly graded if RnR−n = R0 = R−nRn

for all n, or equivalently R1R−1 = R0 = R−1R1. For a strongly graded ring R − gr ∼= R0-
mod. On the basic opens QS(A) is a (strongly) graded ring and QS(M) is a graded
QS(A)-module ! This need not hold with respect to QW for general W ! To S ∈ O(A) we
associate a basic open Y (S) given by QS(A)-gr equivalent to QS(A)o-fgmod, (fg stands
for finitely generated) the latter may be viewed as “SpecQS(A)o”.
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2.1.6 Definition. A noncommutative projective scheme ProjA is defined by (A, κ+)fg-
gr with a non-commutative Grothendieck topology W with affines Y (Si) generating the
topology by intersections. We may view Y (S) as SpecA(S), where A(S) = (S−1A)o, defined
in a categorical way.

2.2 Noncommutative Topology and Categorical Theory

The correspondence between coherent sheaves and module categories over the ring of
global sections is in the commutative case given by J. P. Serre’s fundamental global
sections theorem. In the noncommutative case a sheaf F on W is quasi-coherent if
there is an affine cover {Ti, i ∈ J} for Y = ProjA together with graded QTi

(A)-modules
Mi such that for any morphism V → W in W we obtain a commutative diagram, the
vertical arrows representing isomorphisms in A-gr.

F(TiW ) //

²²

F(TiV )

²²
QW (Mi) // QV (Mi)

A quasi-coherent F is said to be coherent if all Mi, i ∈ J , one finitely generated QTi
(A)-

modules.

2.2.1 Theorem. If F is a quasi-coherent sheaf on W and Γ∗(F)(= F(1)) denotes its
global section A-module then F is sheaf isomorphic to the structure sheaf of Γ∗(F).

2.2.2 Theorem. (Noncommutative version of J. P. Serre’s global section theorem) For
a schematic K-algebra A, the category of quasi-coherent sheaves on W is equivalent
to (A, κ+)-gr. The category of coherent scheaves on W is equivalent to Proj(A), i.e.
(A, κ+)fg-gr.

These results are due to L. Willaert, F. Van Oystaeyen, see [141] or also Theorem 2.1.5.
in [131].

The Rees ring Ã of a Noetherian positively filtered K-algebra A is isomorphic to∑
FnAT n ⊂ A[T ] and inverting the central homogeneous element of degree 1, T , we

obtain ÃT = A[T, T−1]. We may view Y (T ) in Y = ProjÃ with sections A[T, T−1]fg-gr
= A-modfg ' SpecA.

A filtered K-algebra A as above such that G(A) is a schematic domain has an Ã which

is again a schematic domain; let π : Ã → Ã/T Ã ∼= G(A) be the canonical epimorphism.
The Ore sets S1, . . . , Sn defining the schematic property for G(A) yield Ti = Lπ−1(Si)

plus the special Ore set < T >= ST central in Ã and thus compatible to all the Ti, i =

1, . . . , n. The images T i in A via Ã → A = Ã/(T − 1), Ã are saturated Ore sets such that
σ(T i) = Si where σ : A → G(A) is the principal symbol map sending a ∈ FnA − Fn−1A
to a = a modFn−1A in G(A)n = FnA/Fn−1A. The Rees ring is the homogenization of A
with respect to FA, geometrically this means :

2.2.3 Proposition. For A as above, ProjG(A) is a closed subscheme of Y = ProjÃ and

ProjÃ = ProjG(A) ∪ SpecA (cf. Proposition 2.1.10 of [131]).
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So we may think of ProjG(A) as the part at ∞ for the projective closure of SpecA.
The part SpecA corresponds to the T -torsionfree class of objects from (A, κ+)fg-gr, the
part ProjG(R) corresponds to the T -torsion objects. Using microlocalizations of filtered
rings one may define quantum section, in [131] Section 2.3. many examples of quantum
sections are calculated and given by generators and relations, e.g. for the Weyl algebra
A1(C), enveloping algebras, colour Lie superalgebras, quantized Weyl algebras. We may
look at almost commutative geometry by studying filtered rings A as before, but with
G(A) an affine commutative algebra generated by homogeneous elements of degree one.
For such rings microlocalization functors do commute and sheaf theory becomes more
easy, Section 2.4. in [131].

