ON THE STRUCTURE OF SALLY MODULES OF RANK ONE
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ABSTRACT. A complete structure theorem of Sally modules of m-primary ideals I in a
Cohen-Macaulay local ring (A, m) satisfying the equality e (1) = eq(I) — €a(A/I) + 1 is
given, where eqg(/) and e;(I) denote the first two Hilbert coefficients of I.
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1. INTRODUCTION

This is based on a joint work with Shiro Goto and Koji Nishida.
Let (A, m) be a Cohen-Macaulay local ring with d = dim A > 0 and assume that the
residue class field k = A/m of A is infinite. Let I be an m-primary ideal in A and choose

a minimal reduction @ = (a1, as, - ,aq) of I. Let
R = R(I):= A[lt] C Alt],
T = R(Q):= AlQt],

R = R/(I):= A[lt,t7'] C A[t,t7],
G = GU):=R/tT'R = @I/
n>0

denote, respectively, the Rees algebras of I and @), the extended Rees algebras of I and
the associated graded ring of I, where ¢ stands for an indeterminate over A.
Let B = T/mT = k[X;, Xy, -+, X4, which is the polynomial ring with d indetermi-
nates over the field k. Following W. V. Vasconcelos [10], we then define
S =8¢(I)=IR/IT

and call it the Sally module of I with respect to ). We notice that the Sally module S is
a finitely generated graded T-module, since R is a module-finite extension of the graded
ring 7T'.

Let ¢ 4(x) stand for the length. Then we have integers {e;(I) }o<i<q such that the equality

s e (" 5 ) = ("I e et

holds true for all n > 0. For each integers 0 < ¢ < d, we call e; = e;(I) the i-th Hilbert
coefficients of 1.

The contents of this article are based on [1, 2]. Refer to them for the details.
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The Sally module S was introduced by W. V. Vasconcelos [10], where he gave an elegant
review, in terms of his Sally module, of the works [7, 8, 9] of J. Sally about the structure
of m-primary ideals / with interaction to the structure of the graded ring GG and the
Hilbert coefficients e;’s of 1.

As is well-known, we have the inequality ([5])

€1 Z €0 —gA(A/[)
and C. Huneke [3] showed that e; = eq — €4(A/I) if and only if I* = QI (cf. Corollary
4). When this is the case, both the graded rings G and F(I) = ,,~, ["/mI"™ are Cohen-
Macaulay, and the Rees algebra R of I is also a Cohen-Macaulay ring, provided d > 2.
Thus, the ideals I with e; = eg — £4(A/I) enjoy very nice properties.

J. Sally firstly investigated the second border, that is the ideals I satisfying the equality
er =eg—La(A/I)+ 1 but eg # 0 (cf. [9, 10]). The present research is a continuation of
[9, 10] and aims to give a complete structure theorem of the Sally module of an m-primary
ideal I satisfying the equality e; = eqg — €4(A/I) + 1.

The main result of this paper is the following Theorem 1. Our contribution in Theorem
1 is the implication (1) = (3), the proof of which is based on the new result that the
equality I = QI? holds true if e; = eg — £4(A/I) + 1 (cf. Theorem 7).

Theorem 1. The following three conditions are equivalent to each other.
(].) €1 = €y — gA(A/I) + 1.
(2) mS = (0) and rankp S = 1.
(3) S = (Xy,Xo, -+, X.)B as graded T-modules for some 0 < ¢ < d, where {X; }1<i<c
are linearly independent linear forms of the polynomial ring B.

When this is the case, ¢ = (4(I?/QI) and I* = QI?, and the following assertions hold
true.

(i) depthG > d — ¢ and depth; S =d — ¢+ 1.
(ii) depthG =d — ¢, if ¢ > 2.
(ili) Suppose ¢ < d. Then

n+d n+d-—1 n+d—c—1
EA(A/I"H)ZGO( J )—61( d—1 >+( de o1 >

for alln > 0. Hence

o 0 ifitetl,
Tl (D) dfi=crl

for2 <1< d.
(iv) Suppose ¢ = d. Then

<o) e ()

for alln > 1. Hence e; =0 for2 <i <d.

