ON GALOIS EXTENSIONS WITH AN INNER GALOIS GROUP
AND A GALOIS COMMUTATOR SUBRING
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ABSTRACT. Properties of a Galois ring extension with an inner Galois group are given,
and equivalent conditions for a Galois extension with a Galois commutator subring are
shown.

1. INTRODUCTION

In 1960’s, Galois theory was developed for rings by M. Auslander-O.Goldman ([2]),
S.U. Chase-D.K. Harrison-A. Rosenberg ([3]), F.R. DeMeyer ([4], [5]), M. Harada ([7]),
Y. Miyashita ([13]), T. Nagahara ([14]), T. Kanzaki ([12]), K. Sugano ([15], [16]), and
others. It was shown ([4], Theorem 6, [5], Theorem 3) that B is a central Galois algebra
over its center C' with an inner Galois group G if and only if it is an Azumaya projective
group algebra CGy where f : G x G — units of C' is a factor set. In section 3, we shall
generalize the above theorem to any Galois extension B with an inner Galois group G
where G = {g € G'|g(z) = UyaU; " for some U, € B and for all z € B}. It is shown
that B contains a projective group algebra C'Gy. An equivalent condition for a central
Galois algebra C'G ¢ with Galois group induced by G is given, and characterizations for a
Galois extension B with an inner Galois group G generated by {U, |g € G} over BY are
obtained. When B is also an Azumaya algebra, in section 4, some properties are given for
a Galois extension B with an inner Galois group GG. We note that any Galois extension
with an inner Galois group G is a Hirata separable extension of BE ([17], Corollary 3).
For a Hirata separable Galois extension B with Galois group G (not necessarily inner),
in [17], Sugano investigated the Galois commutator subring Vz(B) of B¢ in B. We
shall study when Vz(B%) is a Galois extension with Galois group induced by G for any
Galois extension B with Galois group G in section 5. Equivalent conditions are given in
terms of a composition Galois extensions: B D BY - Vz(BY) D B and crossed products
respectively. Some examples are also given to demonstrate the results.

2. BASiCc DEFINITIONS AND NOTATIONS

Let B be a ring with identity 1, C' the center of B, GG a finite automorphism group of
B, B¢ the set of elements in B fixed under each element in G. Following the definitions
as given in the references, we call B a Galois extension of B¢ with Galois group G if there
exist elements {a;,b; in B, i = 1,2, ..., m for some integer m} such that Y " a;g(b;) = 01,4
for each ¢ € G ([4]). Such a set {a;,b;} is called a G-Galois system for B. A Galois
extension B of BY is called a Galois algebra if B is contained in C' ([21]), and a central
Galois algebra if B¢ = O (]20]). We call B a center Galois extension with Galois group

The detailed version of this paper will be submitted for publication elsewhere.
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G if C is a Galois algebra over C¢ with Galois group G|¢ = G, and a commutator Galois
extension of B¢ with Galois group G if Vg(B%) is a Galois extension of (Vz(B))¢
with Galois group Gly,pey & G. Let A be a subring of B with the same identity 1.
We denote Vp(A) the commutator (also called centralizer) subring of A in B, that is,
Ve(A) = {b € Blbx = xb for all = € A}. We call B a separable extension of A if
there exist {a;,b; in B, i = 1,2,...,m for some integer m} such that »_ a;b; = 1, and
Y ba; ® by = Y a; @ b;b for all b in B where ® is over A. An Azumaya algebra is a
separable extension of its center. A Galois extension B of BY with Galois group G is
called an Azumaya Galois extension if BY is an Azumaya C%-algebra ([1]). A Galois
extension B of BY with Galois group G is called a DeMeyer-Kanzaki Galois extension if
B is an Azumaya algebra over C' which is a Galois algebra over C¢ with Galois group
G|lc = G. A ring B is called a Hirata separable extension of A if B® 4 B is isomorphic to
a direct summand of a finite direct sum of B as a B-bimodule, and B is called a Hirata
separable Galois extension of BY if it is a Galois and a Hirata separable extension of BY.
Let R be a commutative ring with 1 and U(R) the set of units of R. As given in [4], for
a factor set f: G x G — U(R) (that is, f(g,h)f(gh,k) = f(h,k)f(g,hk) for all g, h,
and k in G), RGy = dec RU, is called a projective group algebra over R if RGy is an
algebra with a free basis {U, ‘ g € G} over R where U, is an invertible element for each
g € G, the multiplications are given by (r,U,)(r,Us) = ryrpU Uy, and U Uy, = f(g, h)Uyp,
for ry, 7, € R and g, h € G; that is, f(g,h) = UgUhUg_hl.

