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Abstract. Properties of a Galois ring extension with an inner Galois group are given,
and equivalent conditions for a Galois extension with a Galois commutator subring are
shown.

1. Introduction

In 1960’s, Galois theory was developed for rings by M. Auslander-O.Goldman ([2]),
S.U. Chase-D.K. Harrison-A. Rosenberg ([3]), F.R. DeMeyer ([4], [5]), M. Harada ([7]),
Y. Miyashita ([13]), T. Nagahara ([14]), T. Kanzaki ([12]), K. Sugano ([15], [16]), and
others. It was shown ([4], Theorem 6, [5], Theorem 3) that B is a central Galois algebra
over its center C with an inner Galois group G if and only if it is an Azumaya projective
group algebra CGf where f : G × G −→ units of C is a factor set. In section 3, we shall
generalize the above theorem to any Galois extension B with an inner Galois group G
where G = {g ∈ G | g(x) = UgxU−1

g for some Ug ∈ B and for all x ∈ B}. It is shown
that B contains a projective group algebra CGf . An equivalent condition for a central
Galois algebra CGf with Galois group induced by G is given, and characterizations for a
Galois extension B with an inner Galois group G generated by {Ug | g ∈ G} over BG are
obtained. When B is also an Azumaya algebra, in section 4, some properties are given for
a Galois extension B with an inner Galois group G. We note that any Galois extension
with an inner Galois group G is a Hirata separable extension of BG ([17], Corollary 3).
For a Hirata separable Galois extension B with Galois group G (not necessarily inner),
in [17], Sugano investigated the Galois commutator subring VB(BG) of BG in B. We
shall study when VB(BG) is a Galois extension with Galois group induced by G for any
Galois extension B with Galois group G in section 5. Equivalent conditions are given in
terms of a composition Galois extensions: B ⊃ BG · VB(BG) ⊃ BG and crossed products
respectively. Some examples are also given to demonstrate the results.

2. Basic Definitions and Notations

Let B be a ring with identity 1, C the center of B, G a finite automorphism group of
B, BG the set of elements in B fixed under each element in G. Following the definitions
as given in the references, we call B a Galois extension of BG with Galois group G if there
exist elements {ai, bi in B, i = 1, 2, ...,m for some integer m} such that

∑m
i=1 aig(bi) = δ1,g

for each g ∈ G ([4]). Such a set {ai, bi} is called a G-Galois system for B. A Galois
extension B of BG is called a Galois algebra if BG is contained in C ([21]), and a central
Galois algebra if BG = C ([20]). We call B a center Galois extension with Galois group

The detailed version of this paper will be submitted for publication elsewhere.
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G if C is a Galois algebra over CG with Galois group G|C ∼= G, and a commutator Galois
extension of BG with Galois group G if VB(BG) is a Galois extension of (VB(BG))G

with Galois group G|VB(BG)
∼= G. Let A be a subring of B with the same identity 1.

We denote VB(A) the commutator (also called centralizer) subring of A in B, that is,
VB(A) = {b ∈ B|bx = xb for all x ∈ A}. We call B a separable extension of A if
there exist {ai, bi in B, i = 1, 2, ...,m for some integer m} such that

∑
aibi = 1, and∑

bai ⊗ bi =
∑

ai ⊗ bib for all b in B where ⊗ is over A. An Azumaya algebra is a
separable extension of its center. A Galois extension B of BG with Galois group G is
called an Azumaya Galois extension if BG is an Azumaya CG-algebra ([1]). A Galois
extension B of BG with Galois group G is called a DeMeyer-Kanzaki Galois extension if
B is an Azumaya algebra over C which is a Galois algebra over CG with Galois group
G|C ∼= G. A ring B is called a Hirata separable extension of A if B ⊗A B is isomorphic to
a direct summand of a finite direct sum of B as a B-bimodule, and B is called a Hirata
separable Galois extension of BG if it is a Galois and a Hirata separable extension of BG.
Let R be a commutative ring with 1 and U(R) the set of units of R. As given in [4], for
a factor set f : G × G −→ U(R) (that is, f(g, h)f(gh, k) = f(h, k)f(g, hk) for all g, h,
and k in G), RGf =

∑
g∈G RUg is called a projective group algebra over R if RGf is an

algebra with a free basis {Ug

∣∣ g ∈ G} over R where Ug is an invertible element for each
g ∈ G, the multiplications are given by (rgUg)(rhUh) = rgrhUgUh and UgUh = f(g, h)Ugh

for rg, rh ∈ R and g, h ∈ G; that is, f(g, h) = UgUhU
−1
gh .

