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Abstract. A complete structure theorem of Sally modules of m-primary ideals I in a
Cohen-Macaulay local ring (A,m) satisfying the equality e1(I) = e0(I) − `A(A/I) + 1 is
given, where e0(I) and e1(I) denote the first two Hilbert coefficients of I.
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1. Introduction

This is based on a joint work with Shiro Goto and Koji Nishida.
Let (A, m) be a Cohen-Macaulay local ring with d = dim A > 0 and assume that the

residue class field k = A/m of A is infinite. Let I be an m-primary ideal in A and choose
a minimal reduction Q = (a1, a2, · · · , ad) of I. Let

R = R(I) := A[It] ⊆ A[t],

T = R(Q) := A[Qt],

R′ = R′(I) := A[It, t−1] ⊆ A[t, t−1],

G = G(I) := R′/t−1R′ ∼=
⊕
n≥0

In/In+1

denote, respectively, the Rees algebras of I and Q, the extended Rees algebras of I and
the associated graded ring of I, where t stands for an indeterminate over A.

Let B = T/mT ∼= k[X1, X2, · · · , Xd], which is the polynomial ring with d indetermi-
nates over the field k. Following W. V. Vasconcelos [10], we then define

S = SQ(I) = IR/IT

and call it the Sally module of I with respect to Q. We notice that the Sally module S is
a finitely generated graded T -module, since R is a module-finite extension of the graded
ring T .

Let `A(∗) stand for the length. Then we have integers {ei(I)}0≤i≤d such that the equality

`A(A/In+1) = e0(I)

(
n + d

d

)
− e1(I)

(
n + d − 1

d − 1

)
+ · · · + (−1)ded(I)

holds true for all n À 0. For each integers 0 ≤ i ≤ d, we call ei = ei(I) the i-th Hilbert
coefficients of I.

The contents of this article are based on [1, 2]. Refer to them for the details.
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The Sally module S was introduced by W. V. Vasconcelos [10], where he gave an elegant
review, in terms of his Sally module, of the works [7, 8, 9] of J. Sally about the structure
of m-primary ideals I with interaction to the structure of the graded ring G and the
Hilbert coefficients ei’s of I.

As is well-known, we have the inequality ([5])

e1 ≥ e0 − `A(A/I)

and C. Huneke [3] showed that e1 = e0 − `A(A/I) if and only if I2 = QI (cf. Corollary
4). When this is the case, both the graded rings G and F(I) =

⊕
n≥0 In/mIn are Cohen-

Macaulay, and the Rees algebra R of I is also a Cohen-Macaulay ring, provided d ≥ 2.
Thus, the ideals I with e1 = e0 − `A(A/I) enjoy very nice properties.

J. Sally firstly investigated the second border, that is the ideals I satisfying the equality
e1 = e0 − `A(A/I) + 1 but e2 6= 0 (cf. [9, 10]). The present research is a continuation of
[9, 10] and aims to give a complete structure theorem of the Sally module of an m-primary
ideal I satisfying the equality e1 = e0 − `A(A/I) + 1.

The main result of this paper is the following Theorem 1. Our contribution in Theorem
1 is the implication (1) ⇒ (3), the proof of which is based on the new result that the
equality I3 = QI2 holds true if e1 = e0 − `A(A/I) + 1 (cf. Theorem 7).

Theorem 1. The following three conditions are equivalent to each other.

(1) e1 = e0 − `A(A/I) + 1.
(2) mS = (0) and rankB S = 1.
(3) S ∼= (X1, X2, · · · , Xc)B as graded T -modules for some 0 < c ≤ d, where {Xi}1≤i≤c

are linearly independent linear forms of the polynomial ring B.

When this is the case, c = `A(I2/QI) and I3 = QI2, and the following assertions hold
true.

(i) depth G ≥ d − c and depthT S = d − c + 1.
(ii) depth G = d − c, if c ≥ 2.
(iii) Suppose c < d. Then

`A(A/In+1) = e0

(
n + d

d

)
− e1

(
n + d − 1

d − 1

)
+

(
n + d − c − 1

d − c − 1

)
for all n ≥ 0. Hence

ei =

{
0 if i 6= c + 1,

(−1)c+1 if i = c + 1

for 2 ≤ i ≤ d.
(iv) Suppose c = d. Then

`A(A/In+1) = e0

(
n + d

d

)
− e1

(
n + d − 1

d − 1

)
for all n ≥ 1. Hence ei = 0 for 2 ≤ i ≤ d.

