REPRESENTATION RINGS OF STRING ALGEBRAS

MARTIN HERSCHEND

ABSTRACT. String algebras are a class of algebras given by certain quivers with mono-
mial relations. Thus the category of finite dimensional left modules over a string algebra
is equipped with a tensor product defined point-wise and arrow-wise on the level of
quiver representations. We describe the corresponding representation ring for any string
algebra.

1. INTRODUCTION

The category of finite dimensional representations of a group G is equipped with a tensor
product defined by diagonal action. Thus the set of isoclasses of such representations has
the structure of a semi-ring, where addition is given by the direct sum and multiplication
by the tensor product. From this semi-ring one constructs the representation ring R(G)
by including formal additive inverses.

It would be interesting to generalise this procedure to the category of left modules over
an associative algebra A instead of group representations. However, in general there is no
know way of defining a tensor product on this category. Now assume that A is given as
the path algebra of a quiver () with monomial relations, i.e. A = kQ/(X) for some set
X of paths in @) and a field k. Then finite dimensional left A-modules are given by finite
dimensional representations of () satisfying the relations X (we call such representations
(Q, X)-representations). Thus we can define a tensor product point-wise and arrow-wise.
Moreover, as in the case of group representations we obtain a representation ring R(Q, X),
which we denote simply by R(Q) in case X is empty. Our aim is to describe this ring.

By the Krull-Schmidt Theorem R(Q, X) has a Z-basis consisting of the isoclasses of
indecomposable (@, X )-representations. Thus, describing the multiplicative structure of
R(Q, X) amounts to solving the following problem: given to indecomposable (@, X)-
representations V', W decompose V ® W into indecomposables. This problem is called
the Clebsch-Gordan problem and has its origin in the study of binary algebraic forms by
Clebsch and Gordan [2].

The most classical case is when () is the loop quiver. For k algebraically closed of
characteristic zero, the solution to the Clebsch-Gordan problem for the loop was found by
Aitken [1]. The case when k is algebraically closed of positive characteristic was solved
by lima-Iwamatsu [11] and the case when k is perfect was treated in [3].

For @ a Dynkin quiver, R(Q) was described for type A and D in [10] and for type Eg
in [9]. The remaining cases E; and Eg are still unsolved to my knowledge.

The detailed version of this paper has been submitted for publication elsewhere.
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For extended Dynkin quivers of type A the solution to the Clebsch-Gordan problem
was found in [7]. There is also a solution in case @ is the double loop quiver

Nolo!

with relations o™ = " = aff = fa = 0, found in [8]. These two cases are instances of
string algebras. In the present article we shall describe the representation ring for each
quiver with relations corresponding to a string algebra.

Gelfand and Ponomarev classified the indecomposable representations of the double
loop quiver appearing above in [6], as part of their classification of Harish-Chandra mod-
ules over the Lorentz group. The indecomposables in this case fall into two classes called
strings and bands. This type of classification was later used in other settings by Ringel
[13] and Donovan-Freislich [4]. A well-rounded setting to which it applies is that of string
algebras.

2. PRELIMINARIES

Let us recall some definitions and set notation. More detail can be found in [5].
Throughout fix a perfect field k. A quiver ) consists of a set of vertices () and a
set of arrows );. Moreover, it is equipped with two maps ¢, h : )1 — (o mapping each
arrow « to its tail tav and head ha respectively. We depict this by ta — ha.

A representation V' of () consists of a collection of finite dimensional k-vector spaces
Ve, where z € @)y and linear maps V(«) : V, — V,, where z %y € Q. Let X be a
set of paths in Q. We call V' a (Q, X)-representation if for every path oy ---«a, € X the
equality V(aq)---V(ay,) = 0 holds. The category of (Q, X)-representations is denoted
1ep,(Q, X).

Given two (@, X)-representation their tensor product V @ W is defined as follows. For
each x € Qy, a € () set

VW)=V, @ W, and (V@ W)(a) = V(a)® W(a).

It is routine to check that V @ W is a (Q, X)-representation.

Let S(Q,X) be the set of isoclasses of (@, X)-representations. For all [V],[W] €
S(Q, X) set

V]+ [W]=[VeaeW]and [V][W] =V W]|.

This endows S(Q, X) with the structure of a semi-ring. Let R(Q, X) be the corresponding
Grothendieck ring [12].

Our aim is to describe R(Q,X) in case (@, X) corresponds to a string algebra. Of
particular importance is the case when () is the loop quiver:

a
In this case there is an equivalence of categories
rep, Q@ = mod k[z]

defined for each representation V' by letting = act on V, by V(«). The tensor product
induced by this equivalence on mod k[z] comes from the coproduct k[x] — k[z] ® k[z],
r— Q.
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Let V}, correspond to the indecomposable k[x]/z" under the above equivalence for every
n > 0. We have the following result from [3].

Proposition 1. Let Q) be the loop quiver and V' a Q-representation such that V(«) is an
wnvertible linear operator. Then the following statements hold.

(1) V, @ Vi = (m —n+ 1)V, ® @I 2V; for n < m.

(2) VoV, =(dimV)V, for aln.

Let I, C R(Q) be the Z-span of {[V,] | n > 0}. By Proposition 1, I is an ideal in
R(Q) and R(Q)/I, = R(k[zx,x']). The structure of R(k[z,z~!]) depends heavily on the
field k. Let us recall its description from [3]. We need to construct another ring which we
denote by R'.

If char k = 0, then set R’ = Z[T].

