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Abstract. Anderson and Smith studied weakly prime ideals for a commutative ring
with identity. Blair and Tsutsui studied the structure of a ring in which every ideal is
prime. In this paper we investigate the structure of rings, not necessarily commutative,
in which all ideals are weakly prime.

1. Introduction

Anderson-Smith [1] defined a proper ideal P of a commutative ring R with identity to
be weakly prime if 0 6= ab ∈ P implies a ∈ P or b ∈ P . They proved that every proper
ideal in a commutative ring R with identity is weakly prime if and only if either R is a
quasilocal ring (possibly a field) whose maximal ideal is square zero, or R is a direct sum
of two fields [1, Theorem 8]. On the other hand, Blair-Tsutsui [2] studied the structure
of a ring in which every ideal is prime. In this paper we first consider the structure of
rings, not necessarily commutative nor with identity, in which all ideals are weakly prime.
A necessary and sufficient condition for a ring to have such property is given and several
examples to support given propositions are constructed. We then further investigate
commutative rings in which every ideal is weakly prime and the structure of such rings
under assumptions that generalize commutativity of rings. At the end, we consider the
structure of rings in which every right ideal is weakly prime.

2. General results

We generalize the definition of a weakly prime ideal to arbitrary (not necessarily com-
mutative) rings as follows.

Definition. A proper ideal I of a ring R is weakly prime if 0 6= JK ⊆ I implies either
J ⊆ I or K ⊆ I for any ideals J, K of R.

Our first proposition is Theorem 1 of Anderson-Smith [1] in a more general setting.

Proposition 1. If P is weakly prime but not prime, then P 2 = 0.

Proof. Since P is weakly prime but not prime, there exist ideals I 6⊆ P and J 6⊆ P but
0 = IJ ⊆ P. But if P 2 6= 0, then 0 6= P 2 ⊆ (I + P )(J + P ) ⊆ P , which implies I ⊆ P or
J ⊆ P , a contradiction.
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Proposition 2. Let P be an ideal in a ring R with identity. The following statements
are equivalent:

(1) P is a weakly prime ideal.
(2) If J , K are right (left) ideals of R such that 0 6= JK ⊆ P, then J ⊆ P or K ⊆ P.
(3) If a, b ∈ R such that 0 6= aRb ⊆ P, then a ∈ P or b ∈ P.

Proof. The implications (1) => (2) and (2) => (3) are easy. The implication (3) =>
(1) can be verified by checking a number of cases.

Since weakly prime ideals are defined to be proper ideals, we shall say that every ideal of
a ring R is weakly prime when every proper ideal of R is weakly prime. In this case we
say that R is fully weakly prime.

If R2 = 0, then clearly every ideal of R is weakly prime. In particular, if an ideal I of a
ring R is weakly prime but not a prime ideal, then every ideal of I as a ring is weakly
prime by Proposition 1.

Proposition 3. Every ideal of a ring R is weakly prime if and only if for any ideals I and
J of R, IJ = I,IJ = J, or IJ = 0.

Corollary 1. Let R be a ring in which every ideal of R is weakly prime. Then for any
ideal I of R, either I2 = I or I2 = 0.

Example 1. Let F be a field and R = F ⊕ F ⊕ F . Then every ideal of R is idempotent
but the ideal I = F ⊕ 0 ⊕ 0 is evidently not weakly prime, showing that the converse of
Corollary 1 is false.

Suppose that a ring R with identity has a maximal ideal M and M2 = 0. One can readily
check that R is fully weakly prime, and M is the only prime ideal of R.

Corollary 1 in particular yields that if a ring R has the property that every ideal is weakly
prime, then either R2 = R, or R2 = 0. Notice that R2 is neither 0 nor R in the example
given below.

Example 2. Let S be a ring such that S2 = 0, and let F be a field. Then the ring
R = F ⊕ S ⊕ S with component-wise addition and multiplication has a maximal ideal
M = 0 ⊕ S ⊕ S and M2 = 0. However, I = F ⊕ 0 ⊕ S is not weakly prime since
0 6= (F ⊕ S ⊕ 0)2 ⊆ I.

If a ring R satisfying R2 = R has a maximal ideal M and M2 = 0, then every proper
ideal of R is contained in M. However, it is possible that MR 6= M . Thus, such a ring
does not necessarily have the property that every ideal is weakly prime as the following
example shows.

Example 3. Let F be a field and S =


 0 a b

0 c d
0 0 0

∣∣∣∣∣∣ a, b, c, d ∈ F

. Then S has a

unique maximal ideal L =


 0 a b

0 0 d
0 0 0

∣∣∣∣∣∣ a, b, d ∈ F

.
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Let N =


 0 0 b

0 0 0
0 0 0

∣∣∣∣∣∣ b ∈ F

. Consider the factor ring R = S/N . While R2 = R and

M = L/N is a maximal ideal whose square is zero, the proper ideals RM and MR are
not weakly prime.

Proposition 4. If every ideal of a ring R is weakly prime and R2 = R, then R has at
most two maximal ideals.

Proof. By contradiction.