Thus Theorem 1 settles a long standing problem, although the structure of ideals I with
e1 = e0− `A(A/I)+2 or the structure of Sally modules S with mS = (0) and rankB S = 2
remains unknown.
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Let us now briefly explain how this paper is organized. We shall prove Theorem 1
in Section 3. In Section 2 we will pick up from the paper [1] some auxiliary results on
Sally modules, all of which are known, but let us note them for the sake of the reader’s
convenience. In Section 4 we will construct one example in order to see the ubiquity of
ideals I which satisfy condition (3) in Theorem 1.

In what follows, unless otherwise specified, let (A, m) be a Cohen-Macaulay local ring
with d = dim A > 0. We assume that the field k = A/m is infinite. Let I be an
m-primary ideal in A and let S be the Sally module of I with respect to a minimal
reduction Q = (a1, a2, · · · , ad) of I. We put R = A[It], T = A[Qt], R′ = A[It, t−1], and
G = R′/t−1R′. Let

Ĩ =
∪
n≥1

[In+1 :A In] =
∪
n≥1

[In+1 :A (an
1 , a

n
2 , · · · , an

d)]

denote the Ratliff-Rush closure of I, which is the largest m-primary ideal in A such that
I ⊆ Ĩ and ei(Ĩ) = ei for all 0 ≤ i ≤ d (cf. [6]). We denote by µA(∗) the number of
generators.

2. Auxiliary results

In this section let us firstly summarize some known results on Sally modules, which we
need throughout this paper. See [1] and [10] for the detailed proofs.

The first two results are basic facts on Sally modules developed by Vasconcelos [10].

Lemma 2. The following assertions hold true.

(1) m`S = (0) for integers ` À 0.
(2) The homogeneous components {Sn}n∈Z of the graded T -module S are given by

Sn
∼=

{
(0) if n ≤ 0,

In+1/IQn if n ≥ 1.

(3) S = (0) if and only if I2 = QI.
(4) Suppose that S 6= (0) and put V = S/MS, where M = mT + T+ is the graded

maximal ideal in T . Let Vn (n ∈ Z) denote the homogeneous component of the
finite-dimensional graded T/M-space V with degree n and put Λ = {n ∈ Z | Vn 6=
(0)}. Let q = max Λ. Then we have Λ = {1, 2, · · · , q} and rQ(I) = q + 1, where
rQ(I) = min{n ∈ Z | In+1 = QIn} stands for the reduction number of I with
respect to Q.

(5) S = TS1 if and only if I3 = QI2.

Proof. See [1, Lemma 2.1]. ¤
Proposition 3. Let p = mT . Then the following assertions hold true.

(1) AssT S ⊆ {p}. Hence dimT S = d, if S 6= (0).
(2) `A(A/In+1) = e0

(
n+d

d

)
− (e0 − `A(A/I))·

(
n+d−1

d−1

)
− `A(Sn) for all n ≥ 0.

(3) We have e1 = e0 − `A(A/I) + `Tp (Sp). Hence e1 = e0 − `A(A/I) + 1 if and only if
mS = (0) and rankB S = 1.

(4) Suppose that S 6= (0). Let s = depthT S. Then depth G = s − 1 if s < d. S is a
Cohen-Macaulay T -module if and only if depth G ≥ d − 1.
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Proof. See [1, Proposition 2.2]. ¤
Combining Lemma 2 (3) and Proposition 3, we readily get the following results of

Northcott [5] and Huneke [3].

Corollary 4 ([3, 5]). We have e1 ≥ e0 − `A(A/I). The equality e1 = e0 − `A(A/I) holds
true if and only if I2 = QI. When this is the case, ei = 0 for all 2 ≤ i ≤ d.

The following result is one of the keys for our proof of Theorem 1.

Theorem 5. The following conditions are equivalent.

(1) e1 = e0 − `A(A/I) + 1.
(2) S ∼= a as graded T -modules for some graded ideal a (6= B) of B.

Proof. We have only to show (1) ⇒ (2). We have mS = (0) and rankBS = 1 by Propo-
sition 3 (3). Because S1 6= (0) and S =

∑
n≥1 Sn by Lemma 2, we have S ∼= B(−1) as

graded B-modules once S is B-free.
Suppose that S is not B-free. The B-module S is torsionfree, since AssT S = {mT} by

Proposition 3 (1). Therefore, since rankB S = 1, we see d ≥ 2 and S ∼= a(m) as graded
B-modules for some integer m and some graded ideal a (6= B) in B, so that we get the
exact sequence

0 → S(−m) → B → B/a → 0

of graded B-modules. We may assume that htB a ≥ 2, since B = k[X1, X2, · · · , Xd] is the
polynomial ring over the field k = A/m. We then have m ≥ 0, since am+1 = [a(m)]1 ∼=
S1 6= (0) and a0 = (0). We want to show m = 0.