3. GALOIS EXTENSIONS WITH AN INNER GALOIS GROUP

Let B be a Galois extension of B¢ with an inner Galois group G whose order |G|
is invertible in B where G = {g € G |g(x) = UyzU," for some U, € B and for all
x € B}. We shall show that B contains a projective group algebra CG; where C' is the
center of B. An equivalent condition is given for a central Galois algebra C'G;. Thus
several characterizations are obtained for B generated by {U,|g € G} over BY. These
characterizations generalize the results for a central Galois algebra with an inner Galois
group ([4], Theorem 6).

Theorem 3.1. ([23], Theorem 2.1) Let B be a Galois extension of B¢ with an inner
Galois group G, G ={g|g(z) = UgasUg_1 for some U, € B and for all x € B}, and C' the
center of B. Then B contains a projective group algebra CGy of G over C' with a factor
set f: G X G — units of C.

Proof. We first claim that {U, | g € G} are linearly independent over C. Let {z;,y; €

Bli=1,2,...,m for some integer m} be a G-Galois system such that Y ", z;g(y;) = 1,4
for each g € G. Let > ., a,U, = 0 for some a, € C. Then

Zmi ZagUgh_l(yi) = 0 for each h € G and

=1 gelG
Z a, Z zigh™ (y)U, = Z ag01 gn-1Uy = apUy,.
geqG =1 geG
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Noting that a, € C and U,h™(y;) = gh™*(y:)U,, we have that

Z:&Z%Uh (%) Zagzngh (i) Us;

= geqG geG i=1
and so apU, = 0. But U, is invertible in B, so a, = 0 for each h € G. Also, noting
that Ug_hlU Uy, is a unit in C', we have a factor set f : G x G — units of C' by f(g,h) =
Uah 'U,Uy. Thus =CGy C B.

gEG

Let Z be the center of G and G the restriction of G to CG;. Then G = G/K where
K ={g€Z|f(g,h) = f(h,g) for all h € G}. Next is necessary and sufficient condition
for a central Galois algebra C'Gy with an inner Galois group G.

Theorem 3.2. ([23], Theorem 2.2) Let B be a Galois extension of BY with an inner
Galois group G of order n invertible in B and CGy as giwven in Theorem 3.1. Then CG
is a central Galois algebra over its center S with an inner Galois group G if and only if
{Us]7 € G} are linearly independent over S where Uz = U, for each g € G.

Proof. (=) Since CG; is a central Galois algebra with an inner Galois group G,
CGy = SG5 ([4], Theorem 6). Thus {Uy|g € G} are linearly independent over S.

(«=) Since {U;|g € G} are linearly independent over S, SG; = &;.5SU; is a
projective group algebra of G over S with factor set f : G x G — units of S in-
duced by f : G x G — units of C. Noting that {U,|g € K} C S, we have that
CGy = &yc65U7 = SG But CGy is an Azumaya S-algebra (for n is a unit in C), s
SG; is an Azumaya S- algebra Thus SG; is a central Galois S-algebra with an inner
Galois group G ([5], Theorem 3). Therefore CG} is a central Galois algebra over S with
an inner Galois group G.

Theorem 3.2 can be generalized to a projective group ring RGy of a group G over a
ring R (not necessarily commutative) with a factor set f : G x G — units of the center

of R.

