ON THE STRUCTURE OF SALLY MODULES OF RANK ONE

KAZUHO OZEKI

ABSTRACT. A complete structure theorem of Sally modules of \mathfrak{m} -primary ideals I in a Cohen-Macaulay local ring (A, \mathfrak{m}) satisfying the equality $e_1(I) = e_0(I) - \ell_A(A/I) + 1$ is given, where $e_0(I)$ and $e_1(I)$ denote the first two Hilbert coefficients of I.

Key Words: commutative algebra, Cohen-Macaulay local ring, associated graded ring, Rees algebra, Hilbert coefficient.

2000 Mathematics Subject Classification: Primary 13H15, 13D40; Secondary 13H10, 13B22.

1. INTRODUCTION

This is based on a joint work with Shiro Goto and Koji Nishida.

Let (A, \mathfrak{m}) be a Cohen-Macaulay local ring with $d = \dim A > 0$ and assume that the residue class field $k = A/\mathfrak{m}$ of A is infinite. Let I be an \mathfrak{m} -primary ideal in A and choose a minimal reduction $Q = (a_1, a_2, \dots, a_d)$ of I. Let

$$\begin{array}{rcl} R &=& {\rm R}(I) := A[It] \subseteq A[t], \\ T &=& {\rm R}(Q) := A[Qt], \\ R' &=& {\rm R}'(I) := A[It,t^{-1}] \subseteq A[t,t^{-1}], \\ G &=& {\rm G}(I) := R'/t^{-1}R' \cong \bigoplus_{n \geq 0} I^n/I^{n+1} \end{array}$$

denote, respectively, the Rees algebras of I and Q, the extended Rees algebras of I and the associated graded ring of I, where t stands for an indeterminate over A.

Let $B = T/\mathfrak{m}T \cong k[X_1, X_2, \cdots, X_d]$, which is the polynomial ring with d indeterminates over the field k. Following W. V. Vasconcelos [10], we then define

$$S = S_Q(I) = IR/IT$$

and call it the Sally module of I with respect to Q. We notice that the Sally module S is a finitely generated graded T-module, since R is a module-finite extension of the graded ring T.

Let $\ell_A(*)$ stand for the length. Then we have integers $\{e_i(I)\}_{0 \le i \le d}$ such that the equality

$$\ell_A(A/I^{n+1}) = e_0(I) \binom{n+d}{d} - e_1(I) \binom{n+d-1}{d-1} + \dots + (-1)^d e_d(I)$$

holds true for all $n \gg 0$. For each integers $0 \le i \le d$, we call $e_i = e_i(I)$ the *i*-th Hilbert coefficients of I.

The contents of this article are based on [1, 2]. Refer to them for the details.

The Sally module S was introduced by W. V. Vasconcelos [10], where he gave an elegant review, in terms of his *Sally* module, of the works [7, 8, 9] of J. Sally about the structure of \mathfrak{m} -primary ideals I with interaction to the structure of the graded ring G and the Hilbert coefficients e_i 's of I.

As is well-known, we have the inequality ([5])

$$e_1 \ge e_0 - \ell_A(A/I)$$

and C. Huneke [3] showed that $e_1 = e_0 - \ell_A(A/I)$ if and only if $I^2 = QI$ (cf. Corollary 4). When this is the case, both the graded rings G and $F(I) = \bigoplus_{n \ge 0} I^n / \mathfrak{m}I^n$ are Cohen-Macaulay, and the Rees algebra R of I is also a Cohen-Macaulay ring, provided $d \ge 2$. Thus, the ideals I with $e_1 = e_0 - \ell_A(A/I)$ enjoy very nice properties.

J. Sally firstly investigated the second border, that is the ideals I satisfying the equality $e_1 = e_0 - \ell_A(A/I) + 1$ but $e_2 \neq 0$ (cf. [9, 10]). The present research is a continuation of [9, 10] and aims to give a complete structure theorem of the Sally module of an \mathfrak{m} -primary ideal I satisfying the equality $e_1 = e_0 - \ell_A(A/I) + 1$.