Because dim B/a ≤ d − 2, the Hilbert polynomial of B/a has degree at most d − 3.
Hence

`A(Sn) = `A(Bm+n) − `A([B/a]m+n)

=

(
m + n + d − 1

d − 1

)
− `A([B/a]m+n)

=

(
n + d − 1

d − 1

)
+ m

(
n + d − 2

d − 2

)
+ (lower terms)

for n À 0. Consequently

`A(A/In+1) = e0

(
n + d

d

)
− (e0 − `A(A/I))·

(
n + d − 1

d − 1

)
− `A(Sn)

= e0

(
n + d

d

)
− (e0 − `A(A/I) + 1)·

(
n + d − 1

d − 1

)
− m

(
n + d − 2

d − 2

)
+(lower terms)

by Proposition 3 (2), so that we get e2 = −m. Thus m = 0, because e2 ≥ 0 by Narita’s
theorem ([4]). ¤

The following result will enable us to reduce the proof of Theorem 1 to the proof of the
fact that I3 = QI2 if e1 = e0 − `A(A/I) + 1.
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Proposition 6. Suppose e1 = e0 − `A(A/I) + 1 and I3 = QI2. Let c = `A(I2/QI). Then
the following assertions hold true.

(1) 0 < c ≤ d and µB(S) = c.
(2) depth G ≥ d − c and depthB S = d − c + 1.
(3) depth G = d − c, if c ≥ 2.
(4) Suppose c < d. Then `A(A/In+1) = e0

(
n+d

d

)
− e1

(
n+d−1

d−1

)
+

(
n+d−c−1

d−c−1

)
for all n ≥ 0.

Hence

ei =

{
0 if i 6= c + 1

(−1)c+1 if i = c + 1

for 2 ≤ i ≤ d.
(5) Suppose c = d. Then `A(A/In+1) = e0

(
n+d

d

)
− e1

(
n+d−1

d−1

)
for all n ≥ 1. Hence

ei = 0 for 2 ≤ i ≤ d.

Proof. We have mS = (0) and rankB S = 1 by Proposition 3 (3), while S = TS1 since
I3 = QI2 (cf. Lemma 2 (5)). Therefore by Theorem 5 we have S ∼= a as graded B-modules
where a = (X1, X2, · · · , Xc)B is an ideal in B generated by linear forms {Xi}1≤i≤c. Hence
0 < c ≤ d, µB(S) = c, and depthB S = d− c+1, so that assertions (1), (2), and (3) follow
(cf. Proposition 3 (4)). Considering the exact sequence

0 → S → B → B/a → 0

of graded B-modules, we get

`A(Sn) = `A(Bn) − `A([B/a]n)

=

(
n + d − 1

d − 1

)
−

(
n + d − c − 1

d − c − 1

)
for all n ≥ 0 (resp. n ≥ 1), if c < d (resp. c = d). Thus assertions (4) and (5) follow (cf.
Proposition 3 (2)). ¤

3. Proof of Theorem 1

The purpose of this section is to prove Theorem 1. See Proposition 3 (3) for the
equivalence of conditions (1) and (2) in Theorem 1. The implication (3) ⇒ (2) is clear.
So, we must show the implication (1) ⇒ (3) together with the last assertions in Theorem
1. Suppose that e1 = e0−`A(A/I)+1. Then, thanks to Theorem 5, we get an isomorphism

ϕ : S → a

of graded B-modules, where a ( B is a graded ideal of B. Notice that once we are able
to show I3 = QI2, the last assertions of Theorem 1 readily follow from Proposition 6.
On the other hand, since a ∼= S = BS1 (cf. Lemma 2 (5)), the ideal a of B is generated
by linearly independent linear forms {Xi}1≤i≤c (0 < c ≤ d) of B and so, the implication
(1) ⇒ (3) in Theorem 1 follows. We have c = `A(I2/QI), because a1

∼= S1 = I2/QI (cf.
Lemma 2 (2)). Thus our Theorem 1 has been proven modulo the following theorem.

Theorem 7. Suppose that e1 = e0 − `A(A/I) + 1. Then I3 = QI2.
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Proof. We proceed by induction on d. Suppose that d = 1. Then S is B-free of rank one
(recall that the B-module S is torsionfree; cf. Proposition 3 (1)) and so, since S1 6= (0)
(cf. Lemma 2 (3)), S ∼= B(−1) as graded B-modules. Thus I3 = QI2 by Lemma 2 (5).