Thus Theorem 1 settles a long standing problem, although the structure of ideals I with
e1 = eg—La(A/I)+2 or the structure of Sally modules S with mS = (0) and rankp S = 2
remains unknown.
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Let us now briefly explain how this paper is organized. We shall prove Theorem 1
in Section 3. In Section 2 we will pick up from the paper [1] some auxiliary results on
Sally modules, all of which are known, but let us note them for the sake of the reader’s
convenience. In Section 4 we will construct one example in order to see the ubiquity of
ideals I which satisfy condition (3) in Theorem 1.

In what follows, unless otherwise specified, let (A, m) be a Cohen-Macaulay local ring
with d = dimA > 0. We assume that the field £ = A/m is infinite. Let I be an
m-primary ideal in A and let S be the Sally module of I with respect to a minimal
reduction Q = (ay,as, - ,aq) of I. We put R = A[lt],T = A[Qt], R’ = A[lt,t7'], and
G =R /t7'R. Let

T ) = I o (atad, - al)
n>1 n>1

denote the Ratliff-Rush closure of I, which is the largest m-primary ideal in A such that

I C 1T and e(l) =¢; forall 0 <i < d (cf. [6]). We denote by pa(*) the number of

generators.

2. AUXILIARY RESULTS

In this section let us firstly summarize some known results on Sally modules, which we
need throughout this paper. See [1] and [10] for the detailed proofs.
The first two results are basic facts on Sally modules developed by Vasconcelos [10].

Lemma 2. The following assertions hold true.
(1) m‘S = (0) for integers £ > 0.
(2) The homogeneous components {Sy}nez of the graded T-module S are given by

g o { (0) ifn<0,
" mrQr ifn>1.

(3) S =(0) if and only if I* = QI.

(4) Suppose that S # (0) and put V.= S/MS, where M = wmT + T is the graded
mazximal ideal in T. Let V,, (n € Z) denote the homogeneous component of the
finite-dimensional graded T'/M-space V' with degree n and put A = {n € Z | V,, #
(0)}. Let ¢ = maxA. Then we have A = {1,2,--- ,q} and rg(I) = q + 1, where
ro(I) = min{n € Z | I"*' = QI"} stands for the reduction number of I with

respect to Q.
(5) S =TS8, if and only if I* = QI>.

Proof. See [1, Lemma 2.1]. O

Proposition 3. Let p = mT. Then the following assertions hold true.
(1) AsspS C {p}. Hence dimr S =d, if S # (0).
(2) ba(A/ ") = eo(";d) — (eg — KA(A/[))-(”;ﬁl) —L4(Sy) for allm > 0.
(3) We have ey = eq — La(A/I) + b1, (Sp). Hence ey = eg — La(A/I) + 1 if and only if
mS = (0) and rankp S = 1.
(4) Suppose that S # (0). Let s = depth S. Then depthG =s—1ifs <d. S isa
Cohen-Macaulay T'-module if and only if depthG > d — 1.
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Proof. See [1, Proposition 2.2]. O

Combining Lemma 2 (3) and Proposition 3, we readily get the following results of
Northcott [5] and Huneke [3].

Corollary 4 ([3, 5]). We have e; > eqg — £a(A/I). The equality ey = eq — La(A/I) holds
true if and only if I* = QI. When this is the case, e; = 0 for all 2 < i < d.

The following result is one of the keys for our proof of Theorem 1.

Theorem 5. The following conditions are equivalent.

(1) €1 = €y — gA(A/I) + 1.
(2) S = a as graded T-modules for some graded ideal a (# B) of B.