The main result of this paper is the following Theorem 1. Our contribution in Theorem 1 is the implication $(1) \Rightarrow (3)$, the proof of which is based on the new result that the equality $I^3 = QI^2$ holds true if $e_1 = e_0 - \ell_A(A/I) + 1$ (cf. Theorem 7).

Theorem 1. The following three conditions are equivalent to each other.

- (1) $e_1 = e_0 \ell_A(A/I) + 1.$
- (2) $\mathfrak{m}S = (0)$ and rank_B S = 1.
- (3) $S \cong (X_1, X_2, \dots, X_c)B$ as graded T-modules for some $0 < c \le d$, where $\{X_i\}_{1 \le i \le c}$ are linearly independent linear forms of the polynomial ring B.

When this is the case, $c = \ell_A(I^2/QI)$ and $I^3 = QI^2$, and the following assertions hold true.

- (i) depth $G \ge d c$ and depth_T S = d c + 1.
- (ii) depth G = d c, if $c \ge 2$.
- (iii) Suppose c < d. Then

$$\ell_A(A/I^{n+1}) = e_0 \binom{n+d}{d} - e_1 \binom{n+d-1}{d-1} + \binom{n+d-c-1}{d-c-1}$$

for all $n \geq 0$. Hence

$$e_i = \begin{cases} 0 & \text{if } i \neq c+1, \\ (-1)^{c+1} & \text{if } i = c+1 \end{cases}$$

for $2 \leq i \leq d$.

(iv) Suppose c = d. Then

$$\ell_A(A/I^{n+1}) = e_0 \binom{n+d}{d} - e_1 \binom{n+d-1}{d-1}$$

for all $n \ge 1$. Hence $e_i = 0$ for $2 \le i \le d$.

Thus Theorem 1 settles a long standing problem, although the structure of ideals I with $e_1 = e_0 - \ell_A(A/I) + 2$ or the structure of Sally modules S with $\mathfrak{m}S = (0)$ and $\operatorname{rank}_B S = 2$ remains unknown.

Let us now briefly explain how this paper is organized. We shall prove Theorem 1 in Section 3. In Section 2 we will pick up from the paper [1] some auxiliary results on Sally modules, all of which are known, but let us note them for the sake of the reader's convenience. In Section 4 we will construct one example in order to see the ubiquity of ideals I which satisfy condition (3) in Theorem 1.

In what follows, unless otherwise specified, let (A, \mathfrak{m}) be a Cohen-Macaulav local ring with $d = \dim A > 0$. We assume that the field $k = A/\mathfrak{m}$ is infinite. Let I be an **m**-primary ideal in A and let S be the Sally module of I with respect to a minimal reduction $Q = (a_1, a_2, \dots, a_d)$ of *I*. We put $R = A[It], T = A[Qt], R' = A[It, t^{-1}]$, and $G = R'/t^{-1}R'$. Let

$$\tilde{I} = \bigcup_{n \ge 1} [I^{n+1} :_A I^n] = \bigcup_{n \ge 1} [I^{n+1} :_A (a_1^n, a_2^n, \cdots, a_d^n)]$$

denote the Ratliff-Rush closure of I, which is the largest **m**-primary ideal in A such that $I \subseteq \tilde{I}$ and $e_i(\tilde{I}) = e_i$ for all $0 \leq i \leq d$ (cf. [6]). We denote by $\mu_A(*)$ the number of generators.

2. Auxiliary results

In this section let us firstly summarize some known results on Sally modules, which we need throughout this paper. See [1] and [10] for the detailed proofs.

The first two results are basic facts on Sally modules developed by Vasconcelos [10].

Lemma 2. The following assertions hold true.