Let us assume that d ≥ 2 and that our assertion holds true for d − 1. Since the field
k = A/m is infinite, without loss of generality we may assume that a1 is a superficial
element of I. Let

A = A/(a1), I = I/(a1), and Q = Q/(a1).

We then have ei(I) = ei for all 0 ≤ i ≤ d − 1, whence

e1(I) = e0(I) − `A(A/I) + 1.

Therefore the hypothesis of induction on d yields I
3

= Q I
2
. Hence, because the element

a1t is a nonzerodivisor on G if depth G > 0, we have I3 = QI2 in that case.
Assume that depth G = 0. Then, thanks to Sally’s technique ([9]), we also have

depth G(I) = 0. Hence `A(I
2
/Q I) = d − 1 by Proposition 6 (2), because e1(I) =

e0(I) − `A(A/I) + 1. Consequently, `A(S1) = `A(I2/QI) ≥ d − 1, because I
2
/Q I is a

homomorphic image of I2/QI. Let us take an isomorphism

ϕ : S → a

of graded B-modules, where a ( B is a graded ideal of B. Then, since

`A(a1) = `A(S1) ≥ d − 1,

the ideal a contains d − 1 linearly independent linear forms, say X1, X2, · · · , Xd−1 of B,
which we enlarge to a basis X1, · · · , Xd−1, Xd of B1. Hence

B = k[X1, X2, · · · , Xd],

so that the ideal a/(X1, X2, · · · , Xd−1)B in the polynomial ring

B/(X1, X2, · · · , Xd−1)B = k[Xd]

is principal. If a = (X1, X2, · · · , Xd−1)B, then I3 = QI2 by Lemma 2 (5), since S = BS1.
However, because `A(I2/QI) = `A(a1) = d − 1, we have depth G ≥ 1 by Proposition 6
(2), which is impossible. Therefore a/(X1, X2, · · · , Xd−1)B 6= (0), so that we have

a = (X1, X2, · · · , Xd−1, X
α
d )B

for some α ≥ 1. Notice that α = 1 or α = 2 by Lemma 2 (4). We must show that α = 1.
Assume that α = 2. Let us write, for each 1 ≤ j ≤ d, Xj = ajt with aj ∈ Q, where

ajt denotes the image of ait ∈ T in B = T/mT . Then a = (a1t, a2t, · · · , ad−1t, (adt)2).
We now choose elements fi ∈ S1 for 1 ≤ i ≤ d − 1 and fd ∈ S2 so that ϕ(fi) = Xi for
1 ≤ i ≤ d − 1 and ϕ(fd) = X2

d . Let zi ∈ I2 for 1 ≤ i ≤ d − 1 and zd ∈ I3 such that
{fi}1≤i≤d−1 and fd are, respectively, the images of {zit}1≤i≤d−1 and zdt

2 in S. We now
consider the relations Xif1 = X1fi in S for 1 ≤ i ≤ d − 1 and X2

df1 = X1fd, that is

aiz1 − a1zi ∈ Q2I

for 1 ≤ i ≤ d − 1 and

a2
dz1 − a1zd ∈ Q3I.
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Notice that
Q3 = a1Q

2 + (a2, a3, · · · , ad−1)
2·(a2, a3, · · · , ad) + a2

dQ

and write
a2

dz1 − a1zd = a1τ1 + τ2 + a2
dτ3

with τ1 ∈ Q2I, τ2 ∈ (a2, a3, · · · , ad−1)
2·(a2, a3, · · · , ad)I, and τ3 ∈ QI. Then

a2
d(z1 − τ3) = a1(τ1 + zd) + τ2 ∈ (a1) + (a2, a3, · · · , ad−1)

2.

Hence z1−τ3 ∈ (a1)+(a2, a3, · · · , ad−1)
2, because the sequence a1, a2, · · · , ad is A-regular.

Let z1 − τ3 = a1h + h′ with h ∈ A and h′ ∈ (a2, a3, · · · , ad−1)
2. Then since

a1[a
2
dh − (τ1 + zd)] = τ2 − a2

dh
′ ∈ (a2, a3, · · · , ad)

3,

we have a2
dh − (τ1 + zd) ∈ (a2, a3, · · · , ad)

3, whence a2
dh ∈ I3.

We need the following.

Remark 8. h 6∈ I but h ∈ Ĩ. Hence Ĩ 6= I.

Proof of Remark 8. If h ∈ I, then a1h ∈ QI, so that z1 = a1h + h′ + τ3 ∈ QI, whence
f1 = 0 in S (cf. Lemma 2 (2)), which is impossible. Let 1 ≤ i ≤ d − 1. Then

aiz1 − a1zi = ai(a1h + h′ + τ3) − a1zi = a1(aih − zi) + ai(h
′ + τ3) ∈ Q2I.