If char k = p > 0, then R’ is constructed as follows. For each i € N let C}: be the cyclic
group of order p’ and set R; = R(kC,). There are canonical inclusions R; C R;1q, and
we set R = J, oy Ri-

Let & be the group of invertible elements in the algebraic closure of k and Zk  the
corresponding group ring. The absolute Galois group G = Gal(k/k) acts on k and

consequently on Zk'. Denote by (ZEL)G, the ring of invariants. The following Theorem is
from [3].

Theorem 2. There is an isomorphim

R(k[z,z7Y)) = (ZE)® @z R

3. STRING ALGEBRAS
As before fix a quiver ) and a set X of paths in Q). Set [ = (X) and A = kQ/I.
Definition 3. The algebra A is called a string algebra if it is finite dimensional and
satisfies the following conditions.

(1) Each = € Qg is the tail, respectively head, of at most two arrows.
(2) For each a € 1 there is at most one § € @1 and at most one v € J; such that
Bag I and ay € 1.

Example 4. The following quiver with relations defines a string algebra for every n > 0.
ofﬂo@v Ba = af = (Bay)" =0

We proceed to describe the indecomposable modules over string algebras.

Definition 5. A quiver morphism F : P — (@ consists of two maps F' : Py — @y,
F : P, — @ such that for any arrow z = y we get Fx i Fy.

We call F = (F, P) a shape over Q if for any two distinct arrows 2, < y1, T3 3 yy € Q1
we have that Fa; = Fay implies xy # y; and xo # ys.

A morphism of shapes (F,P) — (F', P') is a quiver morphism G : P — P’ such that
F = F'G. Denote by |F’ : F|, the number of morphisms F — F'.
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We only consider shapes (F, P) and such that for any path «; - -, in P we have that
Fay---Fa, & 1.
With each shape (F, P) we associate two functors

rep, P

rep;,(Q, X)

defined as follows.
Foreach V' € rep,(Q, X),z € Pyand o € Py set (F*V), = Vp, and (F*V)(«a) = V(Fx).
For each W € rep,, P, and 2’ € @y set

(W), = B W..

Fx=x'
Let 2 % Yy € Q1. Write the linear map
(EW)(): W, — P W,
Fr=z' Fy=y'
as a matrix A with elements
s W(a) if there is % y such that Fa = o/,

00 else.
Definition 6. A shape F = (F|, L) is called linear if L is Dynkin of type A, i.e. if its
underlying graph is

We define the L-representation V' by

1 1

k k.

The string associated to F is the (@, X )-module S := F.V. It is always indecomposable.
A shape G = (G, 2) is called cyclic if it has trivial automorphism group and Z is
extended Dynkin of type A, i.e. if its underlying graph is

Now let M be a k[z,z7!]-module and v € Z;. We define the Z-representation W by
M

Y
/-

M

1 PPN 1 M

where the arrow acting as x is 7. The band associated with (G, M,~) is the (Q, X)-
module Bg (M, ) := G.W. It is indecomposable if and only if M is indecomposable. For
~' € Z; we say that v and +' are oriented equally if when cycling through the vertices of
Z we encounter tvy and h7y in the same order as we encounter ¢ and h~'. In that case
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Bg(M,~') = Bg(M,~). Otherwise Bg(M,~') = Bg(M™!,~), where M~ is obtained
from M by inverting the action of x.

The following Theorem follows from [14].

Theorem 7. Assume that A is a string algebra. Then strings and (indecomposable) bands
classify all indecomposables, i.e.

(1) Each indecomposable A-module is isomorphic to either a string or band.

(2) No strings are isomorphic to bands.

(3) Two strings Sy and Sg: are isomorphic if and only if they have isomorphic shapes.

(4) Two bands Bg(M,~) and Bg:/(M',~") are isomorphic if and only if their shapes
are isomorphic via some H such that M' is isomorphic to M if H(vy) and v are
equally oriented and M' is isomorphic to M~ otherwise.

Let £ be the set of isoclasses of linear shapes and Z be the set of isoclasses of cyclic
shapes.
We need the following preliminary result.

Proposition 8. Let (F, P) be a shape over Q, V € rep,(Q, X) and W € rep,, P. Then
FWeV S E(WeFV)

Let I, C R(Q,X) be the Z-span of {[S¢] | F € L}. By Proposition 8, it is an ideal,
since [Sg|[V] = [F.(F*V)] € L.

The following Theorem completely describes the structure of R(Q, X) in the case A is
a string algebra.

Theorem 9. Assume that A is a string algebra. Then the ideal I has a unique Z-basis of
pair-wise orthogonal idempotents {ex = eg}gc,, such that the following statements hold:

(1) For each linear shape F
[SF] = Z |F . F/|6F/.
FleLl
(2) For each cyclic shape G = (G, Z), v € Z; and klx,x"']-module M
[Ba(M,v)]err = dim M |G : F'|ep.
(3) For each pair of non-isomorphic cyclic shapes Gy = (G1,2Z1), Gy = (G, Z?),
Y E Zt, vo € Z2 and k[z,x7]-modules M, N
[Ba, (M, 1)][Ba,(N,72)] = > dim M dim N|Gy : F'||Gz : F'lep.
Fel
Moreover,
[BGI (Ma ’71)”BG1 (Na ’Yl)] = [BGI(M ® N, '71)]+
> dim M dim N|Gy : F'|(|Gy : F'| — D)ep.
FeLl

We end with the following observations. As a (non-unital) subring I, = @g.,Z. On
the other hand, R(Q, X)/I, = @gcz R(k[z, z71)).
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