The latter results provide us with more hints that a completely categorical version of
noncommutative geometrical may be possible in terms of arbitrary localizations (torsion
theories or quotient categories) and a formally defined P noncommutative topology. This
was the aim of [135]. We consider a poset Λ with 0, 1 and take operations ∧,∨ on Λ
satisfying :

A.1. For x, y ∈ Λ, x ∧ y ≤ y
A.2. For x ∈ Λ, x ∧ 1 = 1 ∧ x, 0∧ x = x ∧ 0 = 0, moreover x ∧ . . . ∧ x = 0 if and only if

x = 0
A.3. For x, y, z ∈ Λ, x ∧ y ∧ z = (x ∧ y) ∧ z = x ∧ (y ∧ z)
A.4. For a ≤ b in Λ and x, y ∈ Λ we obtain : x∧ a ≤ x∧ b, a∧ y ≤ b∧ y (it follows that

x ∧ y ≤ x too !)
A.5. For x, y ∈ Λ, y ≤ x ∨ y
A.6. For x ∈ Λ, 1 ∨ x = x ∨ 1 = 1, x ∨ 0 = x = 0 ∨ x, moreover x ∨ . . . ∨ x = 1 if and

only if x = 1
A.7. For x, y, z ∈ Λ, x ∨ (y ∨ z) = x ∨ y ∨ z = (x ∨ y) ∨ z.
A.8. For a ≤ b in Λ and x, y ∈ Λ we obtain : x ∨ a ≤ x ∨ b, a ∨ y ≤ b ∨ y (it follows

that x, y ≤ x ∨ y).
A.9. (weak modularity). Let i∧(Λ) be the ∧-idempotent elements i.e. the x ∈ Λ such

that x ∧ x = x, then for x ∈ i∧(Λ) and x ≤ z in Λ we have :

x ∨ (x ∧ z) ≤ (x ∨ x) ∧ z
x ∨ (z ∧ x) ≤ (z ∨ z) ∧ z

(if Λ satisfies A.1.. . . A.9., then i1(Λ) ⊂ i∨(Λ) where i∨(Λ) consists of z ∈ Λ such
that z ∨ z = z).

A.10. For any global cover 1 = λ1 ∨ . . .∨λn and any z ∈ Λ we have : (x∧λ1)∨ . . .∨ (x∧
λn) = x. The presheaves on Λ with values in a Grothendieck (abelian) category is
again a Grothentieck (abelian) category but this fails for the category of sheaves
(defined suitably), this category is not a topos. If x ∧ x = x for all x in Λ then Λ
is an abelian operation in Λ so the noncommutativity of the topology is exactly
characterized by the existence of nontrivial selfintersection.

The definition of a noncommutative Grothendieck topology may be given by “sym-
metrizaion” of the classical definition. A category C such that for each object U of C
a set Cov(U) is given, consisting of subsets of morphisms with common target U , is a
noncommutative Grothendieck topology if it satisfies the following properties :
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G.1. {U → U} ∈ Cov(U)
G.2. If {Ui → U, i ∈ I) ∈ Cov(U) and {Uij → Ui, j ∈ J} ∈ Cov(U) for all i ∈ I, then

{Uij → U, i ∈ I,∈ J} ∈ Cov(U).
G.3. For given U ′ → U and {Ui → U, i ∈ I} ∈ Cov(U) there is a cover {U ′ ×U Ui →

U ′, i ∈ I} satisfying : for V → Ui, V → U ′ and T → Ui, T → U ′ there exist
V ∧ T → U ′XUUi and T ∧ V → U ′ ×U Ui fitting in the commutative diagram :

U

Ui

88rrrrrrrrrrrrr
U ′

ffLLLLLLLLLLLLL

T

<<yyyyyyyyy

22ffffffffffffffffffffffffffffffffffff U ′ ×U Ui

eeLLLLLLLLLLL

99rrrrrrrrrrr
V

bbEEEEEEEEE

llXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

T ∧ V

bbFFFFFFFFF

88rrrrrrrrrr
V ∧ T

<<xxxxxxxxx

ffLLLLLLLLLL

Taking T = V in the foregoing, one obtains the obvious non-idempotent versions
of the pullback property reducing to G.3. in case T = T ∧ T .