- (1) $\mathfrak{m}^{\ell}S = (0)$ for integers $\ell \gg 0$.
- (2) The homogeneous components $\{S_n\}_{n\in\mathbb{Z}}$ of the graded T-module S are given by

$$S_n \cong \begin{cases} (0) & \text{if } n \le 0, \\ I^{n+1}/IQ^n & \text{if } n \ge 1. \end{cases}$$

- (3) S = (0) if and only if $I^2 = QI$.
- (4) Suppose that $S \neq (0)$ and put V = S/MS, where $M = \mathfrak{m}T + T_+$ is the graded maximal ideal in T. Let V_n $(n \in \mathbb{Z})$ denote the homogeneous component of the finite-dimensional graded T/M-space V with degree n and put $\Lambda = \{n \in \mathbb{Z} \mid V_n \neq i\}$ (0)}. Let $q = \max \Lambda$. Then we have $\Lambda = \{1, 2, \dots, q\}$ and $\mathbf{r}_Q(I) = q + 1$, where $r_Q(I) = \min\{n \in \mathbb{Z} \mid I^{n+1} = QI^n\}$ stands for the reduction number of I with respect to Q.

(5) $S = TS_1$ if and only if $I^3 = QI^2$.

Proof. See [1, Lemma 2.1].

Proposition 3. Let $\mathfrak{p} = \mathfrak{m}T$. Then the following assertions hold true.

- (1) Ass_T $S \subseteq \{\mathfrak{p}\}$. Hence dim_TS = d, if $S \neq (0)$.
- (1) Here $\ell_{A}(A/I^{n+1}) = e_{0} \binom{n+d}{d} (e_{0} \ell_{A}(A/I)) \cdot \binom{n+d-1}{d-1} \ell_{A}(S_{n}) \text{ for all } n \ge 0.$ (3) We have $e_{1} = e_{0} \ell_{A}(A/I) + \ell_{T_{\mathfrak{p}}}(S_{\mathfrak{p}})$. Hence $e_{1} = e_{0} \ell_{A}(A/I) + 1$ if and only if $\mathfrak{m}S = (0)$ and rank_B S = 1.
- (4) Suppose that $S \neq (0)$. Let $s = \operatorname{depth}_T S$. Then $\operatorname{depth} G = s 1$ if s < d. S is a Cohen-Macaulay T-module if and only if depth $G \ge d - 1$.

Proof. See [1, Proposition 2.2].

Combining Lemma 2 (3) and Proposition 3, we readily get the following results of Northcott [5] and Huneke [3].

Corollary 4 ([3, 5]). We have $e_1 \ge e_0 - \ell_A(A/I)$. The equality $e_1 = e_0 - \ell_A(A/I)$ holds true if and only if $I^2 = QI$. When this is the case, $e_i = 0$ for all $2 \le i \le d$.

The following result is one of the keys for our proof of Theorem 1.

Theorem 5. The following conditions are equivalent.

(1) $e_1 = e_0 - \ell_A(A/I) + 1.$

(2) $S \cong \mathfrak{a}$ as graded T-modules for some graded ideal $\mathfrak{a} \ (\neq B)$ of B.

Proof. We have only to show $(1) \Rightarrow (2)$. We have $\mathfrak{m}S = (0)$ and $\operatorname{rank}_B S = 1$ by Proposition 3 (3). Because $S_1 \neq (0)$ and $S = \sum_{n \ge 1} S_n$ by Lemma 2, we have $S \cong B(-1)$ as graded *B*-modules once *S* is *B*-free.

Suppose that S is not B-free. The B-module S is torsionfree, since $\operatorname{Ass}_T S = \{\mathfrak{m}T\}$ by Proposition 3 (1). Therefore, since $\operatorname{rank}_B S = 1$, we see $d \ge 2$ and $S \cong \mathfrak{a}(m)$ as graded B-modules for some integer m and some graded ideal $\mathfrak{a} \ (\neq B)$ in B, so that we get the exact sequence

$$0 \to S(-m) \to B \to B/\mathfrak{a} \to 0$$

of graded *B*-modules. We may assume that $\operatorname{ht}_B \mathfrak{a} \geq 2$, since $B = k[X_1, X_2, \cdots, X_d]$ is the polynomial ring over the field $k = A/\mathfrak{m}$. We then have $m \geq 0$, since $\mathfrak{a}_{m+1} = [\mathfrak{a}(m)]_1 \cong S_1 \neq (0)$ and $\mathfrak{a}_0 = (0)$. We want to show m = 0.