Therefore, because ai(h
′ + τ3) ∈ Q2I, we get

a1(aih − zi) ∈ (a1) ∩ Q2I.

Notice that

(a1) ∩ Q2I = (a1) ∩ [a1QI + (a2, a3, · · · , ad)
2I]

= a1QI + [(a1) ∩ (a2, a3, · · · , ad)
2I]

= a1QI + a1(a2, a3, · · · , ad)
2

= a1QI

and we have aih− zi ∈ QI, whence aih ∈ I2 for 1 ≤ i ≤ d− 1. Consequently a2
i h ∈ I3 for

all 1 ≤ i ≤ d, so that h ∈ Ĩ, whence Ĩ 6= I. ¤
Because `A(Ĩ/I) ≥ 1, we have

e1 = e0 − `A(A/I) + 1

= e0(Ĩ) − `A(A/Ĩ) + [1 − `A(Ĩ/I)]

≤ e0(Ĩ) − `A(A/Ĩ)

≤ e1(Ĩ)

= e1,

where e0(Ĩ)− `A(A/Ĩ) ≤ e1(Ĩ) is the inequality of Northcott for the ideal Ĩ (cf. Corollary
4). Hence `A(Ĩ/I) = 1 and e1(Ĩ) = e0(Ĩ) − `A(A/Ĩ), so that

Ĩ = I + (h) and Ĩ2 = QĨ

by Corollary 4 (recall that Q is a reduction of Ĩ also). We then have, thanks to [2,
Proposition 2.6], that I3 = QI2, which is a required contradiction. This completes the
proof of Theorem 1 and that of Theorem 7 as well. ¤
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4. An example

Lastly we construct one example which satisfies condition (3) in Theorem 1. Our goal
is the following. See [2, Section 5] for the detailed proofs.

Theorem 9. Let 0 < c ≤ d be integers. Then there exists an m-primary ideal I in a
Cohen-Macaulay local ring (A, m) such that

d = dim A, e1(I) = e0(I) − `A(A/I) + 1, and c = `A(I2/QI)

for some reduction Q = (a1, a2, · · · , ad) of I.

To construct necessary examples we may assume that c = d.
Let m, d > 0 be integers. Let

U = k[{Xj}1≤j≤m, Y, {Vi}1≤i≤d, {Zi}1≤i≤d]

be the polynomial ring with m + 2d + 1 indeterminates over an infinite field k and let

b = [(Xj | 1 ≤ j ≤ m) + (Y )]·[(Xj | 1 ≤ j ≤ m) + (Y ) + (Vi | 1 ≤ i ≤ d)]

+(ViVj | 1 ≤ i, j ≤ d, i 6= j) + (V 2
i − ZiY | 1 ≤ i ≤ d).

We put C = U/b and denote the images of Xj, Y , Vi, and Zi in C by xj, y, vi, and ai,

respectively. Then dim C = d, since
√

b = (Xj | 1 ≤ j ≤ m) + (Y ) + (Vi | 1 ≤ i ≤ d).
Let M = C+ := (xj | 1 ≤ j ≤ m) + (y) + (vi | 1 ≤ i ≤ d) + (ai | 1 ≤ i ≤ d) be the graded
maximal ideal in C. Let Γ be a subset of {1, 2, · · · ,m}. We put

J = (ai | 1 ≤ i ≤ d) + (xα | α ∈ Γ) + (vi | 1 ≤ i ≤ d) and q = (ai | 1 ≤ i ≤ d).

Then M2 = qM , J2 = qJ + qy, and J3 = qJ2, whence q is a reduction of both M and J ,
and a1, a2, · · · , ad is a homogeneous system of parameters for the graded ring C.

Let A = CM , I = JA, and Q = qA. We are now interested in the Hilbert coefficients e′is
of the ideal I as well as the structure of the associated graded ring and the Sally module
of I. We then have the following, which shows that the ideal I is a required example.

Theorem 10. The following assertions hold true.

(1) A is a Cohen-Macaulay local ring with dim A = d.
(2) S ∼= B+ as graded T -modules, whence `A(I2/QI) = d.
(3) e0(I) = m + d + 2 and e1(I) = ]Γ + d + 1.
(4) ei(I) = 0 for all 2 ≤ i ≤ d.
(5) G is a Buchsbaum ring with depth G = 0 and I(G) = d.

Proof. See [2, Theorem 5.2]. ¤
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