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Abstract. String algebras are a class of algebras given by certain quivers with mono-
mial relations. Thus the category of finite dimensional left modules over a string algebra
is equipped with a tensor product defined point-wise and arrow-wise on the level of
quiver representations. We describe the corresponding representation ring for any string
algebra.

1. Introduction

The category of finite dimensional representations of a group G is equipped with a tensor
product defined by diagonal action. Thus the set of isoclasses of such representations has
the structure of a semi-ring, where addition is given by the direct sum and multiplication
by the tensor product. From this semi-ring one constructs the representation ring R(G)
by including formal additive inverses.

It would be interesting to generalise this procedure to the category of left modules over
an associative algebra A instead of group representations. However, in general there is no
know way of defining a tensor product on this category. Now assume that A is given as
the path algebra of a quiver Q with monomial relations, i.e. A = kQ/〈X〉 for some set
X of paths in Q and a field k. Then finite dimensional left A-modules are given by finite
dimensional representations of Q satisfying the relations X (we call such representations
(Q,X)-representations). Thus we can define a tensor product point-wise and arrow-wise.
Moreover, as in the case of group representations we obtain a representation ring R(Q,X),
which we denote simply by R(Q) in case X is empty. Our aim is to describe this ring.

By the Krull-Schmidt Theorem R(Q, X) has a Z-basis consisting of the isoclasses of
indecomposable (Q,X)-representations. Thus, describing the multiplicative structure of
R(Q,X) amounts to solving the following problem: given to indecomposable (Q,X)-
representations V , W decompose V ⊗ W into indecomposables. This problem is called
the Clebsch-Gordan problem and has its origin in the study of binary algebraic forms by
Clebsch and Gordan [2].

The most classical case is when Q is the loop quiver. For k algebraically closed of
characteristic zero, the solution to the Clebsch-Gordan problem for the loop was found by
Aitken [1]. The case when k is algebraically closed of positive characteristic was solved
by Iima-Iwamatsu [11] and the case when k is perfect was treated in [3].

For Q a Dynkin quiver, R(Q) was described for type A and D in [10] and for type E6

in [9]. The remaining cases E7 and E8 are still unsolved to my knowledge.

The detailed version of this paper has been submitted for publication elsewhere.
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For extended Dynkin quivers of type Ã the solution to the Clebsch-Gordan problem
was found in [7]. There is also a solution in case Q is the double loop quiver

•α
$$

β
zz

with relations αn = βn = αβ = βα = 0, found in [8]. These two cases are instances of
string algebras. In the present article we shall describe the representation ring for each
quiver with relations corresponding to a string algebra.

Gelfand and Ponomarev classified the indecomposable representations of the double
loop quiver appearing above in [6], as part of their classification of Harish-Chandra mod-
ules over the Lorentz group. The indecomposables in this case fall into two classes called
strings and bands. This type of classification was later used in other settings by Ringel
[13] and Donovan-Freislich [4]. A well-rounded setting to which it applies is that of string
algebras.

2. Preliminaries

Let us recall some definitions and set notation. More detail can be found in [5].
Throughout fix a perfect field k. A quiver Q consists of a set of vertices Q0 and a
set of arrows Q1. Moreover, it is equipped with two maps t, h : Q1 → Q0 mapping each
arrow α to its tail tα and head hα respectively. We depict this by tα

α→ hα.
A representation V of Q consists of a collection of finite dimensional k-vector spaces

Vx, where x ∈ Q0 and linear maps V (α) : Vx → Vy where x
α→ y ∈ Q1. Let X be a

set of paths in Q. We call V a (Q,X)-representation if for every path α1 · · ·αn ∈ X the
equality V (α1) · · ·V (αn) = 0 holds. The category of (Q,X)-representations is denoted
repk(Q,X).

Given two (Q, X)-representation their tensor product V ⊗W is defined as follows. For
each x ∈ Q0, α ∈ Q1 set

(V ⊗ W )x = Vx ⊗ Wx and (V ⊗ W )(α) = V (α) ⊗ W (α).