Theorem 3.3. ([22], Theorem 3.2) Let RG; be a Galois projective group ring of
G over a ring R, C the center of RGy, and Ry the center of R. Then the following
are equivalent: (1) RGy is a Galois extension of (RGf)é with an inner Galois group G
induced by {Uy|g € G}. (2) C’@y is a central Galois projective group algebra of G over
C with factor set f : G x G — units of C induced by f : G x G — units of Ry. (3)
{U;19 € G} are free over RC and RC = © )i U, where Uz = Uy for each g € G
and K = {g € the center of G| f(g,9") = f(¢,g) for all ¢ € G}.

Proof. Let Z be the center of G. We first note that G = G/K where K = {g €
Z| f(g,9) = f(d,g) for all ¢ € G} and that {U;|g € G} are free over C where Uy = U,
for each ¢ € G by the argument used in the proof of Theorem 3.1. Next we prove
(1) = (2) and leave other implications (2) = (1) and (2) = (3) = (2) to readers.
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Since RG; is a Galois extension of (RG;)% with an inner Galois group G, {U;|g € G}
are free over RC. Noting that f : G x G — units of Ry contained in C, we have that
C@y is a projective group algebra of G over C' with factor set f : G x G — units
of C' where f is induced by f : G x G — units of Ry. Moreover, since RyK s C C,
> gea(RoKy)Us C CGy. But G = G/K, so

RGy =Y RU, = R(RoGy) C R(Y_CUy) = R(CG5) C RGy.

geG ge@G

Hence RGy = R(C’af). Thus a|C§? =~ G. Next we claim that C is also the center of

de@ CUz (= C’é?). In fact, clearly, C'is contained in the center of C’a?. Conversely, for
any x € the center of Ca?, x is in the center of deé CUj. Also, for any r € R, rT =2,
so z is in the center of R(} ;.5 CUy) which is RGy. Thus z € C. Therefore CGy is an

Azumaya C-algebra; and so CG is a central Galois C-algebra with an inner Galois group
5\6@7 =~ G ([4], Theorem 6).

We give two examples of Galois extensions with an inner Galois group G.

Example 1. Let R[i, ], k] be the real quaternion algebra over real field R with inner
automorphism group G = {1, i, j, k} where i(z) = izi~!, j(z) = jrj~', and k(z) =
kxk=! for x € R[i,j,k]. Then R[i,j,k] = R® Ri ® Rj ® Rk, a projective group algebra
RG ¢ with center R; and so it is a central Galois algebra over R with an inner Galois
group G.

Example 2. Let T = R[i] C R[i,j, k] as given in Example 1 and H; = {1, i} C G.
Then (R[4, j, k])"* = R[i] and R[i, j, k] is a noncommutative Galois extension of R[i] with
a cyclic Galois group H;. We note that any Galois algebra with a cyclic Galois group is
commutative ([4], Theorem 11).

By using Theorem 3.2, we derive some characterizations for a Galois extension B as
given in Theorem 3.2 which is generated by {U, | g € G} over B®. We recall that C'is the
center of B, S the center of CGy, Z the center of G, and K = {g € Z| f(g,h) = f(h,9)
for all h € G}.

Theorem 3.4. ([23], Theorem 2.3) Let B be a Galois extension of B¢ with an inner

Galois group G of order n invertible in B. Then the following are equivalent:

(1) B=73,cc B°Uy, i.e., B is generated by {Uy| g € G} over BY,

(2) B = BYGy, a projective group ring of G over B¢ with factor set [ : G x G —
units of C;

(8) C=S5;

(4) 3_geq CUy, the subring of B generated by {U, | g € G} over C, is a central Galois
C-algebra with Galois group G = G;

(5) 3 yec CUy is an Azumaya C-algebra;
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(6) K = (1) and {U;|g € G} are linearly independent over S.