The following example shows that the condition R2 = R in Proposition 4 cannot be
dropped.

Example 4. Let R be the unique maximal ideal of Z4.Then S = R⊕R⊕R is an example
of a ring all of whose ideals are weakly prime and having more than 2 maximal ideals.

Proposition 5. Suppose that every ideal of a ring R is weakly prime. If R has two
maximal ideals M1 and M2, then their product is zero. Furthermore, if R has an identity
element, then R is a direct sum of two simple rings.

Proof. Note M1M2 ⊆ M1 ∩M2. If R has an identity, then M1 ∩M2 = (M1 ∩M2)(M1 +
M2) = 0.

We denote the prime radical of R by P (R), and the sum of all ideals whose square is zero
by N(R).

Theorem 1. Suppose that every ideal of a ring R is weakly prime and R2 = R. Then
P (R) = N(R) and (P (R))2 = (N(R))2 = 0.

Proof. Any finite sum of square-zero ideals is nilpotent, and hence square-zero, so
N(R)2 = 0. Thus N(R) ⊆ P (R).

Either P (R) is not prime (in which case P (R)2 = 0, so P (R) ⊆ N(R)), or P (R) is prime,
in which case N(R) can be shown to be prime (apply Theorem 1.2 of Blair-Tsutsui [2] to
R/P (R)).

Corollary 2. Suppose that every ideal of a right Noetherian ring R with identity is
weakly prime and R2 = R. Then P (R) = N(R) = J(R) and (J(R))2 = 0, where J(R) is
the Jacobson radical of R.

Proof. If (J(R))2 = J(R), then J(R) = 0 ⊆ P (R) by Nakayama’s lemma. If (J(R))2 = 0,
then J(R) ⊆ P (R).

Note that for a ring R in which every ideal is weakly prime, in general it is possible that
P (R) = N(R) 6= J(R) [2, §5 An Example].

Corollary 3. Suppose that every ideal of a ring R is weakly prime. Then every nonzero
ideal of R/N(R) is prime.

Corollary 4. Suppose every ideal of a ring R is weakly prime. Then (N(R))2 = 0 and
every prime ideal contains N(R). There are three possibilities:

(a) N(R) = R.
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(b) N(R) = P (R) is the smallest prime ideal and all other prime ideals are idempotent
and prime ideals are linearly ordered. If N(R) 6= 0, then it is the only non-idempotent
prime ideal.
(c) N(R) = P (R) is not a prime ideal. In this case, there exist two nonzero minimal prime
ideals J1 and J2 with N(R) = J1 ∩ J2 and J1J2 = J2J1 = 0. All other ideals containing
N(R) also contain J1 + J2 and they are linearly ordered.

Proof. Use Theorem 1. If we are not in case (a) or (b), apply [2, Theorem 1.2] and [4,
Theorem 2.1] to R/N(R).

Example 5. Let R be a ring and M an R-bimodule. Define

R ∗ M = {(r, m)|r ∈ R, m ∈ M}
with component-wise addition and multiplication

(r, m)(s, n) = (rs, rn + ms).

Then R ∗ M is a ring whose ideals are precisely of the form I ∗ N where I is an ideal of
R and N is a submodule (a bimodule) of M containing IM and MI.

(a) Let R be a prime ring with exactly one nonzero proper ideal P. For example, the ring
of linear transformations of a vector space V over a field F where dimF V = ℵ0 has such a
property. Then every ideal of S1 = R∗P is weakly prime: the maximum ideal P1 = P ∗P
is idempotent and the nonzero minimal ideal P2 = 0 ∗ P is nilpotent, both of which are
prime.

(b) Every ideal of S2 = S1 ∗ P2 is weakly prime: The maximum ideal Q1 = P1 ∗ P2 is
idempotent and the three nonzero nilpotent ideals are Q2 = P2 ∗ P2, Q3 = 0 ∗ P2, and
Q4 = P2 ∗ 0.

(c) If we redefine the multiplication above as

(r, m)(s, n) = (rs, rn + ms + mn),

then S1 in (a) has an additional minimal ideal P3 = {(p, −p)| p ∈ P}. In this case,
N(S1) = P3 ∩ P2 = 0.

We don’t know of an example of Corollary 4, case (c) where N(R) 6= 0.

3. Commutative Rings and Generalizations thereof

We now consider the structure of rings in which every ideal is weakly prime under the
assumption of the ring being commutative or with commutative-like conditions.

Proposition 6. Let R be a commutative ring in which every ideal is weakly prime. If
R2 = R, then R has a maximal ideal.

Proof. If N(R) is not maximal there exists a prime ideal I. Apply [2, Theorem 1.3] to
R/I.

We note that a commutative ring R with the property R2 = R does not necessarily have
a maximal ideal. For example, if a commutative ring S has a unique nonzero maximal
ideal M and M2 = M, then M as a ring cannot have a maximal ideal.
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The next corollary follows from Propositions 4 and 6.

Corollary 5. Let R be a commutative ring all of whose ideals are weakly prime. Suppose
that R2 = R. Then R has either a unique maximal ideal or exactly two maximal ideals.

