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ABSTRACT. In this note, we present a proof of the Stickelberger relation (see [1]) using
Loewy series of a group algebra Map(F,,F,) of the additive group of a finite field F,.
This relation is essential in a proof of the Eisenstein reciprocity law. We also present
partial solutions to the Feit-Thompson conjecture for primes 3 and 5 by a special case
of this law.
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§1. Loewy series of group algebras Map(F,, F,)

Let F = IF, be the finite field of order ¢ = p/, where p is a prime, and let A = Map(F, K)
be the set of mappings from F to a subring K of a field. We define a convolution product
x in A as follows,

(fxg)(@):= > fla)g(B)for f, g€ Aand o, 8,7 €F.

atf=y

We say a character by a group homomorphism from the multiplicative group F* to K.
Let X be the set of characters. We define the trivial character e by ¢(a) = 1 for all o € F*.
It is convenient to set €(0) = 1 and x(0) = 0 for x # €. In virtue of this definition, we can
see X is contained in A. In case K is a field, X is a group by the usual product, namely,
(M) (@) := M) (). This group isomorphic to the group F*. Let u,, be the characteristic
function of a € F,, namely,

w®={0 5a

This definition shows u, * ug = a4+ and so the set {u, | o € F} is the additive group
of F. Moreover A is a group algebra of the additive group of F over K. It is easy to see
that {u, | @ € F,} are linearly independent over K and

f= Z f(a@)u, for f € Map(F,, K).

acl,

§1, §2 in this note is the detailed proof of Theorem 1 in the published paper [3]. The detailed version
of §3 in this note will be submitted for publication elsewhere.
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Thus {u, | @ € F,} is a basis of A. In case ¢ —1 # 0 in K, the set {up} U X is also a basis
of A because orthogonal relations shows

(¢ —Duy = Zn Y for a # 0 and y = ZX
nex ackF

In the remainder of this paper, we assume K = [F,. We define Jacobi sums as follows

Z)\ )for \, p€ X and o, 3,y € F

By=a

and we set J(\, ) = Ji(\, p).
Lemma 1. We set A\, p € X and a € F.

(1) Ja(e,€) = 0.

2) Jo(A, 1) =0 for A # .

al ,u) = (@) J (A, p) for a # 0.

MATH) = TN A7) = =X(=1) for X #e.

(A, p) is contained in the prime field .

1= J (A, p)Au.

Proof. (1) Ju(e,€) = p/ = 0.

(2) Jo(A, 1) = D e AB)(=F) = (1) 3 gep An(5) = 0.
(3) Ja(A 1) = Aul@) Yog i A(Ba™Hp(ya™) = Au(a) J(A, p).
(4) Using (3), we have

TN = JAANTY = AT+ (= DJAAT) =D T\ A

= O amO_ At

BeFR ~yeF
Thus we have

TN = JoAAT) =D A=BATB) = D A=BA(B)

BeF BEFR

= A1) Y e(B) =AM=1)(g 1) = —A(~1).

BeF*
(5) The assertion follows from the equation
JOw ) =3 B (=8 =3 M)l = 8°) Y A1 =) = T\, ).
BeF BeF ~v€F

(6) We have Jo(\, p)ug — J(A, ) A(0)ug = 0 from (2) and (4). Thus using (3), we

obtain our result.

Asp = (Zwm) (Zu(v)%) = D MO gy = Y ol pu

BeF ~veF B,yeF a€lR

= JwAp+ Jo(A, wuo — J(A, 1) Au(0)ug = J(A, ) Ape.
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Lemma 2. Let n be a generator of F* and ¢ : n* — n=% be a generator of X. We set
integers 0 < s,t,m <n=q—1 witht = p® and tm = s mod n. Then J(¢*, ¢') = —m—1.

Proof. Let L be a permutation on B = {1, ..., n— 1} such that n**) = 1 —nF and set
0 = n'. Then the order of 6 is n. We can easily verify the next equation from the formula
of a geometric series.

O (1—0") =00 0% (1 -0 for k € B.

The next equation follows from the above formula and ¢ is a power of a prime p.

J(¢%,¢") = Zof )¢' (1 —n* Z¢ Hoty

n—1
_ anksnfL(k)t _ Z nftmk(l _ nkt)fl
k=1 k=1
n—1 m
_ Ze mk -1 _ ((Z 912k> +1 L(k))
k=1 =1
m n—1 n—1 m n—1
-3 (Z ) e =S S
=1 \k=1 k=1 =1 k=1
= —-m-—1
Proposition 3. ,ug’_l] * ,u[lp Yo x /L][{J__ll] = ye # 0 where py, = ¢pk7 v €F and x1" is

the (th power by the product *.