2.2.4 Example. Any modular lattice satisfies A.1. . . . A.9. A distributive lattice
satisfies A.1.. . . A.10. The lattice of all torsion theories on R-mod for a associative ring
R, say R-tors, is a complete modular lattice; we shall look at the torsion theories by their
kernel functors. If the idempotent kernel functors σ, τ are given by their Gabriel filters
L(σ),L(τ) resp. then σ∧ τ and σ∨ τ are defined by L(σ∧ τ),L(σ∨ τ) resp. Define W (R)
is the set of filters obtained by evaluating expressions involving products and intersections
of filters corresponding to elements of R-tors. For w,w′ ∈ W (R) put w ≤ w′ if and only
if L(w′) ⊂ L(w). We define w ∨w′ by L(w)∩L(w′), hence ∨ is a commutative operation
here. Put L(ww′) equal to {L ∈ R,L ⊃ J ′J, J ′ ∈ L(w′), J ∈ L(w)}, this defines w ∧ w′

and the corresponding function QwQw′ .

2.2.5 Proposition. W (R) consists of exact preradicals and it is a noncommutative topol-
ogy with respect to the structures defined above.

A categorical version of noncommutative algebraic geometry can now be developed,
cf. [135]; there are many open questions in this theory, I refer to loc. cit. for many
exercises and research projects. The example obtained from Ore sets has some interesting
applications using Çech-cohomology on the noncommutative topology one may calculate a
moduli space for the left ideals of the Weyl algebra (work of L. Willaert, F. Van Oystaeyen,
recovering a result of L. Le Bruyn). This technique may very probably be applied to
several other quantized algebras where we can calculate enough Ore localizations.

3. Regularity and Filter-Graded Transfer

3.1 Graded Homological Algebra and Regularity

A ling is left regular if every finitely generated R-moduli has finite projective dimension.
For a graded ring R leftgr-regularity is defined in terms of objects of R-gr. For a left
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Noetherien R we have gldimR[X1, . . . , Xn] = n + gldimR and Auslander’s theorem learns
that for a Noetherian R, rgldim = lgldimR. For graded rings the graded versions of several
dimensions can be defined (and used) in the obvious way. For example if R is a graded
Noetherian ring, then the left and right (graded) global dimensions coincide.

3.1.1 Theorem. Let R be a Zariski filtered ring (in the positive case G(R), R, R̃ are
Noetherian rings) then :

(1) If G(R) is left gr-regular then R̃ is left regular
(2) We have :

grgldimR̃ ≤ 1 + grgldimG(R)

gldimR̃ ≤ 1 + gldimG(R)

and equalities hold in case G(R) has finite (gr-)global dimension.

It is now possible to obtain left regularity of a.o. the following rings : A[X, σ.δ] where δ
is a σ-derivation of the left regular A and σ automorphism of A, the crossed product A∗G
where A is left regular and G is poly-infinite cyclic, the crossed product A∗U(g) where A
is a left regular K-algebra and U(g) the K-enveloping algebra of a finite dimensional Lie
algebra g, . . . . For a survey on GKdim and a new dimension, the schematic dimension
Sdim we refer to [131] Section 3.1.

For a left Noetherian R and a finitely generated R-module M we have pdimRM = n <
∞ if and only if Extn+1

R (M,N) = 0 for all finitely generated R-modules N , consequently
Extn

R(M,R) 6= 0. For any R-module M the grade number jR(M) is the unique smallest

integer such that Ext
jR(M)
R (M,R) 6= 0; if such integer does not exist then we put jR(M) =

∞. We say that M satisfies the Auslander condition if for k ≥ 0 and any R-submodule
N of Extk

R(M,R) it follows that jR(N) ≥ k. If we have an exact sequence of R-modules :

0 → M ′ → M → M ′′ → 0

then if M ′, M ′′ satisfy the Auslander condition so does M . In case M satisfies the Aus-
lander condition then jR(M) = inf{jR(M ′), jR(M ′′)}. A left and right Noetherian ring R
of finite global dimension is Auslander regular if every finitely generated left or right
R-module satisfies the Auslander condition.

