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Abstract. In this note, we present a proof of the Stickelberger relation (see [1]) using
Loewy series of a group algebra Map(Fq, Fq) of the additive group of a finite field Fq.
This relation is essential in a proof of the Eisenstein reciprocity law. We also present
partial solutions to the Feit-Thompson conjecture for primes 3 and 5 by a special case
of this law.
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§1. Loewy series of group algebras Map(Fq, Fq)

Let F = Fq be the finite field of order q = pf , where p is a prime, and let A = Map(F, K)
be the set of mappings from F to a subring K of a field. We define a convolution product
∗ in A as follows,

(f ∗ g)(α) :=
∑

α+β=γ

f(α)g(β) for f, g ∈ A and α, β, γ ∈ F.

We say a character by a group homomorphism from the multiplicative group F∗ to K.
Let X be the set of characters. We define the trivial character ε by ε(α) = 1 for all α ∈ F∗.
It is convenient to set ε(0) = 1 and χ(0) = 0 for χ 6= ε. In virtue of this definition, we can
see X is contained in A. In case K is a field, X is a group by the usual product, namely,
(λµ)(α) := λ(α)µ(α). This group isomorphic to the group F∗. Let uα be the characteristic
function of α ∈ Fq, namely,

uα(β) :=

{
1 β = α,
0 β 6= α.

This definition shows uα ∗uβ = uα+β and so the set {uα | α ∈ F} is the additive group
of F. Moreover A is a group algebra of the additive group of F over K. It is easy to see
that {uα | α ∈ Fq} are linearly independent over K and

f =
∑
α∈Fq

f(α)uα for f ∈ Map(Fq, K).

§1, §2 in this note is the detailed proof of Theorem 1 in the published paper [3]. The detailed version
of §3 in this note will be submitted for publication elsewhere.
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Thus {uα | α ∈ Fq} is a basis of A. In case q− 1 6= 0 in K, the set {u0}∪X is also a basis
of A because orthogonal relations shows

(q − 1)uα =
∑
η∈X

η(α−1)η for α 6= 0 and χ =
∑
α∈F

χ(α)uα.

In the remainder of this paper, we assume K = Fq. We define Jacobi sums as follows

Jα(λ, µ) =
∑

β+γ=α

λ(β)µ(γ) for λ, µ ∈ X and α, β, γ ∈ F

and we set J(λ, µ) = J1(λ, µ).

Lemma 1. We set λ, µ ∈ X and α ∈ F.

(1) Jα(ε, ε) = 0.
(2) J0(λ, µ) = 0 for λµ 6= ε.
(3) Jα(λ, µ) = λµ(α)J(λ, µ) for α 6= 0.
(4) J(λ, λ−1) = J0(λ, λ−1) = −λ(−1) for λ 6= ε.
(5) J(λ, µ) is contained in the prime field Fp.
(6) λ ∗ µ = J(λ, µ)λµ.

Proof. (1) Jα(ε, ε) = pf = 0.
(2) J0(λ, µ) =

∑
β∈F∗ λ(β)µ(−β) = µ(−1)

∑
β∈F∗ λµ(β) = 0.

(3) Jα(λ, µ) = λµ(α)
∑

β+γ=α λ(βα−1)µ(γα−1) = λµ(α)J(λ, µ).

(4) Using (3), we have

J0(λ, λ−1) − J(λ, λ−1) = J0(λ, λ−1) + (q − 1)J(λ, λ−1) =
∑
α∈F

Jα(λ, λ−1)

= (
∑
β∈F

λ(β))(
∑
γ∈F

λ−1(γ)) = 0.

Thus we have

J(λ, λ−1) = J0(λ, λ−1) =
∑
β∈F

λ(−β)λ−1(β) =
∑
β∈F

λ(−β)λ−1(β)

= λ(−1) ·
∑
β∈F∗

ε(β) = λ(−1)(q − 1) = −λ(−1).

(5) The assertion follows from the equation

J(λ, µ)p =
∑
β∈F

λ(β)pµ(1 − β)p =
∑
β∈F

λ(βp)µ(1 − βp)
∑
γ∈F

λ(γ)µ(1 − γ) = J(λ, µ).

(6) We have J0(λ, µ)u0 − J(λ, µ)λµ(0)u0 = 0 from (2) and (4). Thus using (3), we
obtain our result.

λ ∗ µ =

(∑
β∈F

λ(β)uβ

)(∑
γ∈F

µ(γ)uγ

)
=

∑
β,γ∈F

λ(β)µ(γ)uβ+γ =
∑
α∈F

Jα(λ, µ)uα

= J(λ, µ)λµ + J0(λ, µ)u0 − J(λ, µ)λµ(0)u0 = J(λ, µ)λµ.
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Lemma 2. Let η be a generator of F∗ and φ : ηk → η−k be a generator of X. We set
integers 0 < s, t,m < n = q−1 with t = pe and tm ≡ s mod n. Then J(φs, φt) = −m−1.

Proof. Let L be a permutation on B = {1, . . . , n−1} such that ηL(k) = 1−ηk and set
θ = ηt. Then the order of θ is n. We can easily verify the next equation from the formula
of a geometric series.

θ−`k · (1 − θk)−1 = θ−k + θ−2k + · · · + θ−`k + (1 − θk)−1 for k ∈ B.

The next equation follows from the above formula and t is a power of a prime p.