4. THE AZUMAYA ALGEBRA

Let B be a Galois extension of B with an inner Galois group G whose order n is
invertible in B as given in Theorem 3.2, G = {g € G| g(z) = UyzU, " for some U, € B and
for all z € B}, C the center of B, Z the center of G, and K = {g € Z| f(g9,h) = f(h,9)
for all h € G}. Assume that B is an Azumaya C-algebra. We shall show an equivalent
condition for a central Galois algebra CG; in terms of the Galois extension BX of B¢
with Galois group G/K.

Theorem 4.1. ([23], Theorem 3.1) Let B be given in Theorem 3.2. If B is an Azumaya
C-algebra, then Vg(B¢) = CGj.

Proof. Since n is invertible in B, CGy is a separable subalgebra of the Azumaya C-
algebra B. Hence Vp(Vp(CGy)) = CGy. Noting that Vp(CG;) = B¢, we have that
Vp(BY) = CGy.

Theorem 4.2. (23], Theorem 3.2) Let B be given in Theorem 3.2. Assume B is an
Azumaya C-algebra. Then CGy is a central Galois algebra over its center S with Galois

group G (= G/K) if and only if BX = BY . (CGy).

Proof. (=) Since CGY is a central Galois algebra with Galois group G (= G/K), CG
has a G-Galois system. Clearly, CG; C B¢-(CG;) C BX and (B¢ (CGy))¢ = (B¥)¢ =
BY, so BY . (CGy) and BY are also Galois extensions with the same Galois system as
CG by noting that the restrictions of G' to B® - (CG) and BX are isomorphic with G
(= G/K). Thus BX = BY . (CGy).

(<=) By hypothesis, B is a Galois extension of BY with an inner Galois group G of
order n invertible in B, so BX is a Galois extension of BY with an inner Galois group
G/K. Let S be the center of CGy. Since CGy is a separable C-subalgebra of the Azumaya
C-algebra B, Vg(Vp(CGy)) = CGy. Hence CGy, B¢ (= Vg(CGYy)), and BY - (CGy) have
the same center S. By hypothesis, BX = B¢ . (CGy). Thus S is the center of BX. But
BX is a Galois extension of B® with an inner Galois group G (= G/K), so BX contains
the separable projective group algebra S@? where f : G x G — units of S induced by
f: G x G — units of C by Theorem 3.1. Thus {U;|g € G} are linearly independent
over S. Therefore CG} is a central Galois algebra with Galois group G' by Theorem 3.2.

Corollary 4.3. ([23], Corollary 3.1) Let B be given in Theorem 4.2. Then BYX is a
Galois projective group ring of G over B¢ S with factor set f : G x G — units of C.

Proof. By Theorem 4.2, BX = B¢ . (CG}) and CG; = SE?, so BE = BY. (CGy) =
BG(SE?) = (B%S )@; which is a Galois projective group ring of G over BYS with factor
set f: G x G — units of C.
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5. THE GALOIS COMMUTATOR SUBRING

We note that a Galois extension with an inner Galois group G is a Hirata separable
extension of BY ([17], Corollary 3). In [17], let B be a Hirata separable Galois extension of
B with Galois group G and A = Vg(BY) = {b € G |ba = ab for each element a € B“},
the commutator subring of BY in B. A sufficient condition was given for A being a
Galois algebra with Galois group G/N where N = {g € G|g(z) = x for all z € A}
We shall study the problem for a Galois extension B of B¢ with Galois group G such
that A is a Galois extension with Galois group G/N. Such a Galois extension B with
Galois group G will be characterized in terms of a composition of two Galois extensions:
B D BY-Vp(BY) D BY and in terms of crossed products respectively.

We begin with two lemmas whose proofs are straightforward.

Lemma 5.1. ([24], Lemma 3.1) Let T' be a ring and G an automorphism group of T.
Then (1) Vp(TY) is a G-invariant subring of T and (2) (Vp(T9))Y is contained in the
center of Vo (TC) (hence Vi (TC) is an algebra over (Vp(T<))Y).

Lemma 5.2. ([24], Lemma 3.2) Let B be a Galois extension of B¢ with Galois group
G and A a G-invariant subring of B under the action of G. If A is a Galois extension of
B¢ with Galois group induced by and isomorphic with G, then A = B.