Proof. We have only to show (1) = (2). We have mS = (0) and rankpS = 1 by Propo-
sition 3 (3). Because Sy # (0) and S = ) ., S, by Lemma 2, we have S = B(—1) as
graded B-modules once S is B-free. N

Suppose that S is not B-free. The B-module S is torsionfree, since AsspS = {mT'} by
Proposition 3 (1). Therefore, since rankp S = 1, we see d > 2 and S = a(m) as graded
B-modules for some integer m and some graded ideal a (# B) in B, so that we get the
exact sequence

0—S(—m)—B— B/a—0

of graded B-modules. We may assume that htp a > 2, since B = k[X7, Xy, -+ , Xy] is the
polynomial ring over the field k = A/m. We then have m > 0, since a,,.1 = [a(m)]; =
S1 # (0) and ap = (0). We want to show m = 0.

Because dim B/a < d — 2, the Hilbert polynomial of B/a has degree at most d — 3.
Hence

Ca(Sn) = La(Bpn) — Ca([B/almsn)

= (") - e

_ (n+d-1 n n+d—2 + (lower terms)
= J_1 m q_9 ower terms

for n > 0. Consequently

) = a1 =) - s

= a5 o nemen (") (")

+(lower terms)

by Proposition 3 (2), so that we get e; = —m. Thus m = 0, because e5 > 0 by Narita’s
theorem ([4]). O

The following result will enable us to reduce the proof of Theorem 1 to the proof of the
fact that I* = QI* if e; = eg — La(A/T) + 1.
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Proposition 6. Suppose e; = eq — (A(A/I)+ 1 and I* = QI?. Let ¢ = {,(I?/QI). Then
the following assertions hold true.
(1) 0 <ec<d and ug(S) = c.
(2) depthG > d — ¢ and depthgy S =d —c+ 1.
(3) depthG =d —¢, if c > 2.
(4) Suppose ¢ < d. Then La(A/I"Y) = eo("+) — e ("197Y) + ("F 0" for alln > 0.

I d d—1 d—c—1
ence
o 0 ifi#c+1
ST (D) ifi=c+1
for2 <1 <d.

5) Suppose ¢ = d. Then (A(A/T"1) = eo("T%) — ey ("19Y) for all n > 1. Hence
d d—1
e; =0 for2<i<d.

Proof. We have mS = (0) and rankg S = 1 by Proposition 3 (3), while S = T'S; since
I? = QI? (cf. Lemma 2 (5)). Therefore by Theorem 5 we have S 2 a as graded B-modules
where a = (X1, Xo, -+, X.)B is an ideal in B generated by linear forms {X; }1<;<.. Hence
0<c<d, up(S)=c, and depthy S = d—c+1, so that assertions (1), (2), and (3) follow
(cf. Proposition 3 (4)). Considering the exact sequence

0—-S—B—B/a—0
of graded B-modules, we get
EA(SH) = EA(BR) - EA([B/C‘LJ

B n+d-—1 _ n+d—c—1
N d—1 d—c—1

for all n > 0 (resp. n > 1), if ¢ < d (resp. ¢ = d). Thus assertions (4) and (5) follow (cf.
Proposition 3 (2)). O

3. PROOF OF THEOREM 1

The purpose of this section is to prove Theorem 1. See Proposition 3 (3) for the
equivalence of conditions (1) and (2) in Theorem 1. The implication (3) = (2) is clear.
So, we must show the implication (1) = (3) together with the last assertions in Theorem
1. Suppose that e; = eg—f4(A/I)+1. Then, thanks to Theorem 5, we get an isomorphism

p:S5—a

of graded B-modules, where a C B is a graded ideal of B. Notice that once we are able
to show I? = QI?, the last assertions of Theorem 1 readily follow from Proposition 6.
On the other hand, since a =2 S = BS; (cf. Lemma 2 (5)), the ideal a of B is generated
by linearly independent linear forms {X;}1<i<. (0 < ¢ < d) of B and so, the implication
(1) = (3) in Theorem 1 follows. We have ¢ = £4(I?/QI), because a; = S; = I?/QI (cf.

Lemma 2 (2)). Thus our Theorem 1 has been proven modulo the following theorem.