3.1.2 Theorem. (Li Huishi, F. Van Oystaeyen, cf. [131] Theorem 5) If R is a (left
and right) Zariski filtered ring such that G(R) is Auslander regular then R is Auslander
regular. The theorem yields Auslander regularity of the following rings : U(g) for a
finite dimensional Lie algebra g, the n-th Weyl algebra An(K), the ring D(V ) of C-linear
differential operators on irreducible smooth subvarieties V of affine n-space, the ring D1

of O-linear differential operators on the reular local ring On of convergent power series in
n-variables over C, the stalks EP of the sheaf of microlocal differential operators,. . .

3.1.3 Theorem. Let R be a Zariski filtered ring with G(R) Auslander regular then for

every filtered R-module M with good filtration we have jR(M) = jG(R)(G(M)) = j
eR(M̃)

where M̃ is the Rees module of M with respect to FM .

Concerning Auslander regularity of the Rees ring we obtain the following result :
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3.1.4 Theorem. If R is a filtered ring such that R̃ is Noetherian then Auslander regularity

of R and G(R) implies Auslander regularity of R̃. If moroever R is Zariski filtered and

G(R) is Auslander regular then R̃ is Auslander regular.

Applying the foregoing and some corollaries of it one arrives at the following examples
of Auslander regular rings constructed over an Auslander regular A : A[X, σ] σ an auto-
morphism of A, A[[X, σ]] the X-completion of A[X, σ], A[X, σ, δ] where δ is a σ-derivation
of A, the crossed product A ∗G where G is the poly-infinite cyclic group, A ∗U(g) where
A is a K-algebra and g a Lie algebra of finite K-dimension. In particular one finds that
the following rings are Auslander regular too : coordinate ring of quantum 2×2 matrices,
quantum Weyl algebras An(q), Witten gauge algebras W (C) and “quantum sl2” Wq(sl2).

Using injective resolutions and injective dimension instead of projective resolutions and
projective dimension one obtains a similar theory with respect to so-called Auslander-
Gorenstein regularity.

A lot of work has gone into the classification of low dimensional algebras e.g. M.
Artin, W. Schelter [5]. All 3-dimensional regular algebras have been classified by P. R.
Stephenson. Using Cohen-Macauley modules point and line modules over a 3-dimensional
quadratic algebra are classified by their homological properties. If R is graded and R =
R0[R1] then a (left) point module is a cyclic graded R-module M = ⊕n≥0Mn such that
M = RM0 and the Hilbert series HM(t) is (1− t)−1. A (left) line module is as before but
with HM(t) = (1 − t)−2.

The point modules, force the Hibert series to look as in the commutative case, maybe
too commutative in spirit to yield a good tool in noncommutative geometry. In fact there
exist higher dimensional regular algebras with finitely many, say 20, point modules, even
there are some without points. Some of these nice algebras, having very few point modules
are graded (generic) Clifford algebras.

Put C = C[Y1, . . . , Yn], α ∈ Mn(C) a symmetric matrix (αij) where each αij is a homo-
geneous linear polynomial. The Clifford algebra A(α) associated to α is defined as the
K-algebra with generators {X1, . . . , Xn, Y1, . . . , Yn} and defining relations :{

XiXj + XjXi = αij, for i, j = 1, . . . , n
[Yi, Xj] = 0 = [Yi, Yj] for i, j, = 1 . . . n

The gradation of A(α) is defined by putting Xi ∈ A(α)1 for i = 1, . . . , n and Yj ∈ A(α)2 for
j = 1, . . . , n. Expanding α = α1Y1 + . . . + αnYn where α1, . . . , αn are symmetric matrices
in Mn(K) we associate to α an n-dimensional linear system of quadrics Q1, . . . , Qn ⊂
Pn−1(K), Q = KQ1 + . . . + KQn where Qi = {z ∈ Pn−1, ztαz = 0}. A base point of Q is
any point in the intersection of Q1, . . . , Qn.