Theorem 2. Let R be a commutative ring all of whose ideals are weakly prime. Suppose
that R2 = R.

(1) If R has a unique maximal ideal M, then M2 = 0.

(2) If R has two maximal ideals M and N , then MN = 0.

Proof. By contradiction.

Proposition 7. Let R be a commutative ring all of whose ideals are weakly prime.
Suppose that R2 = R. Then every proper ideal is contained in a maximal ideal.

Proof. Use the preceding theorem.

Corollary 6. Let R be a commutative ring and suppose that every ideal of R is weakly
prime. If R2 = R, then R has an identity element.

Proof. We show that if a commutative ring R satisfies the following conditions, then R
has an identity element:
(a) R2 = R,
(b) every proper ideal is contained in a maximal ideal, and
(c) R has a finite number of maximal ideals M1,M2, . . . ,Mn.

Choose x ∈ R such that x /∈ Mj for any j. Let (x) = {xR + nx|n ∈ Z}. If xR ⊆ Mj,
then R = R2 = (Mj + (x))2 ⊆ Mj, a contradiction. Hence xR = R and consequently, R
has an identity element.

Corollary 7. Let R be a commutative ring all of whose ideals are weakly prime. Then
one of the following holds:
(a) R2 = 0,
(b) R is a ring with identity and a square zero maximal ideal M, or
(c) R is a direct sum of two fields.

For the case (b) in Corollary 7, the following theorem further determines the structure of
R.

Theorem 3. Let R be a commutative ring with a square-zero maximal ideal M and
R2 = R. If (ch(R/M) = 0, then R is isomorphic to (R/M) ∗ M (as defined in Example
5).

Proof. Note that if E is a subfield of R/M and ψ : E → R is a homomorphism satisfying
π ◦ ψ = id|E, then the map ϕ : E ∗ M → R given by ϕ((x̄,m)) = ψ(x̄) + m is a
monomorphism. So, it suffices to show such a map ψ exists for E = R/M (in this case ϕ
is also onto); the proof proceeds by defining ψ on successively larger subfields E ⊆ R/M .

Using the same idea, the result also holds for ch(R/M) = p if pR = 0 and R/M is
separable over F. In general, however, the theorem is false if ch(R/M) = p 6= 0.
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Example 6. (a) Let R = Zp2 where p is prime. Then R has maximal ideal M = pR 6=
0 but p(R/M ∗ M) = 0.

(b) Let R =

[
F F
0 0

]
where F is a field. Then R2 = R 6= 0, and every ideal of R is

weakly prime but R does not contain an identity element.

As a natural generalization of commutative rings, we next consider polynomial identity
(PI) rings.

Theorem 4. Let R be a PI-ring with identity. If every ideal of R is weakly prime, then
one of the following folds:
(a) R/P (R) is a finite dimensional central simple algebra.
(b) R is a direct sum of two finite dimensional central simple algebras.

Proof. Use Corollary 4 and [2, Theorem 3.3].

More general than the class of PI-rings is the class of fully bounded rings. Using [2,
Theorem 3.4] yields the following theorem.

Theorem 5. Let R be a ring with identity in which every ideal is weakly prime. If R is
a right fully bounded, right Noetherian ring, then one of the following holds:

(a) R/P (R) is a simple Artinian ring.
(b) R is a direct sum of two simple Artinian rings.

4. Rings in which every right ideal is weakly prime

Definition. We define a proper right ideal I of a ring R to be weakly prime if 0 6= JK ⊆ I
implies either J ⊆ I or K ⊆ I for any right ideals J, K of R.

For a ring R that is not square zero, Koh[3] showed that R is simple and a ∈ aR for all
a ∈ R if and only if every right ideal of R is prime. Now consider the structure of rings
in which every right ideal is weakly prime. For the commutative case, it is evident that
such rings need not be simple. Example 6 (b) gives an example of a ring R = R2 in which
every right and left ideal is weakly prime.

Unlike the case of weakly prime two sided ideals, there exists a nonzero idempotent

weakly prime right ideal that is not prime. For example, if R =

{[
a b
0 c

]∣∣∣∣ a, b, c ∈ F

}
,

then K =

{[
0 0
0 t

]∣∣∣∣ t ∈ F

}
is a weakly prime right ideal and K2 = K 6= 0. But K is not

a prime right ideal.

We conclude with the following generalization of Corollary 7.

Theorem 6. Suppose that every right ideal of a ring R is weakly prime. Then one of
the following holds:
(a) R2 = 0.
(b) R has a square zero maximal ideal.
(c) R is a direct sum of two division rings.
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Under an additional condition we can say more about case (b).

Proposition 8. Let R be a ring all of whose right ideals are weakly prime. Suppose R
has a square zero maximal ideal N 6= 0. If NR = 0, then RN = N and either:

(a) R/N is a simple dense ring of endomorphisms over the infinite-dimensional vector
space N (and every nonzero endomorphism is surjective), or

(b) R/N is a division ring and R is isomorphic to{[
a b
0 0

]
: a, b ∈ R/N

}
.
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