Theorem 7. Suppose that e; = eq — Lo(A/I) + 1. Then I* = QI*.
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Proof. We proceed by induction on d. Suppose that d = 1. Then S is B-free of rank one
(recall that the B-module S is torsionfree; cf. Proposition 3 (1)) and so, since Sy # (0)
(cf. Lemma 2 (3)), S = B(—1) as graded B-modules. Thus I* = QI? by Lemma 2 (5).

Let us assume that d > 2 and that our assertion holds true for d — 1. Since the field
k = A/m is infinite, without loss of generality we may assume that a; is a superficial
element of I. Let

A=A/(a), T=1I/(a), and Q= Q/(a).
We then have e;(I) = e; for all 0 < i < d — 1, whence

er(T) = eo(T) — ((A/T) + 1.

Therefore the hypothesis of induction on d yields T = @72. Hence, because the element
ait is a nonzerodivisor on G if depth G > 0, we have I? = QI? in that case.
Assume that depthG = 0. Then, thanks to Sally’s technique ([9]), we also have

depth G(I) = 0. Hence 5;(72/67) = d — 1 by Proposition 6 (2), because e;(I) =
eo(I) — l5(A/T) + 1. Consequently, £4(S1) = €A(I?/QI) > d — 1, because 72/@7 is a
homomorphic image of I?/QI. Let us take an isomorphism
p:S5—a
of graded B-modules, where a C B is a graded ideal of B. Then, since
la(ar) = €a(S1) > d—1,

the ideal a contains d — 1 linearly independent linear forms, say X, X, -+, X471 of B,
which we enlarge to a basis X, -+, Xy 1, Xy of By. Hence

B = k[XlaX27 e 7Xd]7
so that the ideal a/(Xy, Xs, -+, X4_1)B in the polynomial ring
B/(XhXQ, tte ;del)B — k[Xd]

is principal. If a = (X, Xy, -+, X4_1)B, then I? = QI* by Lemma 2 (5), since S = BS].
However, because £4(1?/QI) = £4(a;) = d — 1, we have depth G > 1 by Proposition 6
(2), which is impossible. Therefore a/(X;, X, -+, X4-1)B # (0), so that we have
a= (X17X27 e 7Xd—17X¢(lX)B

for some « > 1. Notice that &« =1 or @ = 2 by Lemma 2 (4). We must show that a = 1.

Assume that o = 2. Let us write, for each 1 < j < d, X; = a;t with a; € Q, where
a;t denotes the image of a;t € T in B = T/mT. Then a = (at, ast, - -+, aq_1t, (aqt)?).
We now choose elements f; € S for 1 <i < d—1 and f; € Sy so that ¢(f;) = X; for
1<i<d-—1and ¢(fs) = X3. Let z; € I for 1 <i < d—1 and 24 € I* such that

{fit1i<ica_1 and fy are, respectively, the images of {z;t}i<j<q_1 and z4t? in S. We now
consider the relations X;f; = X f; in S for 1 <i<d—1 and X§f1 = X1 f4, that is

;21 — a1%2; € Q2[

for1 <i<d-1and
a?,zl — 24 € Q1.
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Notice that
Q3 — a/lQ2 + (CLQ, as, - .- 7ad—1)2'(a27 as, - - 7a/d) + CLZQ

and write
a?lzl — U124 = 171 + To + aZTg
with 1 € Q2[, To € (CLQ, as, - - ,ad,1)2-(a2, as, - - - ,CLd)I, and T3 € QI Then
Gfg(zl —13) = a1(11 + 2q) + 72 € (a1) + (az, as, - - ,ad71)2-
Hence z; — 73 € (a1) + (az,as, - -+ ,aq_1)%, because the sequence ay, as, - - , aq is A-regular.
Let 21 — 73 = aih + I/ with h € A and I/ € (ag,as, - ,aq_1)* Then since
arlaih — (1 + zq)] = 7o — a2k’ € (az,as,- -+, aq)?,
we have a2h — (11 + z4) € (ag, a3, -+ ,aq), whence a3h € I°.

We need the following.
Remark 8. h & I but h € I. Hence I # 1.