J(φs, φt) =
n−1∑
k=0

φs(ηk)φt(1 − ηk) =
n−1∑
k=1

φ(ηks · ηL(k)t)

=
n−1∑
k=1

η−ksη−L(k)t =
n−1∑
k=1

η−tmk(1 − ηkt)−1

=
n−1∑
k=1

θ−mk(1 − θk)−1 =
n−1∑
k=1

((
m∑

`=1

θ−`k

)
+ η−L(k)

)

=
m∑

`=1

(
n−1∑
k=1

θ−`k

)
+

n−1∑
k=1

η−L(k) =
m∑

`=1

(−1) +
n−1∑
k=1

ηk

= −m − 1

Proposition 3. µ
[p−1]
0 ∗ µ

[p−1]
1 ∗ · · · ∗ µ

[p−1]
f−1 = γε 6= 0 where µk = φpk

, γ ∈ F and χ[`] is
the `th power by the product ∗.

Proof. In virtue of Lemma 1 (6), the above product is equal to γφq−1 = γε with
γ =

∏
s,t J(φs, φt) where t = pk for k = 0, · · · , f − 1 and s = (` + 1)t − 1 for ` =

0, . . . , p − 2 ((k, `) 6= (0, 0)). Thus it remains only to prove J(φs, φt) 6= 0. In fact, setting
0 < m = q − q/t + ` < n = q − 1, It is easily seen that tm ≡ s mod n and m ≡ ` mod p.
It follows from Lemma 2 that J(φs, φt) = −m − 1 = −` − 1 6= 0 since 0 < ` + 1 < p.

§2. Stickelberger relations

Let m be a natural number. let p be a prime do not divide m, and let f be the order
of p mod m. Moreover let Dm be the ring of algebraic integers in Q(ζm) and let P be a

prime ideal containing p, where ζm = e
2πi
m . Then it is well known that q is the order of

a finite field F = Dm/P. We consider Gaussian sums g(χa) =
∑

a∈F χa(α)ζ
tr(α)
p where χ

is a generator of X and tr(α) is the trace of α. Let ℘ be the ideal generated by P and
{1 − ζk

p |0 < k < p} in the ring of algebraic integers Dmp of Q(ζmp). It is easy to see ℘ is
a prime ideal generated by P and 1 − ζp. We set a∗ = b0 + b1 + · · · + bf−1 for a positive
integer a = b0 + b1p + · · · + bf−1p

f−1.
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Theorem 4. ord℘(g(χa)) = a∗ for 0 < a < q, namely, ℘a∗
divides exactly g(χa).

Proof. Let ν be a natural homomorphism:

Map(F, Dm) → Map(F, Dm/P ), where Dm/P = F,

and < be the ideal generated by P and {u0 − uα|α ∈ F}. Since ν(θ)[p] = 0 for ε 6= θ ∈ X,
We obtain that ν(θ) is contained in ν(<), the radical of the group algebra Map(F, Dm/P )
and so θ ∈ <. By Proposition 3 together with this implies that γχa ∈ <a∗

for the product

of Jacobi sums γ ∈ Dm \ P. The character uβ → ζ
tr(β)
p induces the epimorphism

φ : Map(F, Dm) → Dmp

with φ(<) = ℘ and φ(γχa) = γg(χa). Thus we have ord℘(g(χa)) = a∗. On the other hand,
using ord℘(p) = p − 1 and g(χa)g(χq−1−a) = g(χa)g(χa) = χa(−1)q = χa(−1)pf , we have
the next

ord℘(g(χa)) + ord℘(g(χq−1−a)) = f(p − 1) = a∗ + (q − 1 − a)∗

This completes our proof.

From this theorem we have Stickelberger relation and Eisenstein reciprocity law by
the same method in [1]. Let σt be an automoripism of Q(ζ) for 0 < t < m and (m, t) = 1
such that σt(ζm) = ζt

m.

Theorem 5 (the Stickelberger relation). g(χ)mDm =
∏

σt
σt(P

t) where t runs over 0 <
t < m and (t, m) = 1.

We set ζ` = e
2πi
` for odd prime `, θa =

(
a

)
`

is the `th power residue symbol and
D` is the ring of algebraic integers in Q(ζ`). A non zero and non unit element α ∈ D` is
called primary if α is prime to ` and α ≡ c mod (1 − ζ`)

2 for some c ∈ Z.

Theorem 6 (the Eisenstein reciprocity law). Let ` be an odd prime, a ∈ Z and let α ∈ D`

be primary. Each pair of `, a and α is coprime. Then θa(α) = θα(a).

§3. Partial solutions to the Feit Thompson conjecture for primes 3 and 5

We set p < q are odd primes, and

F =
qp − 1

q − 1
and T =

pq − 1

p − 1
.

Feit Thompson conjectured that F never divides T. If it would be proved, their odd paper
would be greatly simplified (see [4]).

Lemma 7. We set χη =
(

η

)
p
pth power residue symbol, ζ = e

2πi
p and c(q−1) ≡ 1 mod p.

Then η = ζc(ζ − q) is primary in the algebraic integer ring of Q(ζ).

(1) χη(1 − ζ)2(q−1) = χq−1(ζ)q+1. In particular, χη(1 − ζ) = 1 if p divides q + 1.

(2) if F divides T, then χη(p) = 1 and χη(1 − ζ) = χη(u) where u =
∏p−1

k=1
1−ζk

1−ζ
.

In particular, if p divides q + 1, then χη(u) = 1 by (1).
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Using this lemma, we obtain

Corollary 8. F never divides T in either case of the next conditions.

(1) p = 3 and q 6≡ −1 mod 9.
(2) p = 5 and q + 1 = 5` with (`, 5) = 1.
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