3. Galois Extensions with an Inner Galois Group

Let B be a Galois extension of BG with an inner Galois group G whose order |G|
is invertible in B where G = {g ∈ G | g(x) = UgxU−1

g for some Ug ∈ B and for all
x ∈ B}. We shall show that B contains a projective group algebra CGf where C is the
center of B. An equivalent condition is given for a central Galois algebra CGf . Thus
several characterizations are obtained for B generated by {Ug | g ∈ G} over BG. These
characterizations generalize the results for a central Galois algebra with an inner Galois
group ([4], Theorem 6).

Theorem 3.1. ([23], Theorem 2.1) Let B be a Galois extension of BG with an inner
Galois group G, G = {g | g(x) = UgxU−1

g for some Ug ∈ B and for all x ∈ B}, and C the
center of B. Then B contains a projective group algebra CGf of G over C with a factor
set f : G × G −→ units of C.

Proof. We first claim that {Ug | g ∈ G} are linearly independent over C. Let {xi, yi ∈
B | i = 1, 2, ...,m for some integer m} be a G-Galois system such that

∑m
i=1 xig(yi) = δ1,g

for each g ∈ G. Let
∑

g∈G agUg = 0 for some ag ∈ C. Then

m∑
i=1

xi

∑
g∈G

agUgh
−1(yi) = 0 for each h ∈ G and

∑
g∈G

ag

m∑
i=1

xigh−1(yi)Ug =
∑
g∈G

agδ1,gh−1Ug = ahUh.
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Noting that ag ∈ C and Ugh
−1(yi) = gh−1(yi)Ug, we have that

m∑
i=1

xi

∑
g∈G

agUgh
−1(yi) =

∑
g∈G

ag

m∑
i=1

xigh−1(yi)Ug;

and so ahUh = 0. But Uh is invertible in B, so ah = 0 for each h ∈ G. Also, noting
that U−1

gh UgUh is a unit in C, we have a factor set f : G × G −→ units of C by f(g, h) =

U−1
gh UgUh. Thus

∑
g∈G CUg = CGf ⊂ B.

Let Z be the center of G and G the restriction of G to CGf . Then G ∼= G/K where
K = {g ∈ Z | f(g, h) = f(h, g) for all h ∈ G}. Next is necessary and sufficient condition
for a central Galois algebra CGf with an inner Galois group G.

Theorem 3.2. ([23], Theorem 2.2) Let B be a Galois extension of BG with an inner
Galois group G of order n invertible in B and CGf as given in Theorem 3.1. Then CGf

is a central Galois algebra over its center S with an inner Galois group G if and only if
{Ug | g ∈ G} are linearly independent over S where Ug = Ug for each g ∈ G.

Proof. (=⇒) Since CGf is a central Galois algebra with an inner Galois group G,
CGf = SGf ([4], Theorem 6). Thus {Ug | g ∈ G} are linearly independent over S.

(⇐=) Since {Ug | g ∈ G} are linearly independent over S, SGf = ⊕g∈GSUg is a

projective group algebra of G over S with factor set f : G × G −→ units of S in-
duced by f : G × G −→ units of C. Noting that {Ug | g ∈ K} ⊂ S, we have that
CGf = ⊕g∈GSUg = SGf . But CGf is an Azumaya S-algebra (for n is a unit in C), so

SGf is an Azumaya S-algebra. Thus SGf is a central Galois S-algebra with an inner
Galois group G ([5], Theorem 3). Therefore CGf is a central Galois algebra over S with
an inner Galois group G.

Theorem 3.2 can be generalized to a projective group ring RGf of a group G over a
ring R (not necessarily commutative) with a factor set f : G × G −→ units of the center
of R.