Proof of Remark 8. If h € I, then a1h € QI, so that z; = a1h + I + 73 € QI, whence
fi=0in S (cf. Lemma 2 (2)), which is impossible. Let 1 <i < d — 1. Then

a;iz1 — a1z = ag(ath + b +73) — a1z = ay(a;h — ) + a; (W + 73) € Q*I.
Therefore, because a;(h' + 73) € Q*I, we get
ay(a;h — z) € (a1) N Q1.
Notice that
() NQ*T = (ay) N[a1QI + (ag,as,--- ,aq)*1]
= a1QI + [(a1) N (ag,as, - ,aq)*1]
= QI +ai(ay,as, - ,aq)”

alQI
and we have a;h — 2; € QI, whence a;h € I? for 1 <i < d—1. Consequently a?h € I* for
all 1 <7< d, so that h € I, whence I # I. O

Because £4(I/I) > 1, we have
er = ey—la(A/])+ 1
eo(1) — La(A/T) + [1 — L4(I/1)]
eo(1) — La(A/T)
er(1)

VARV

€1,

where eo(I) — Ca(A/ 1) <e(D) is the inequality of Northcott for the ideal I (cf. Corollary
4). Hence £4(1/I) =1 and e;(I) = eq(I) — €4(A/I), so that

I=1I+(h) and I*=QI

by Corollary 4 (recall that @ is a reduction of I also). We then have, thanks to [2,
Proposition 2.6], that I3 = QI?, which is a required contradiction. This completes the
proof of Theorem 1 and that of Theorem 7 as well. 0

—0 4—



4. AN EXAMPLE

Lastly we construct one example which satisfies condition (3) in Theorem 1. Our goal
is the following. See [2, Section 5] for the detailed proofs.

Theorem 9. Let 0 < ¢ < d be integers. Then there exists an m-primary ideal I in a
Cohen-Macaulay local ring (A, m) such that

d=dim A, e (I)=ey(I) —Ca(A/I)+ 1, and c=4(I?/QI)
for some reduction Q = (a1,as,--- ,aq) of I.

To construct necessary examples we may assume that ¢ = d.
Let m, d > 0 be integers. Let

U =k{X;hicjcm Y {Vih<ica, { Zi}1<i<d]
be the polynomial ring with m + 2d + 1 indeterminates over an infinite field k& and let
b = [(X[1<j<m)+ VX [1<j<m)+(Y)+(Vi|1<i<d)]
+(ViV; 11 <i,j<d,i#j)+VP=2Y |1<i<d).
We put C' = U/b and denote the images of X, Y, V;, and Z; in C by z;, y, v;, and a;,
respectively. Then dim C' = d, since Vb = (X;|1<j<m)+Y)+(Vi|1<i<d).
Let M =Cy = (x; |1<j<m)+ (y)+ (v;|1<i<d)+ (a;| 1 <i<d)Dbe the graded
maximal ideal in C'. Let T" be a subset of {1,2,--- ,m}. We put
J=(a; |1 <i<d)+ (zo|a€el)+ (v;|1<i<d) and q=(a; |1 <1 <d).

Then M? = qM, J? = qJ + qy, and J? = q.J?, whence q is a reduction of both M and J,
and aq, as, - -, aq is a homogeneous system of parameters for the graded ring C'.

Let A= Cy, I = JA, and @ = qA. We are now interested in the Hilbert coefficients e’s
of the ideal I as well as the structure of the associated graded ring and the Sally module
of I. We then have the following, which shows that the ideal I is a required example.

Theorem 10. The following assertions hold true.

(1) A is a Cohen-Macaulay local ring with dim A = d.

(2) S = B, as graded T-modules, whence {A(I?/QI) = d.
(3) eol) =m+d+2 and ey (I) =4I +d+ 1.

(4) e;(I) =0 for all2 <i<d.

(5) G is a Buchsbaum ring with depthG = 0 and I(G) = d.

Proof. See [2, Theorem 5.2]. O
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