It is routine to check that V ⊗ W is a (Q,X)-representation.
Let S(Q,X) be the set of isoclasses of (Q,X)-representations. For all [V ], [W ] ∈

S(Q,X) set

[V ] + [W ] = [V ⊕ W ] and [V ][W ] = [V ⊗ W ].

This endows S(Q,X) with the structure of a semi-ring. Let R(Q,X) be the corresponding
Grothendieck ring [12].

Our aim is to describe R(Q,X) in case (Q,X) corresponds to a string algebra. Of
particular importance is the case when Q is the loop quiver:

• α
zz

In this case there is an equivalence of categories

repk Q →̃ mod k[x]

defined for each representation V by letting x act on V• by V (α). The tensor product
induced by this equivalence on mod k[x] comes from the coproduct k[x] → k[x] ⊗ k[x],
x 7→ x ⊗ x.
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Let Vn correspond to the indecomposable k[x]/xn under the above equivalence for every
n > 0. We have the following result from [3].

Proposition 1. Let Q be the loop quiver and V a Q-representation such that V (α) is an
invertible linear operator. Then the following statements hold.

(1) Vn ⊗ Vm →̃ (m − n + 1)Vn ⊕
⊕n−1

i=1 2Vi for n ≤ m.
(2) V ⊗ Vn = (dim V )Vn for all n.

Let Is ⊂ R(Q) be the Z-span of {[Vn] | n > 0}. By Proposition 1, Is is an ideal in
R(Q) and R(Q)/Is →̃ R(k[x, x−1]). The structure of R(k[x, x−1]) depends heavily on the
field k. Let us recall its description from [3]. We need to construct another ring which we
denote by R′.

If char k = 0, then set R′ = Z[T ].
If char k = p > 0, then R′ is constructed as follows. For each i ∈ N let Cpi be the cyclic

group of order pi and set Ri = R(kCpi). There are canonical inclusions Ri ⊂ Ri+1, and
we set R′ =

∪
i∈N Ri.

Let k
ι

be the group of invertible elements in the algebraic closure of k and Zk
ι

the
corresponding group ring. The absolute Galois group G = Gal(k/k) acts on k

ι
and

consequently on Zk
ι
. Denote by (Zk

ι
)G, the ring of invariants. The following Theorem is

from [3].

Theorem 2. There is an isomorphim

R(k[x, x−1]) →̃ (Zk
ι
)G ⊗Z R′.

3. String algebras

As before fix a quiver Q and a set X of paths in Q. Set I = 〈X〉 and A = kQ/I.

Definition 3. The algebra A is called a string algebra if it is finite dimensional and
satisfies the following conditions.

(1) Each x ∈ Q0 is the tail, respectively head, of at most two arrows.
(2) For each α ∈ Q1 there is at most one β ∈ Q1 and at most one γ ∈ Q1 such that

βα 6∈ I and αγ 6∈ I.

Example 4. The following quiver with relations defines a string algebra for every n > 0.

•
α // •
β

oo γdd βα = αβ = (βαγ)n = 0

We proceed to describe the indecomposable modules over string algebras.

Definition 5. A quiver morphism F : P → Q consists of two maps F : P0 → Q0,

F : P1 → Q1 such that for any arrow x
α→ y we get Fx

Fα→ Fy.
We call F = (F, P ) a shape over Q if for any two distinct arrows x1

α1→ y1, x2
α2→ y2 ∈ Q1

we have that Fα1 = Fα2 implies x1 6= y1 and x2 6= y2.
A morphism of shapes (F, P ) → (F ′, P ′) is a quiver morphism G : P → P ′ such that

F = F ′G. Denote by |F′ : F|, the number of morphisms F → F′.
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We only consider shapes (F, P ) and such that for any path α1 · · ·αn in P we have that
Fα1 · · ·Fαn 6∈ I.

With each shape (F, P ) we associate two functors

repk P

F∗
²²

repk(Q,X)

F ∗

OO

defined as follows.
For each V ∈ repk(Q,X), x ∈ P0 and α ∈ P1 set (F ∗V )x = VFx and (F ∗V )(α) = V (Fx).