Because dim $B/\mathfrak{a} \leq d-2$, the Hilbert polynomial of B/\mathfrak{a} has degree at most d-3. Hence

$$\ell_A(S_n) = \ell_A(B_{m+n}) - \ell_A([B/\mathfrak{a}]_{m+n})$$

= $\binom{m+n+d-1}{d-1} - \ell_A([B/\mathfrak{a}]_{m+n})$
= $\binom{n+d-1}{d-1} + m\binom{n+d-2}{d-2} + (\text{lower terms})$

for $n \gg 0$. Consequently

$$\ell_A(A/I^{n+1}) = e_0 \binom{n+d}{d} - (e_0 - \ell_A(A/I)) \cdot \binom{n+d-1}{d-1} - \ell_A(S_n) \\ = e_0 \binom{n+d}{d} - (e_0 - \ell_A(A/I) + 1) \cdot \binom{n+d-1}{d-1} - m\binom{n+d-2}{d-2} + (\text{lower terms})$$

by Proposition 3 (2), so that we get $e_2 = -m$. Thus m = 0, because $e_2 \ge 0$ by Narita's theorem ([4]).

The following result will enable us to reduce the proof of Theorem 1 to the proof of the fact that $I^3 = QI^2$ if $e_1 = e_0 - \ell_A(A/I) + 1$.

Proposition 6. Suppose $e_1 = e_0 - \ell_A(A/I) + 1$ and $I^3 = QI^2$. Let $c = \ell_A(I^2/QI)$. Then the following assertions hold true.

- (1) $0 < c \le d$ and $\mu_B(S) = c$.
- (2) depth $G \ge d c$ and depth_B S = d c + 1.
- (3) depth G = d c, if $c \ge 2$.
- (4) Suppose c < d. Then $\ell_A(A/I^{n+1}) = e_0 \binom{n+d}{d} e_1 \binom{n+d-1}{d-1} + \binom{n+d-c-1}{d-c-1}$ for all $n \ge 0$. Hence

$$e_i = \begin{cases} 0 & \text{if } i \neq c+1 \\ (-1)^{c+1} & \text{if } i = c+1 \end{cases}$$

for $2 \leq i \leq d$.

(5) Suppose c = d. Then $\ell_A(A/I^{n+1}) = e_0 \binom{n+d}{d} - e_1 \binom{n+d-1}{d-1}$ for all $n \ge 1$. Hence $e_i = 0$ for $2 \le i \le d$.

Proof. We have $\mathfrak{m}S = (0)$ and $\operatorname{rank}_B S = 1$ by Proposition 3 (3), while $S = TS_1$ since $I^3 = QI^2$ (cf. Lemma 2 (5)). Therefore by Theorem 5 we have $S \cong \mathfrak{a}$ as graded *B*-modules where $\mathfrak{a} = (X_1, X_2, \dots, X_c)B$ is an ideal in *B* generated by linear forms $\{X_i\}_{1 \leq i \leq c}$. Hence $0 < c \leq d$, $\mu_B(S) = c$, and depth_B S = d - c + 1, so that assertions (1), (2), and (3) follow (cf. Proposition 3 (4)). Considering the exact sequence

$$0 \to S \to B \to B/\mathfrak{a} \to 0$$

of graded B-modules, we get

$$\ell_A(S_n) = \ell_A(B_n) - \ell_A([B/\mathfrak{a}]_n)$$

= $\binom{n+d-1}{d-1} - \binom{n+d-c-1}{d-c-1}$

for all $n \ge 0$ (resp. $n \ge 1$), if c < d (resp. c = d). Thus assertions (4) and (5) follow (cf. Proposition 3 (2)).