Theorem 3.3. ([22], Theorem 3.2) Let RGf be a Galois projective group ring of
G over a ring R, C the center of RGf , and R0 the center of R. Then the following

are equivalent: (1) RGf is a Galois extension of (RGf )
G with an inner Galois group G

induced by {Ug | g ∈ G}. (2) CGf is a central Galois projective group algebra of G over

C with factor set f : G × G −→ units of C induced by f : G × G −→ units of R0. (3)
{Ug | g ∈ G} are free over RC and RC = ⊕

∑
g∈K RUg where Ug = Ug for each g ∈ G

and K = {g ∈ the center of G | f(g, g′) = f(g′, g) for all g′ ∈ G}.

Proof. Let Z be the center of G. We first note that G ∼= G/K where K = {g ∈
Z | f(g, g′) = f(g′, g) for all g′ ∈ G} and that {Ug | g ∈ G} are free over C where Ug = Ug

for each g ∈ G by the argument used in the proof of Theorem 3.1. Next we prove
(1) =⇒ (2) and leave other implications (2) =⇒ (1) and (2) =⇒ (3) =⇒ (2) to readers.
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Since RGf is a Galois extension of (RGf )
G with an inner Galois group G, {Ug | g ∈ G}

are free over RC. Noting that f : G × G −→ units of R0 contained in C, we have that
CGf is a projective group algebra of G over C with factor set f : G × G −→ units

of C where f is induced by f : G × G −→ units of R0. Moreover, since R0Kf ⊂ C,∑
g∈G(R0Kf )Ug ⊂ CGf . But G = G/K, so

RGf =
∑
g∈G

RUg = R(R0Gf ) ⊂ R(
∑
g∈G

CUg) = R(CGf ) ⊂ RGf .

Hence RGf = R(CGf ). Thus G|CGf

∼= G. Next we claim that C is also the center of∑
g∈G CUg (= CGf ). In fact, clearly, C is contained in the center of CGf . Conversely, for

any x ∈ the center of CGf , x is in the center of
∑

g∈G CUg. Also, for any r ∈ R, rx = xr,

so x is in the center of R(
∑

g∈G CUg) which is RGf . Thus x ∈ C. Therefore CGf is an

Azumaya C-algebra; and so CGf is a central Galois C-algebra with an inner Galois group
G|CGf

∼= G ([4], Theorem 6).

We give two examples of Galois extensions with an inner Galois group G.

Example 1.
¯

Let R[i, j, k] be the real quaternion algebra over real field R with inner

automorphism group G = {1, i, j, k} where i(x) = ixi−1, j(x) = jxj−1, and k(x) =
kxk−1 for x ∈ R[i, j, k]. Then R[i, j, k] = R ⊕ Ri ⊕ Rj ⊕ Rk, a projective group algebra
RGf with center R; and so it is a central Galois algebra over R with an inner Galois
group G.

Example 2. Let T = R[i] ⊂ R[i, j, k] as given in Example 1 and Hi = {1, i} ⊂ G.
Then (R[i, j, k])Hi = R[i] and R[i, j, k] is a noncommutative Galois extension of R[i] with
a cyclic Galois group Hi. We note that any Galois algebra with a cyclic Galois group is
commutative ([4], Theorem 11).

B
¯
y using Theorem 3.2, we derive some characterizations for a Galois extension B as

given in Theorem 3.2 which is generated by {Ug | g ∈ G} over BG. We recall that C is the
center of B, S the center of CGf , Z the center of G, and K = {g ∈ Z | f(g, h) = f(h, g)
for all h ∈ G}.

Theorem 3.4. ([23], Theorem 2.3)
¯

Let B be a Galois extension of BG with an inner
Galois group G of order n invertible in B. Then the following are equivalent:

(1) B =
∑

g∈G BGUg, i.e., B is generated by {Ug | g ∈ G} over BG;

(2) B = BGGf , a projective group ring of G over BG with factor set f : G × G −→
units of C;

(3) C = S;
(4)

∑
g∈G CUg, the subring of B generated by {Ug | g ∈ G} over C, is a central Galois

C-algebra with Galois group G ∼= G;
(5)

∑
g∈G CUg is an Azumaya C-algebra;
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(6) K = 〈1〉 and {Ug | g ∈ G} are linearly independent over S.