3.1.5 Proposition. (L. Le Bruyn, J. of Algebra 177, 1995)A Clifford algebra A(α) is a
quadratic Auslander regular algebra of dimension n if and only if Q has no base points.

For n = 4, M. Van den bergh proved that A(α) has exactly 20 point modules for generic
α, an explicit construction of such algebra was given by M. Van Cliff, K. Van Rompay,
L. Willaert.
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Several references provide a good starting point for reading about low dimensional
regular algebras. Results now exist up to dimension 4 as fas as I know. There are
interesting research problems here e.g. the relation between graded deformations and
so-called rolled up Rees rings (cf. [68]).

3.2 Examples

Several examples of well-known rings popular nowadays have been referred to with refer-
ence to the literature. As an appendix I include some of them with full definition.

4. Applications and other Directions

4.1 Cayley Smooth Orders

As a consequence of project 1.1. there always was a tendency to try to relate noncommu-
tative information to the commutative theory (via the centre of the algebras used). This is
the case too with the theory related to canonical resolutions of quotient singularities. For
a finite group G acting on the vector space Cd (freely away from the origin), the quotient
spqce Cd/G is an isolated singularity and resolutions Y →→ Cd|G were constructed using
the skew groupring C[X1, . . . , Xd]∗G which is an order having the fix-ring C[X1, . . . , Xd]

G

for its centre. In case d = 2 we are in the situation of Kleinian singularities this yields
minimal resolutions. In case d = 3 the skew groupring appears via the superpotential and
commuting matrices (in Physics) or via the McKay quiver. For abelian G the study leads
to “crepant” resolutions, for general G one obtains partial resolutions with remaining
manifold singularities. In [69] L. Le Bruyn obtains lists of types of singularities contained
in partial resolutions of the quotient variety Cd/G.

Smoothness of R-orders , R a commutative ring e.g. the coordinate ring of some
(quotient) variety, is defined in two ways :

(1) J. P. Serre smoothness i.e. the R-order A has finite global dimension plus Auslan-
der regularity and the Cohen-Macauley property

(2) Cayley-smooth of the corresponding G-variety is smooth. The Zariski and étale
covers are used.

Cayley-Hamilton algebras are introduced as algebras with a nice trace map (Definition
1.4. in [69]) and every R-order in a central simple algebra is a CH-algebra. C. Procesi
proved the reconstruction of orders and their centers from the G-equivariant geometry
of the quotient variety in case G = PGLn. The category of CH-algebras of degree n
with trace preserving morphisms constitutes a version of noncommutative geometry. A
Cayley smooth algebra A is an object of the foregoing category with a lifting property
i.e. if R is in the category and I is a nilpotent ideal of B such that B|I is in the category
and the natural B → B|I preserves the trace than any trace preserving ∅ : A → BI
lifts to A → B. These Cayley smooth algebras correspond to smooth PGLn-varieties.
The noncommutative structure sheaf of an R-order is then used as the noncommutative
geometry, as explained in the first part of this survey. Via the representation theory
(marked) quiver settings are associated to the orders which connect the Zariski and étale
structure to quivers (Theorem 7.9. of [69]. This leads to quiver-recognition of isolated
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singularities (Theorem 1.12. loc. cit) and noncommutative desingularizations. We refer
to loc. cit. for complete detail.

4.2 Hopf Algebras and twisted Algebras

The effect of a Hopf algebra structure on the noncommutative geometry remains largely
to be studied. Of course one may consider braided categories and localizations thereof
but this does not connect nicely to something like a noncommutative algebraic group.
For P.I. rings we know that the assumption of a group variety structure on its prime
spectrum makes it into a commutative variety, perhaps one should look for a theory of
noncommutative algebraic semigroups ? In the direction of valuation theory there has
been some work by Aly Farahat, F. Van Oystaeyen on Hopf valuations and related Hopf
orders. An interesting consequence of this theory (cf. [44]) is the appearance of new
maximal orders over specific number rings leading to very concrete examples.