3. Proof of Theorem 1

The purpose of this section is to prove Theorem 1. See Proposition 3 (3) for the equivalence of conditions (1) and (2) in Theorem 1. The implication $(3) \Rightarrow (2)$ is clear. So, we must show the implication $(1) \Rightarrow (3)$ together with the last assertions in Theorem 1. Suppose that $e_1 = e_0 - \ell_A(A/I) + 1$. Then, thanks to Theorem 5, we get an isomorphism

$$\varphi:S\to\mathfrak{a}$$

of graded *B*-modules, where $\mathfrak{a} \subsetneq B$ is a graded ideal of *B*. Notice that once we are able to show $I^3 = QI^2$, the last assertions of Theorem 1 readily follow from Proposition 6. On the other hand, since $\mathfrak{a} \cong S = BS_1$ (cf. Lemma 2 (5)), the ideal \mathfrak{a} of *B* is generated by linearly independent linear forms $\{X_i\}_{1 \le i \le c}$ ($0 < c \le d$) of *B* and so, the implication (1) \Rightarrow (3) in Theorem 1 follows. We have $c = \ell_A(I^2/QI)$, because $\mathfrak{a}_1 \cong S_1 = I^2/QI$ (cf. Lemma 2 (2)). Thus our Theorem 1 has been proven modulo the following theorem.

Theorem 7. Suppose that $e_1 = e_0 - \ell_A(A/I) + 1$. Then $I^3 = QI^2$.

Proof. We proceed by induction on d. Suppose that d = 1. Then S is B-free of rank one (recall that the B-module S is torsionfree; cf. Proposition 3 (1)) and so, since $S_1 \neq (0)$ (cf. Lemma 2 (3)), $S \cong B(-1)$ as graded B-modules. Thus $I^3 = QI^2$ by Lemma 2 (5).

Let us assume that $d \ge 2$ and that our assertion holds true for d-1. Since the field $k = A/\mathfrak{m}$ is infinite, without loss of generality we may assume that a_1 is a superficial element of I. Let

$$\overline{A} = A/(a_1), \quad \overline{I} = I/(a_1), \text{ and } \quad \overline{Q} = Q/(a_1).$$

We then have $e_i(\overline{I}) = e_i$ for all $0 \le i \le d-1$, whence

$$e_1(\overline{I}) = e_0(\overline{I}) - \ell_{\overline{A}}(\overline{A}/\overline{I}) + 1$$

Therefore the hypothesis of induction on d yields $\overline{I}^3 = \overline{Q} \overline{I}^2$. Hence, because the element $a_1 t$ is a nonzerodivisor on G if depth G > 0, we have $I^3 = QI^2$ in that case.

Assume that depth G = 0. Then, thanks to Sally's technique ([9]), we also have depth $G(\overline{I}) = 0$. Hence $\ell_{\overline{A}}(\overline{I}^2/\overline{Q}\,\overline{I}) = d - 1$ by Proposition 6 (2), because $e_1(\overline{I}) = e_0(\overline{I}) - \ell_{\overline{A}}(\overline{A}/\overline{I}) + 1$. Consequently, $\ell_A(S_1) = \ell_A(I^2/QI) \ge d - 1$, because $\overline{I}^2/\overline{Q}\,\overline{I}$ is a homomorphic image of I^2/QI . Let us take an isomorphism

$$\varphi:S\to\mathfrak{a}$$

of graded *B*-modules, where $\mathfrak{a} \subsetneq B$ is a graded ideal of *B*. Then, since

$$\ell_A(\mathfrak{a}_1) = \ell_A(S_1) \ge d - 1,$$

the ideal \mathfrak{a} contains d-1 linearly independent linear forms, say X_1, X_2, \dots, X_{d-1} of B, which we enlarge to a basis X_1, \dots, X_{d-1}, X_d of B_1 . Hence