Theorem 5.3. ([24], Theorem 3.3) Let B be a Galois extension of B¢ with Galois
group G, A = Vg(BY), and D = AY. Then the following statements are equivalent: (1)
A is a Galois algebra over D with Galois group induced by and isomorphic with G/N
where N = {g € G|g(z) = z for all x € A}. (2) BYA is a Galois extension of B¢
with Galois group induced by and isomorphic with G/N and A is a finitely generated and
projective module over D. (8) B is a composition of two Galois extensions: B D BEA
with Galois group N and BA D> BY with Galois group induced by and isomorphic with

G/N such that JgiA) is a finitely generated projective module over D for each g € G/N
where JE(A) ={be Albx = g(x)b for all x € A}.

Proof. (1) = (2) Since the automorphism groups induced by G/N on BYA and A are
isomorphic and A is a Galois algebra over D where D = A%, BYA is a Galois extension
of (BYA)Y (= BY) with Galois group induced by and isomorphic with G/N.

(2) = (1) Since BA D B¢ is a Galois extension with Galois group induced by and
isomorphic with G/N, the crossed product

(B¢A) % (G/N) = Hompe(BYA, B¢A).
Denoting G/N by G, we have that

a: (BYA) x G =2 Hompe(BA, BYA)
by (a(_geq a59)) (%) = 3 _zcq agg(x) for each x € BYA. Then

A x 6 = VBGA*é(BG) = VHomBG(BGA,BGA)(a(BG))'
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It can be verified that VHomBg(BGA,BGA)(a<BG)) = Homp(A, A) where D = A% = AY.
But A is a finitely generated and projective module over D, so A is a Galois algebra over
D with Galois group isomorphic with G.

(2) = (3) Since BYA c B such that (BYA)Y = BY = (BM)Y and BYA is a
Galois extension of BY with Galois group induced by and isomorphic with G (= G/N),
BY = BYA by Lemma 5.2. Moreover, noting that Vgaa(B) = A =&Y . & Jg(A) ([12],

Proposition 1 and Theorem 1), we conclude that Jg(A) is a finitely generated projective
module over D for each g € G/N.
(3) = (2) is clear.

By Theorem 5.3, we shall derive some consequences for several well known classes of
Galois extensions. We recall that B is a center Galois extension with Galois group G if its
center C' is a Galois algebra over C¢ with Galois group G|¢ = G, and B is a commutator
Galois extension of BY with Galois group G if Vz(BY) is a Galois extension of (Vg(B%))%
with Galois group G|y, o) = G.

Corollary 5.4. Let B be a Galois extension of B¢ with Galois group G. If B = BYC

such that C' is finitely generated and projective over C¢, then B a center Galois extension
with Galois group G.

Corollary 5.5. Let B be a Galois extension of B¢ with Galois group G. If B = B¢A

such that A is finitely generated and projective over AY, then B a commutator Galois
extension with Galois group G.

Remark. Since a DeMeyer-Kanzaki Galois extension is also a center Galois extension
([4], Lemma 2) and an Azumaya Galois extension is a commutator Galois extension ([1],
Theorem 2), Corollary 5.4 and Corollary 5.5 hold for the classes of DeMeyer-Kanzaki

Galois extensions and Azumaya Galois extensions.

Corollary 5.6. Let B be a Hirata separable Galois extension of B¢ with Galois group
G. If B= BCA, then A is a Galois algebra with Galois group induced by and isomorphic
with G/N.

Proof. Since B is a Hirata separable Galois extension of B¢ with Galois group G, Jy
is a finitely generated and projective rank one module over C¢ for each g € G ([17],
Theorem 2). The corollary holds by Theorem 5.3.

We continue to characterize a Galois commutator subring A in terms of crossed prod-
ucts.