On the other hand, a replacement of the geometric product may be found by using
the twisted product of algebras. A general theory of twisting algebras appeared in the
paper [83] by X. Lopez, F. Panaite, F. Van Oystaeyen. An example is given by A.
Connes quantum space that turns out to be a twisted product of quantum planes. The
twisted product can be iterated under some pentagonal diagramme condition, cf. [89].
The algebraic properties of general twisted products of low dimensional algebras (e.g.
with the quaternions H over the reals) should be further investigated. Since connections
behave well with respect to twisted products some further relations with A. Conne’s
noncommutative geometry remain to be investigated.

4.3 Simple Modules

The classification of simple (left) modules of a noncommutative algebra is a basic prob-
lem relating to representation theory on one side and to some kind of noncommutative
geometry on the other side. For algebras of quantized type (deformations) not many
cases have been completely solved. For example the case of the second Weyl algebras
remained open for a while till V. Bavula, F. Van Oystaeyen obtained a classification by
pairs of elements in twisted Laurent polynomials in [17]. They continued this for rings
of differential operators on surfaces that are products of curves in [18]. The techniques
make use of a gradation and graded module theory as well as G/K-dimension.

5. Appendix : Some Examples

5.1 Quantum 2 × 2-matrices

The C-algebra generated by a, b, c, d with defining relations :

ba = q−2ab, ca = q−2ac, bc = cb,
db = q−2bd, dc = q−2cd, ad − da = (q2 − g−2)bc

is called the algebra of quantum 2×2-matrices Mq(2). Then Mq(2) is a schematic algebra
and a Noetherian domain as it is an iterated Ore extension of a nice kind :

R1 = C[a]
R2 = C[a, b]/(ba − q−2ab)
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R3 = C[a, b, c]/(ba − q−2ab, ca − q−2ac, bc − cb)
R2 = R1[b, ρ1] where the automorphism ρ1 of R1 is determined by ρ1(a) = q−2a.
R3 = R2[c, ρ2] where ρ2(a) = q−2a, ρ2(b) = b
Finally Mq(2) = R3[d, ρ3, δ] where the automorphism ρ3 is determined by ρ3(a) =
a, ρ3(b) = q−2b, ρ3(c) = q−2c and the ρ3-derivation δ is given by δ(a) = (q2−q−2)bc
and δ(b) − δ(c) = 0.

5.2 Quantum Weyl Algebras

Look at (λij) ∈ Mn(k) with λij ∈ k∗, together with a row (q1, . . . , qn), qi ∈ k∗. The
quantum Weyl algebra An(q, Λ) in the R-algebra generated by x1, . . . , xn, y1, . . . , yn

with defining relations : (putting µij = λijqi), for i ⊂ j :

xixj = µijxjxi

xiyj = λjiyjxi

yjyi = λjiyiyj

xjyi = µijyixj

xjyj = qjyixj + 1 +
∑

i<j(qi − 1)yixi

We may again establish that An(q, Λ) is an iterated Ore extension by adding the variables
in the order : x1, y1, x2, y2, . . . , xn, yn. The associated graded rings with respect to the
standard filtrations may be calculated and one obtains the fact that An(q, Λ) is affine
schematic (and its Rees rings too) and also schematic.

5.3 The Sklyanin Algebra

The 3-dimensional algebra generated over k by three homogeneous elements of degree
1, X, Y, Z say, with defining relations :

aXY + bY X + cZ2 = 0
aY Z + bZY + cX2 = 0
aZX + bXZ + cY 2 = 0

(a, b, x ∈ k) is said to be the Sklyanin algebra Sk(a, b, c). This algebra is schematic.

5.4 Color Lie Superalgebras

Consider an abelian group Γ and ε : Γ× Γ → C∗ satisfying : ε(α, β) ε(β, α) = 1, ε(α, β +
γ) = ε(α, β) ε(α, γ), ε(α + β, γ) = ε(α, γ) ε(β, γ).