$$B = k[X_1, X_2, \cdots, X_d],$$

so that the ideal $\mathfrak{a}/(X_1, X_2, \cdots, X_{d-1})B$ in the polynomial ring

$$B/(X_1, X_2, \cdots, X_{d-1})B = k[X_d]$$

is principal. If $\mathfrak{a} = (X_1, X_2, \dots, X_{d-1})B$, then $I^3 = QI^2$ by Lemma 2 (5), since $S = BS_1$. However, because $\ell_A(I^2/QI) = \ell_A(\mathfrak{a}_1) = d - 1$, we have depth $G \ge 1$ by Proposition 6 (2), which is impossible. Therefore $\mathfrak{a}/(X_1, X_2, \dots, X_{d-1})B \ne (0)$, so that we have

$$\mathfrak{a} = (X_1, X_2, \cdots, X_{d-1}, X_d^{\alpha})B$$

for some $\alpha \geq 1$. Notice that $\alpha = 1$ or $\alpha = 2$ by Lemma 2 (4). We must show that $\alpha = 1$. Assume that $\alpha = 2$. Let us write, for each $1 \leq j \leq d$, $X_j = \overline{a_j t}$ with $a_j \in Q$, where $\overline{a_j t}$ denotes the image of $a_i t \in T$ in $B = T/\mathfrak{m}T$. Then $\mathfrak{a} = (\overline{a_1 t}, \overline{a_2 t}, \cdots, \overline{a_{d-1} t}, (\overline{a_d t})^2)$. We now choose elements $f_i \in S_1$ for $1 \leq i \leq d-1$ and $f_d \in S_2$ so that $\varphi(f_i) = X_i$ for $1 \leq i \leq d-1$ and $\varphi(f_d) = X_d^2$. Let $z_i \in I^2$ for $1 \leq i \leq d-1$ and $z_d \in I^3$ such that $\{f_i\}_{1 \leq i \leq d-1}$ and f_d are, respectively, the images of $\{z_i t\}_{1 \leq i \leq d-1}$ and $z_d t^2$ in S. We now consider the relations $X_i f_1 = X_1 f_i$ in S for $1 \leq i \leq d-1$ and $X_d^2 f_1 = X_1 f_d$, that is

$$a_i z_1 - a_1 z_i \in Q^2 I$$

for $1 \leq i \leq d-1$ and

$$a_d^2 z_1 - a_1 z_d \in Q^3 I.$$

Notice that

$$Q^{3} = a_{1}Q^{2} + (a_{2}, a_{3}, \cdots, a_{d-1})^{2} \cdot (a_{2}, a_{3}, \cdots, a_{d}) + a_{d}^{2}Q$$

and write

$$a_d^2 z_1 - a_1 z_d = a_1 \tau_1 + \tau_2 + a_d^2 \tau_3$$

with $\tau_1 \in Q^2 I$, $\tau_2 \in (a_2, a_3, \cdots, a_{d-1})^2 \cdot (a_2, a_3, \cdots, a_d) I$, and $\tau_3 \in Q I$. Then
 $a_d^2 (z_1 - \tau_3) = a_1 (\tau_1 + z_d) + \tau_2 \in (a_1) + (a_2, a_3, \cdots, a_{d-1})^2.$

Hence $z_1 - \tau_3 \in (a_1) + (a_2, a_3, \cdots, a_{d-1})^2$, because the sequence a_1, a_2, \cdots, a_d is A-regular. Let $z_1 - \tau_3 = a_1h + h'$ with $h \in A$ and $h' \in (a_2, a_3, \cdots, a_{d-1})^2$. Then since

$$a_1[a_d^2h - (\tau_1 + z_d)] = \tau_2 - a_d^2h' \in (a_2, a_3, \cdots, a_d)^3,$$

we have $a_d^2 h - (\tau_1 + z_d) \in (a_2, a_3, \cdots, a_d)^3$, whence $a_d^2 h \in I^3$. We need the following.