4. The Azumaya Algebra

Let B be a Galois extension of BG with an inner Galois group G whose order n is
invertible in B as given in Theorem 3.2, G = {g ∈ G | g(x) = UgxU−1

g for some Ug ∈ B and
for all x ∈ B}, C the center of B, Z the center of G, and K = {g ∈ Z | f(g, h) = f(h, g)
for all h ∈ G}. Assume that B is an Azumaya C-algebra. We shall show an equivalent
condition for a central Galois algebra CGf in terms of the Galois extension BK of BG

with Galois group G/K.

Theorem 4.1. ([23], Theorem 3.1) Let B be given in Theorem 3.2. If B is an Azumaya
C-algebra, then VB(BG) = CGf .

Proof. Since n is invertible in B, CGf is a separable subalgebra of the Azumaya C-
algebra B. Hence VB(VB(CGf )) = CGf . Noting that VB(CGf ) = BG, we have that
VB(BG) = CGf .

Theorem 4.2. ([23], Theorem 3.2) Let B be given in Theorem 3.2. Assume B is an
Azumaya C-algebra. Then CGf is a central Galois algebra over its center S with Galois
group G (= G/K) if and only if BK = BG · (CGf ).

Proof. (=⇒) Since CGf is a central Galois algebra with Galois group G (= G/K), CGf

has a G-Galois system. Clearly, CGf ⊂ BG · (CGf ) ⊂ BK and (BG · (CGf ))
G = (BK)G =

BG, so BG · (CGf ) and BK are also Galois extensions with the same Galois system as
CGf by noting that the restrictions of G to BG · (CGf ) and BK are isomorphic with G
(= G/K). Thus BK = BG · (CGf ).

(⇐=) By hypothesis, B is a Galois extension of BG with an inner Galois group G of
order n invertible in B, so BK is a Galois extension of BG with an inner Galois group
G/K. Let S be the center of CGf . Since CGf is a separable C-subalgebra of the Azumaya
C-algebra B, VB(VB(CGf )) = CGf . Hence CGf , BG (= VB(CGf )), and BG · (CGf ) have
the same center S. By hypothesis, BK = BG · (CGf ). Thus S is the center of BK . But
BK is a Galois extension of BG with an inner Galois group G (= G/K), so BK contains
the separable projective group algebra SGf where f : G × G −→ units of S induced by

f : G × G −→ units of C by Theorem 3.1. Thus {Ug | g ∈ G} are linearly independent
over S. Therefore CGf is a central Galois algebra with Galois group G by Theorem 3.2.

Corollary 4.3. ([23], Corollary 3.1) Let B be given in Theorem 4.2. Then BK is a
Galois projective group ring of G over BGS with factor set f : G × G −→ units of C.

Proof. By Theorem 4.2, BK = BG · (CGf ) and CGf = SGf , so BK = BG · (CGf ) =

BG(SGf ) = (BGS)Gf which is a Galois projective group ring of G over BGS with factor

set f : G × G −→ units of C.
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5. The Galois Commutator Subring

We note that a Galois extension with an inner Galois group G is a Hirata separable
extension of BG ([17], Corollary 3). In [17], let B be a Hirata separable Galois extension of
BG with Galois group G and ∆ = VB(BG) = {b ∈ G | ba = ab for each element a ∈ BG},
the commutator subring of BG in B. A sufficient condition was given for ∆ being a
Galois algebra with Galois group G/N where N = {g ∈ G | g(x) = x for all x ∈ ∆}.
We shall study the problem for a Galois extension B of BG with Galois group G such
that ∆ is a Galois extension with Galois group G/N . Such a Galois extension B with
Galois group G will be characterized in terms of a composition of two Galois extensions:
B ⊃ BG · VB(BG) ⊃ BG and in terms of crossed products respectively.

W
¯

e begin with two lemmas whose proofs are straightforward.

Lemma 5.1. ([24], Lemma 3.1) Let T be a ring and G an automorphism group of T .
Then (1) VT (TG) is a G-invariant subring of T and (2) (VT (TG))G is contained in the
center of VT (TG) (hence VT (TG) is an algebra over (VT (TG))G).

Lemma 5.2. ([24], Lemma 3.2) Let B be a Galois extension of BG with Galois group
G and A a G-invariant subring of B under the action of G. If A is a Galois extension of
BG with Galois group induced by and isomorphic with G, then A = B.