Theorem 5.7. Keeping the notations of Theorem 5.3, the following statements are
equivalent: (1) A is a Galois algebra over A® with Galois group induced by and isomorphic

with G/N where N = {g € G|g(x) =x for allx € A}. (2) Let Ax(G/N) be the crossed
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product of G/N over A with trivial factor set. Then A x (G/N) is an Azumaya algebra
over AY. (8) Let (BYA) x (G/N) be the crossed product of G/N over BYA with trivial
factor set. Then (B¢A)* (G/N) is a Hirata separable extension of B¢ such that BC is a
direct summand of (BEA) * (G/N) as a B%-bimodule.

Proof. (1) = (2) Since A is a Galois algebra over AY with Galois group G induced
by and isomorphic with G/N, A% G = Homac (A, A) where A is a finitely generated and
projective module over A®. Noting that A is an algebra with 1 over A%, we have that
Homac (A, A) is an Azumaya algebra over A®. Hence A * G is an Azumaya algebra over
A%,

(2) = (1) By hypothesis, A * G is an Azumaya algebra over A% so A * G is a
Hirata separable extension of A ([8], Theorem 1). Since A is a progenerator of A, A is a
progenerator of A +G. Thus A is a Galois algebra over A with Galois group isomorphic
with G.

(2) = (3) Since A * G is an Azumaya algebra over A%, B¢ @,¢ (A * G) is a Hirata
separable extension of B%; and so, as a homomorphism image of (B®@ac A)*G, (BEA)xG
is also a Hirata separable extension of B. Since A x G is an Azumaya algebra over A
again, A is a Galois algebra over A with Galois group G by (2) = (1). Hence there
exists an element d € A such that trg(d) = 1 ([12], proof of Proposition 5) where trg( ) =
> gec 9( ). Thus trg( ) : BEA — BY — 0 is exact as B¢-bimodule homomorphism,
and so B¢ is a direct summand of BA as B%bimodule homomorphism. Noting that
BEA a direct summand of (B¢A) x G as a B%-bimodule, we conclude that so is BC.

(3) = (2) Since (BYA) x G is a Hirata separable extension of B such that B¢ is a
direct summand of (B¢A) * G as a B%-bimodule, V(BGA)@(BG) is a separable algebra
over the center of (BA)x G ([16], Theorem 1). But Vigoa).g(BY) = A * G, so A x
G is a separable algebra over the center of (BA) x G. We claim that the centers of
A % G and (B€A) * G are A%, In fact, by hypothesis, (BYA) x G is a Hirata separable
extension of BY such that BY is a direct summand of (BYA) * G as a B%-bimodule
again, V(BGA)@(V(BGA)*@(BG)) = BY ([16], Theorem 1). Hence the center of (BA) x G
is contained in B%; and so it is contained in the center of B¢. Conversely, the center of
B is clearly contained in the center of (BA)*G. Thus, the center of (BA) G is equal
to the center of BY. Moreover, since the center of B® is A®, the center of (B€A) * G is
A% But the centers of A * G and (B€A) * G are the same, so the center of (B¢A) * G
is AY. Therefore, A * G is an Azumaya algebra over AC.

Corollary 5.8. Let B satisfy the equivalent conditions of Theorem 5.7. Then N = (1)
if and only if B = B¢A such that A® = C% where C is the center of B.

Corollary 5.9. Let B satisfy the equivalent conditions of Theorem 5.7. If N is a

mazximal subgroup of G, then A is a commutative Galois algebra over A® with a cyclic

Galois group G/N ([4], Theorem 11).

f3 Of



REFERENCES

[1] R. Alfaro and G. Szeto, Skew Group Rings which are Azumaya, Comm. in Algebra 23(6) (1995),
2255-2261.

[2] M. Auslander and O.Goldman, The Brauer Group of a Commutative Ring, Transactions of the Amer-
ican Math. Soc. 97(3) (1960), 367-409.

[3] S.U. Chase, D.K. Harrison, A. Rosenberg, Galois Theory and Galois Cohomology of Commutative
Rings, Memoirs Amer. Math. Soc. , No. 52, 1965.