Remark 8. $h \notin I$ but $h \in \tilde{I}$. Hence $\tilde{I} \neq I$.

Proof of Remark 8. If $h \in I$, then $a_1h \in QI$, so that $z_1 = a_1h + h' + \tau_3 \in QI$, whence $f_1 = 0$ in S (cf. Lemma 2 (2)), which is impossible. Let $1 \le i \le d - 1$. Then

$$a_i z_1 - a_1 z_i = a_i (a_1 h + h' + \tau_3) - a_1 z_i = a_1 (a_i h - z_i) + a_i (h' + \tau_3) \in Q^2 I$$

Therefore, because $a_i(h' + \tau_3) \in Q^2 I$, we get

$$a_1(a_ih - z_i) \in (a_1) \cap Q^2 I.$$

Notice that

$$(a_1) \cap Q^2 I = (a_1) \cap [a_1 Q I + (a_2, a_3, \cdots, a_d)^2 I]$$

= $a_1 Q I + [(a_1) \cap (a_2, a_3, \cdots, a_d)^2 I]$
= $a_1 Q I + a_1 (a_2, a_3, \cdots, a_d)^2$
= $a_1 Q I$

and we have $a_i h - z_i \in QI$, whence $a_i h \in I^2$ for $1 \le i \le d-1$. Consequently $a_i^2 h \in I^3$ for all $1 \le i \le d$, so that $h \in \tilde{I}$, whence $\tilde{I} \ne I$.

Because $\ell_A(\tilde{I}/I) \ge 1$, we have

$$e_{1} = e_{0} - \ell_{A}(A/I) + 1$$

= $e_{0}(\tilde{I}) - \ell_{A}(A/\tilde{I}) + [1 - \ell_{A}(\tilde{I}/I)]$
 $\leq e_{0}(\tilde{I}) - \ell_{A}(A/\tilde{I})$
 $\leq e_{1}(\tilde{I})$
= $e_{1},$

where $e_0(\tilde{I}) - \ell_A(A/\tilde{I}) \leq e_1(\tilde{I})$ is the inequality of Northcott for the ideal \tilde{I} (cf. Corollary 4). Hence $\ell_A(\tilde{I}/I) = 1$ and $e_1(\tilde{I}) = e_0(\tilde{I}) - \ell_A(A/\tilde{I})$, so that

$$\tilde{I} = I + (h)$$
 and $\tilde{I}^2 = Q\tilde{I}$

by Corollary 4 (recall that Q is a reduction of \tilde{I} also). We then have, thanks to [2, Proposition 2.6], that $I^3 = QI^2$, which is a required contradiction. This completes the proof of Theorem 1 and that of Theorem 7 as well.

4. An example

Lastly we construct one example which satisfies condition (3) in Theorem 1. Our goal is the following. See [2, Section 5] for the detailed proofs.

Theorem 9. Let $0 < c \leq d$ be integers. Then there exists an \mathfrak{m} -primary ideal I in a Cohen-Macaulay local ring (A, \mathfrak{m}) such that

$$d = \dim A$$
, $e_1(I) = e_0(I) - \ell_A(A/I) + 1$, and $c = \ell_A(I^2/QI)$

for some reduction $Q = (a_1, a_2, \cdots, a_d)$ of I.

To construct necessary examples we may assume that c = d.