Theorem 5.3. ([24], Theorem 3.3) Let B be a Galois extension of BG with Galois
group G, ∆ = VB(BG), and D = ∆G. Then the following statements are equivalent: (1)
∆ is a Galois algebra over D with Galois group induced by and isomorphic with G/N
where N = {g ∈ G | g(x) = x for all x ∈ ∆}. (2) BG∆ is a Galois extension of BG

with Galois group induced by and isomorphic with G/N and ∆ is a finitely generated and
projective module over D. (3) B is a composition of two Galois extensions: B ⊃ BG∆
with Galois group N and BG∆ ⊃ BG with Galois group induced by and isomorphic with

G/N such that J
(∆)
g is a finitely generated projective module over D for each g ∈ G/N

where J
(∆)
g = {b ∈ ∆ | bx = g(x)b for all x ∈ ∆}.

Proof. (1) =⇒ (2) Since the automorphism groups induced by G/N on BG∆ and ∆ are
isomorphic and ∆ is a Galois algebra over D where D = ∆G, BG∆ is a Galois extension
of (BG∆)G (= BG) with Galois group induced by and isomorphic with G/N .

(2) =⇒ (1) Since BG∆ ⊃ BG is a Galois extension with Galois group induced by and
isomorphic with G/N , the crossed product

(BG∆) ∗ (G/N) ∼= HomBG(BG∆, BG∆).

Denoting G/N by G, we have that

α : (BG∆) ∗ G ∼= HomBG(BG∆, BG∆)

by (α(
∑

g∈G agg))(x) =
∑

g∈G agg(x) for each x ∈ BG∆. Then

∆ ∗ G = VBG∆∗G(BG) ∼= VHom
BG (BG∆,BG∆)

(α(BG)).
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It can be verified that VHom
BG (BG∆,BG∆)

(α(BG)) = HomD(∆, ∆) where D = ∆G = ∆G.

But ∆ is a finitely generated and projective module over D, so ∆ is a Galois algebra over
D with Galois group isomorphic with G.

(2) =⇒ (3) Since BG∆ ⊂ BN such that (BG∆)G = BG = (BN)G and BG∆ is a
Galois extension of BG with Galois group induced by and isomorphic with G (= G/N),

BN = BG∆ by Lemma 5.2. Moreover, noting that VBG∆(BG) = ∆ = ⊕
∑

g∈G J
(∆)
g ([12],

Proposition 1 and Theorem 1), we conclude that J
(∆)
g is a finitely generated projective

module over D for each g ∈ G/N .
(3) =⇒ (2) is clear.

By Theorem 5.3, we shall derive some consequences for several well known classes of
Galois extensions. We recall that B is a center Galois extension with Galois group G if its
center C is a Galois algebra over CG with Galois group G|C ∼= G, and B is a commutator
Galois extension of BG with Galois group G if VB(BG) is a Galois extension of (VB(BG))G

with Galois group G|VB(BG)
∼= G.

Corollary 5.4.
¯

Let B be a Galois extension of BG with Galois group G. If B = BGC

such that C is finitely generated and projective over CG, then B a center Galois extension
with Galois group G.

Corollary 5.5.
¯

Let B be a Galois extension of BG with Galois group G. If B = BG∆

such that ∆ is finitely generated and projective over ∆G, then B a commutator Galois
extension with Galois group G.

Remark.
¯

Since a DeMeyer-Kanzaki Galois extension is also a center Galois extension
([4], Lemma 2) and an Azumaya Galois extension is a commutator Galois extension ([1],
Theorem 2), Corollary 5.4 and Corollary 5.5 hold for the classes of DeMeyer-Kanzaki
Galois extensions and Azumaya Galois extensions.

Corollary 5.6. Let B be a Hirata separable Galois extension of BG with Galois group
G. If B = BG∆, then ∆ is a Galois algebra with Galois group induced by and isomorphic
with G/N .

Proof. Since B is a Hirata separable Galois extension of BG with Galois group G, Jg

is a finitely generated and projective rank one module over CG for each g ∈ G ([17],
Theorem 2). The corollary holds by Theorem 5.3.

We continue to characterize a Galois commutator subring ∆ in terms of crossed prod-
ucts.