Let L = ⊕γ∈ΓLγ be a Γ-graded vector space together with a graded bilinear mapping
< . . . , . . . > satisfying for a ∈ Lα, b ∈ Lβ, c ∈ Lγ, α, β, γ ∈ Γ, < a, b >= −ε(α, β) < b, a >
0 = ε(γ, α) < a,< b, c >> +ε(α, β) < b,< c, a >> +ε(β, γ) < c,< a, b >>

Consider the tensor algebra T (L) and let J(L) be the ideal generated by all

a ⊗ b − ε(α, β)b ⊗ a− < a, b >

for a ∈ Lα, b ∈ Lβ. The algebra T (L)/J(L) is the universal enveloping algebra of L,
it is a Γ-graded ring and it has also a positive filtration by taking FnUK(L) to be the
image of T (K)n. ¿From the generalized Poincaré-Birkhoff-Witt theorem it follows that
the associated Z-graded algebra G(U(L)) is a Z × Γ-graded algebra isomorphic to T (L)
modulo the ideal generated by all a ⊗ b − ε(α, β)b ⊗ a, for a ∈ Lα, b ∈ Lβ. We have
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established (Theorem 1.2.19 in [131]) that G(U(L)) is schematic, U(L) is weakly affine
schematic and the Rees ring U(L)∼ is schematic.

5.5 Witten’s Gauge Algebras

Consider the C-algebra W generated by X,Y, Z subjected to the relations :

XY + αY X + βY = 0
Y Z + γZY + δX2 + εX = 0
ZX + ξXZ + ηZ = 0

Total degree on X,Y, Z defines the standard filtration on W . It is not hard to verify that
G(W ) is defined by the relations :

XY + αY X = 0
Y Z + γZY + δX2 = 0
ZX + ξXZ = 0

The algebra G(W ) is quadratic and represents a quantum space in the sense of Y. Manin.

The algebra W (C) is weakly affine schematic, G(W ) and the Rees ring W̃ are schematic.

5.6 Quantum sl2 (Woronowicz)

Let Wq(sl2) be the C-algebra generated by X,Y, Z subjected to the following defining
relations : √

qXZ −√
q−1ZX =

√
q + q−1Z√

q−1XY =
√

qY X = −
√

q + q−1Y

Y Z − ZY = (
√

q −√
q−1)X2 −

√
q + q−1X

(classically q = exp
(

2πi
k+2

)
and k is the Chern coupling constant.

In Wq(sl2) there is a central quadratic element, the deformed Casimir operator C =
√

q−1ZY +
√

qY Z + X2. Put A = 1 − C(
√

q −√
q−1)(

√
q + q−1) and write :

x = (X − (
√

q −√
q−1)

√
q + q−1

−1
c)

√
q + q−1A−1

y = Y (
√

q + q−1
−1

)
√

A
−1

z = Z(
√

q + q−1
−1

)
√

A
−1

which is posible up to inverting the central element A ! The relations rewrite in the
new arguments x, y, z as √

q xz −√
q−1zx = z√

q−1xy −√
q yx = y

q−1zy − qyz = x

One calculates from this the relations for the associated graded rings in the standard
filtration : √

q xz −√
q−1zx = 0√

q−1xy −√
q yx = 0

q−1zy − qyz = 0

The Rees ring Wq(sl2)
∼ can be written by homogenizing the relations between the x, y, z.
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Looking at the Witten algebra W defined by putting δ = 0 and making obvious choices
for the α, β, γ, . . . it is clear that the special Witten algebra then obtained contains A−1

as a normalizing element. This means that Wq(sl2) and the special Witten algebra are
birational in the noncommutative sense (up to inverting a central element in the first
and a normalizing element in the second they yield the same localization but up to the
quadratic extension obtained by adding

√
A. Again G(Wq(sl2)) and the Rees ring Wq(sl2)

∼

are schematic.

All foregoing examples are Auslander regular (3.2.17. of [131]).
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