Let m, d > 0 be integers. Let

$$U = k[\{X_j\}_{1 \le j \le m}, Y, \{V_i\}_{1 \le i \le d}, \{Z_i\}_{1 \le i \le d}]$$

be the polynomial ring with m + 2d + 1 indeterminates over an infinite field k and let

$$\mathfrak{b} = [(X_j \mid 1 \le j \le m) + (Y)] \cdot [(X_j \mid 1 \le j \le m) + (Y) + (V_i \mid 1 \le i \le d)] + (V_i V_j \mid 1 \le i, j \le d, i \ne j) + (V_i^2 - Z_i Y \mid 1 \le i \le d).$$

We put $C = U/\mathfrak{b}$ and denote the images of X_j , Y, V_i , and Z_i in C by x_j , y, v_i , and a_i , respectively. Then dim C = d, since $\sqrt{\mathfrak{b}} = (X_j \mid 1 \leq j \leq m) + (Y) + (V_i \mid 1 \leq i \leq d)$. Let $M = C_+ := (x_j \mid 1 \leq j \leq m) + (y) + (v_i \mid 1 \leq i \leq d) + (a_i \mid 1 \leq i \leq d)$ be the graded maximal ideal in C. Let Γ be a subset of $\{1, 2, \dots, m\}$. We put

$$J = (a_i \mid 1 \le i \le d) + (x_\alpha \mid \alpha \in \Gamma) + (v_i \mid 1 \le i \le d) \text{ and } q = (a_i \mid 1 \le i \le d).$$

Then $M^2 = \mathfrak{q}M$, $J^2 = \mathfrak{q}J + \mathfrak{q}y$, and $J^3 = \mathfrak{q}J^2$, whence \mathfrak{q} is a reduction of both M and J, and a_1, a_2, \dots, a_d is a homogeneous system of parameters for the graded ring C.

Let $A = C_M$, I = JA, and Q = qA. We are now interested in the Hilbert coefficients $e'_i s$ of the ideal I as well as the structure of the associated graded ring and the Sally module of I. We then have the following, which shows that the ideal I is a required example.

Theorem 10. The following assertions hold true.

- (1) A is a Cohen-Macaulay local ring with $\dim A = d$.
- (2) $S \cong B_+$ as graded T-modules, whence $\ell_A(I^2/QI) = d$.
- (3) $e_0(I) = m + d + 2$ and $e_1(I) = \sharp \Gamma + d + 1$.
- (4) $e_i(I) = 0$ for all $2 \le i \le d$.

(5) G is a Buchsbaum ring with depth G = 0 and $\mathbb{I}(G) = d$.

Proof. See [2, Theorem 5.2].

References

- [1] S. Goto, K. Nishida, and K. Ozeki, Sally modules of rank one, Michigan Math. J., 57, 2008, 359–381.
- [2] S. Goto, K. Nishida, and K. Ozeki, The structure of Sally modules of rank one, Math. Les. Lett., 15, 2008, 881–892.
- [3] C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J., 34, 1987, 293–318.
- [4] M. Narita, A note on the coefficients of Hilbert characteristic functions in semi-regular rings, Proc. Cambridge Philos. Soc., 59, 1963, 269–275.
- [5] D. G. Northcott, A note on the coefficients of the abstract Hilbert function, J. London Math. Soc., 35, 1960, 209–214.

- [6] L. J. Ratliff and D. Rush, Two notes on reductions of ideals, Indiana Univ. Math. J., 27, 1978, 929-934.
- [7] J. D. Sally, Cohen-Macaulay local rings of maximal embedding dimension, J. Algebra, 56, 1979, 168– 183.
- [8] J. D. Sally, Tangent cones at Gorenstein singularities, Composito Math., 40, 1980, 167–175.
- [9] J. D. Sally, Hilbert coefficients and reduction number 2, J. Alg. Geo. and Sing., 1, 1992, 325–333.
- [10] W. V. Vasconcelos, Hilbert Functions, Analytic Spread, and Koszul Homology, Contemporary Mathematics, 159, 1994, 410–422.

MEIJI INSTITUTE FOR ADVANCED STUDY OF MATHEMATICAL SCIENCES MEIJI UNIVERSITY 1-1-1 HIGASHI-MITA, TAMA-KU, KAWASAKI 214-8571, JAPAN

Email: kozeki@math.meiji.ac.jp