Theorem 5.7. Keeping the notations of Theorem 5.3, the following statements are
equivalent: (1) ∆ is a Galois algebra over ∆G with Galois group induced by and isomorphic
with G/N where N = {g ∈ G | g(x) = x for all x ∈ ∆}. (2) Let ∆ ∗ (G/N) be the crossed
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product of G/N over ∆ with trivial factor set. Then ∆ ∗ (G/N) is an Azumaya algebra
over ∆G. (3) Let (BG∆) ∗ (G/N) be the crossed product of G/N over BG∆ with trivial
factor set. Then (BG∆) ∗ (G/N) is a Hirata separable extension of BG such that BG is a
direct summand of (BG∆) ∗ (G/N) as a BG-bimodule.

Proof. (1) =⇒ (2) Since ∆ is a Galois algebra over ∆G with Galois group G induced
by and isomorphic with G/N , ∆ ∗G ∼= Hom∆G(∆, ∆) where ∆ is a finitely generated and
projective module over ∆G. Noting that ∆ is an algebra with 1 over ∆G, we have that
Hom∆G(∆, ∆) is an Azumaya algebra over ∆G. Hence ∆ ∗G is an Azumaya algebra over
∆G.

(2) =⇒ (1) By hypothesis, ∆ ∗ G is an Azumaya algebra over ∆G, so ∆ ∗ G is a
Hirata separable extension of ∆ ([8], Theorem 1). Since ∆ is a progenerator of ∆, ∆ is a
progenerator of ∆ ∗G. Thus ∆ is a Galois algebra over ∆G with Galois group isomorphic
with G.

(2) =⇒ (3) Since ∆ ∗ G is an Azumaya algebra over ∆G, BG ⊗∆G (∆ ∗ G) is a Hirata
separable extension of BG; and so, as a homomorphism image of (BG⊗∆G∆)∗G, (BG∆)∗G
is also a Hirata separable extension of BG. Since ∆ ∗ G is an Azumaya algebra over ∆G

again, ∆ is a Galois algebra over ∆G with Galois group G by (2) =⇒ (1). Hence there
exists an element d ∈ ∆ such that trG(d) = 1 ([12], proof of Proposition 5) where trG( ) =∑

g∈G g( ). Thus trG( ) : BG∆ −→ BG −→ 0 is exact as BG-bimodule homomorphism,

and so BG is a direct summand of BG∆ as BG-bimodule homomorphism. Noting that
BG∆ a direct summand of (BG∆) ∗ G as a BG-bimodule, we conclude that so is BG.

(3) =⇒ (2) Since (BG∆) ∗ G is a Hirata separable extension of BG such that BG is a
direct summand of (BG∆) ∗ G as a BG-bimodule, V(BG∆)∗G(BG) is a separable algebra

over the center of (BG∆) ∗ G ([16], Theorem 1). But V(BG∆)∗G(BG) = ∆ ∗ G, so ∆ ∗
G is a separable algebra over the center of (BG∆) ∗ G. We claim that the centers of
∆ ∗ G and (BG∆) ∗ G are ∆G. In fact, by hypothesis, (BG∆) ∗ G is a Hirata separable
extension of BG such that BG is a direct summand of (BG∆) ∗ G as a BG-bimodule
again, V(BG∆)∗G(V(BG∆)∗G(BG)) = BG ([16], Theorem 1). Hence the center of (BG∆) ∗ G

is contained in BG; and so it is contained in the center of BG. Conversely, the center of
BG is clearly contained in the center of (BG∆)∗G. Thus, the center of (BG∆)∗G is equal
to the center of BG. Moreover, since the center of BG is ∆G, the center of (BG∆) ∗ G is
∆G. But the centers of ∆ ∗ G and (BG∆) ∗ G are the same, so the center of (BG∆) ∗ G
is ∆G. Therefore, ∆ ∗ G is an Azumaya algebra over ∆G.

Corollary 5.8. Let B satisfy the equivalent conditions of Theorem 5.7. Then N = 〈1〉
if and only if B = BG∆ such that ∆G = CG where C is the center of B.

Corollary 5.9.
¯

Let B satisfy the equivalent conditions of Theorem 5.7. If N is a

maximal subgroup of G, then ∆ is a commutative Galois algebra over ∆G with a cyclic
Galois group G/N ([4], Theorem 11).
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