For each W ∈ repk P , and x′ ∈ Q0 set

(F∗W )x =
⊕

Fx=x′

Wx.

Let x′ α′
→ y′ ∈ Q1. Write the linear map

(F∗W )(α′) :
⊕

Fx=x′

Wx →
⊕

Fy=y′

Wy

as a matrix A with elements

Ayx =

{
W (α) if there is x

α→ y such that Fα = α′,

0 else.

Definition 6. A shape F = (F,L) is called linear if L is Dynkin of type A, i.e. if its
underlying graph is

• · · · •.

We define the L-representation V by

k
1 · · · 1

k.

The string associated to F is the (Q,X)-module SF := F∗V . It is always indecomposable.
A shape G = (G,Z) is called cyclic if it has trivial automorphism group and Z is

extended Dynkin of type Ã, i.e. if its underlying graph is

•

ooooooo

• · · · •.

OOOOOOO

Now let M be a k[x, x−1]-module and γ ∈ Z1. We define the Z-representation W by

M
1

pppppp

M
1

· · ·
1

M

xNNNNNN

where the arrow acting as x is γ. The band associated with (G, M, γ) is the (Q,X)-
module BG(M,γ) := G∗W . It is indecomposable if and only if M is indecomposable. For
γ′ ∈ Z1 we say that γ and γ′ are oriented equally if when cycling through the vertices of
Z we encounter tγ and hγ in the same order as we encounter tγ′ and hγ′. In that case
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BG(M,γ′) →̃ BG(M,γ). Otherwise BG(M,γ′) →̃ BG(M−1, γ), where M−1 is obtained
from M by inverting the action of x.

The following Theorem follows from [14].

Theorem 7. Assume that A is a string algebra. Then strings and (indecomposable) bands
classify all indecomposables, i.e.

(1) Each indecomposable A-module is isomorphic to either a string or band.
(2) No strings are isomorphic to bands.
(3) Two strings SF and SF′ are isomorphic if and only if they have isomorphic shapes.
(4) Two bands BG(M,γ) and BG′(M ′, γ′) are isomorphic if and only if their shapes

are isomorphic via some H such that M ′ is isomorphic to M if H(γ) and γ′ are
equally oriented and M ′ is isomorphic to M−1 otherwise.

Let L be the set of isoclasses of linear shapes and Z be the set of isoclasses of cyclic
shapes.

We need the following preliminary result.

Proposition 8. Let (F, P ) be a shape over Q, V ∈ repk(Q,X) and W ∈ repk P . Then

F∗W ⊗ V →̃ F∗(W ⊗ F ∗V )

Let Is ⊂ R(Q,X) be the Z-span of {[SF] | F ∈ L}. By Proposition 8, it is an ideal,
since [SF][V ] = [F∗(F

∗V )] ∈ Is.
The following Theorem completely describes the structure of R(Q, X) in the case A is

a string algebra.

Theorem 9. Assume that A is a string algebra. Then the ideal Is has a unique Z-basis of
pair-wise orthogonal idempotents {eF = eF}F∈L, such that the following statements hold:

(1) For each linear shape F

[SF] =
∑
F′∈L

|F : F′|eF′ .

(2) For each cyclic shape G = (G,Z), γ ∈ Z1 and k[x, x−1]-module M

[BG(M,γ)]eF′ = dim M |G : F′|eF′ .

(3) For each pair of non-isomorphic cyclic shapes G1 = (G1, Z
1), G2 = (G2, Z

2),
γ1 ∈ Z1

1 , γ2 ∈ Z2
1 and k[x, x−1]-modules M , N

[BG1(M,γ1)][BG2(N, γ2)] =
∑
F′∈L

dim M dim N |G1 : F′||G2 : F′|eF′ .

Moreover,

[BG1(M,γ1)][BG1(N, γ1)] = [BG1(M ⊗ N, γ1)]+∑
F′∈L

dim M dim N |G1 : F′|(|G1 : F′| − 1)eF′ .

We end with the following observations. As a (non-unital) subring Is →̃
⊕

F∈L Z. On
the other hand, R(Q,X)/Is →̃

⊕
G∈Z R(k[x, x−1]).
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