[4] F.R. DeMeyer, Some Notes on the General Galois Theory of Rings, Osaka J. Math. 2 (1965) 117-127.

[5] F.R. DeMeyer, Galois Theory in Separable Algebras over Commutative Rings, Illinois J. Math. 10
(1966), 287-295.

[6] F.R. DeMeyer and E. Ingraham, “Separable algebras over commutative rings”, Lecture Notes in Math-
ematics, Volume 181, Springer Verlag, Berlin, Heidelberg, New York, 1971.

[7] M. Harada, Supplementary Results on Galois Extension, Osaka J. Math. 2 (1965), 343-350.

[8] S. Ikehata, Note on Azumaya Algebras and H-Separable Extensions, Math. J. Okayama Univ. 23
(1981), 17-18.

[9] S. Ikehata, On H-separable polynomials of prime degree, Math. J. Okayama Univ. 33 (1991), 21-26.

[10] S. Tkehata and G. Szeto, On H-separable polynomials in skew polynomial rings of automorphism
type, Math. J. Okayama Univ. 34 (1992), 49-55.

[11] S. Tkehata and G. Szeto, On H -skew polynomial rings and Galois extensions, Rings, Extension and
Cohomology (Evanston, IL, 1993), 113-121, Lecture Notes in Pure and Appl. Math., 159, Dekker,
New York, 1994.

[12] T. Kanzaki, On Galois algebra over a commutative ring, Osaka J. Math. 2 (1965), 309-317.

[13] Y. Miyashita, On a skew polynomial ring, J. Math. Soc. Japan 311 (1979), 317-330.

[14] T. Nagahara, On Galois conditions and Galois groups of simple rings, Trans. Amer. Math. Soc. 116
(1965), 417-434.

[15] K. Sugano, Note on semisimple extensions and separable extensions, Osaka J. Math. 4 (1967), 265-
270.

[16] K. Sugano, On Centralizers in Separable Extensions II, Osaka J. Math. 8 (1971), 465-469.

[17] K. Sugano, On a Special Type of Galois Extensions, Hokkaido J. Math. 9 (1980), 123-128.

[18] G. Szeto and L. Xue, The general Ikehata theorem for H-separable crossed products, International
Journal of Mathematics and Mathematical Sciences 23(10) (2000), 657-662.

[19] G. Szeto and L. Xue, On the Ikehata theorem for H-separable skew polynomial Rings, Math. J.
Okayama Univ. 40 (2000), 27-32.

[20] G. Szeto and L. Xue, The Structure of Galois Algebras, Journal of Algebra 237(1) (2001), 238-246.

[21] G. Szeto and L. Xue, The Galois Algebra with Galois Group which is the Automorphism Group,
Journal of Algebra 293(1) (2005), 312-318.

[22] G. Szeto and L. Xue, On Projective Group Rings with an Inner Automorphism Group, Far East
Journal of Mathematical Sciences 31(1) (2008), 1-8.

[23] G. Szeto and L. Xue, On Galois Extensions with an Inner Galois Group, Recent Developments in
Algebra and Related Area, ALM 8, 239-245, Higher Education Press and International Press Beijing-
Boston, 2008.

[24] G. Szeto and L. Xue, Galois extensions with a Galois commutator subring, (submitted).

DEPARTMENT OF ENVIRONMENTAL AND MATHEMATICAL SCIENCE
FAacuLTYy OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY
OKAYAMA UNIVERSITY

TsusHIMA, OKAYAMA 700-8530, JAPAN

E-mail address: ikehata@ems.okayama-u.ac. jp

fglf



DEPARTMENT OF MATHEMATICS
BRADLEY UNIVERSITY
PEORIA, TLLINOIS 61625, U.S.A.

E-mail address: szeto@bradley.edu

DEPARTMENT OF MATHEMATICS
BRADLEY UNIVERSITY
PEORIA, ILLINOIS 61625, U.S.A.

E-mail address: 1xue@bradley.edu

f3 2