Proof. 1In virtue of Lemma 1 (6), the above product is equal to ¢! = ~e with
N o= HSJJ(QSS,qut) where t = p* for k = 0,---,f —1land s = ({ + 1)t — 1 for { =
0,...,p—2 ((k,£) # (0,0)). Thus it remains only to prove J(¢°, ¢') # 0. In fact, setting
O<m=q—q/t+¢<n=q—1,1Itis easily seen that tm = s mod n and m = ¢ mod p.
It follows from Lemma 2 that J(¢%,¢') = —m —1=——1#0since 0 < ¢+ 1 < p.

§2. Stickelberger relations

Let m be a natural number. let p be a prime do not divide m, and let f be the order
of p mod m. Moreover let D,, be the rmg of algebraic integers in Q((,,) and let P be a
prime ideal containing p, where (,, = e’ . Then it is well known that qis the order of
a finite field F = D,,/P. We consider Gaussian sums g(x*) = >, X*(a )Cp ) where x
is a generator of X and tr(a) is the trace of a. Let p be the ideal generated by P and
{1 —¢%|0 < k < p} in the ring of algebraic integers Dy, of Q(Cuyp)- It is easy to see @ is
a prime ideal generated by P and 1 — (,. We set a* = by + by + - -+ + bys_; for a positive
integer a = by + byp + -+ by_1p' L.
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Theorem 4. ord,(g(x*)) = a* for 0 < a < q, namely, p* divides exactly g(x*).

Proof. Let v be a natural homomorphism:
Map(F, D,,) — Map(F, D,,/P), where D,,/P =T,

and R be the ideal generated by P and {ug — us|a € F}. Since v(0)P! =0 for € # 6 € X,
We obtain that v(#) is contained in v(R), the radical of the group algebra Map(F, D,,/P)

and so § € R. By Proposition 3 together with this implies that vx® € £¢ for the product

of Jacobi sums v € D,, \ P. The character ugz — C,t)r(ﬁ)

¢ : Map(F, D,,,) — D,y
with ¢(R) = p and ¢(yx*) = vg(x*). Thus we have ord,(g(x*)) = a*. On the other hand,
using ord,,(p) = p — 1 and g(x*)g(x*"™*) = g(x*)g(x?) = x*(=1)g = x“(=1)p/, we have

the next
ordy(g(x*)) +ordy (g(x*") = flp—1) =a" + (¢ =1 - a)’
This completes our proof.

induces the epimorphism

From this theorem we have Stickelberger relation and Eisenstein reciprocity law by
the same method in [1]. Let o; be an automoripism of Q(¢) for 0 < ¢ < m and (m,t) =1
such that 4((n) = ¢,

Theorem 5 (the Stickelberger relation). g(x)"Dm = [1,, o¢(P") where t runs over 0 <
t<m and (t,m) = 1.

We set ¢, = e’T for odd prime ¢, 6, = <E)e is the /th power residue symbol and
Dy is the ring of algebraic integers in Q((;). A non zero and non unit element o € Dy is
called primary if « is prime to ¢ and o = ¢ mod (1 — () for some ¢ € Z.

Theorem 6 (the Eisenstein reciprocity law). Let ¢ be an odd prime, a € Z and let o € D,
be primary. Each pair of €,a and a is coprime. Then 0,(a) = 6,(a).

83. Partial solutions to the Feit Thompson conjecture for primes 3 and 5

We set p < g are odd primes, and

1 a_
= and T = P 1.

qg—1 p—1
Feit Thompson conjectured that F' never divides T. If it would be proved, their odd paper
would be greatly simplified (see [4]).

Lemma 7. We set x,, = (5) pth power residue symbol, ( = e and c(g—1) =1 mod p.
P
Then n = C°(C — q) is primary in the algebraic integer ring of Q(().

(1) xy(1 = )2V = x, 1 ()T, In particular, x,(1—¢) =1 if p divides q + 1.
(2) if F divides T, then x,(p) = 1 and x,(1 — ¢) = x,(u) where u = [[2_; L=<t
In particular, if p divides g + 1, then x,(u) =1 by (1).
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Using this lemma, we obtain

Corollary 8. F' never divides T in either case of the next conditions.

(1) p=3 and ¢ # —1 mod 9.
(2) p="5 and g+ 1 =50 with (¢,5) = 1.
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