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Abstract. This note is basically a summary of a part of the paper [11] with Eero
Hyry (University of Tampere). In this note we prove that the Buchsbaum-Rim function
`A(Sν+1(F )/Nν+1) of a parameter module N in F is bounded above by e(F/N)

(
ν+d+r−1

d+r−1

)
for every integer ν ≥ 0. Moreover, it turns out that the base ring A is Cohen-Macaulay
once the equality holds for some integer ν. As a direct consequence, we observe that
the first Buchsbaum-Rim coefficient e1(F/N) of a parameter module N is always non-
positive.

1. Introduction

Let (A, m) be a Noetherian local ring of dimension d. Let F = Ar be a free module of
rank r > 0, and let S = SA(F ) be the symmetric algebra of F , which is a polynomial ring
over A. For a submodule M of F , let R(M) denote the image of the natural homomor-
phism SA(M) → SA(F ), which is a standard graded subalgebra of S. Assume that the
quotient F/M has finite length and M ⊆ mF . Then we can consider the function

λ : Z≥0 → Z≥0 ; ν 7→ `A(Sν/M
ν)

where Sν and M ν denote the homogeneous components of degree ν of S and R(M),
respectively. Buchsbaum and Rim studied this function in [4] in order to generalize the
notion of the usual Hilbert-Samuel multiplicity of an m-primary ideal. They proved that
λ(ν) eventually coincides with a polynomial P (ν) of degree d + r − 1. This polynomial
can then be written in the form

P (ν) =
d+r−1∑

i=0

(−1)iei(F/M)

(
ν + d + r − 2 − i

d + r − 1 − i

)
with integer coefficients ei(F/M). The coefficients ei(F/M) are called the Buchsbaum-
Rim coefficients of F/M . The Buchsbaum-Rim multiplicity of F/M , denoted by e(F/M),
is now defined to be the leading coefficient e0(F/M).

In their article Buchsbaum and Rim also introduced the notion of a parameter module
(matrix), which generalizes the notion of a parameter ideal (system of parameters). The
module N in F is said to be a parameter module in F , if the following three conditions
are satisfied: (i) F/N has finite length, (ii) N ⊆ mF , and (iii) µA(N) = d + r − 1, where
µA(N) is the minimal number of generators of N .

A starting point of this note is the characterization of the Cohen-Macaulay property
of A given in [4, Corollary 4.5] by means of the equality `A(F/N) = e(F/N) for every
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parameter module N of rank r in F = Ar. Brennan, Ulrich and Vasconcelos observed
in [1, Theorem 3.4] that if A is Cohen-Macaulay, then in fact

`A(Sν+1/N
ν+1) = e(F/N)

(
ν + d + r − 1

d + r − 1

)
for all integers ν ≥ 0. Our main result is now as follows:

Theorem 1. Let (A, m) be a Noetherian local ring of dimension d > 0.

(1) For any rank r > 0, the inequality

`A(Sν+1/N
ν+1) ≥ e(F/N)

(
ν + d + r − 1

d + r − 1

)
always holds true for every parameter module N in F = Ar and for every integer
ν ≥ 0.

(2) The following statements are equivalent:
(i) A is a Cohen-Macaulay local ring;

(ii) There exists an integer r > 0 and a parameter module N of rank r in F = Ar

such that the equality

`A(Sν+1/N
ν+1) = e(F/N)

(
ν + d + r − 1

d + r − 1

)
holds true for some integer ν ≥ 0.

This generalizes our previous result [10, Theorem 1.3] where we assumed that ν = 0.
The equivalence of (i) and (ii) in (2) seems to contain some new information even in the
ideal case. Indeed, it improves a recent observation that the ring A is Cohen-Macaulay if
there exists a parameter ideal Q in A such that `A(A/Qν+1) = e(A/Q)

(
ν+d

d

)
for all ν À 0

(see [8, 12]). Moreover, as a direct consequence of (1), we have the non-positivity of the
first Buchsbaum-Rim coefficient of a parameter module.

Corollary 2. For any rank r > 0, the inequality

e1(F/N) ≤ 0

always holds true for every parameter module N in F = Ar.

Mandal and Verma have recently proved that e1(A/Q) ≤ 0 for any parameter ideal Q
in A (see [15], and also [8]). Corollary 2 can be viewed as the module version of this fact.
However, our proof based on the inequality in Theorem 1 (1) is completely different from
theirs and is considerably more simpler.

2. Preliminaries

Let (A, m) be a Noetherian local ring of dimension d. Let F = Ar be a free module of
rank r > 0. Let S = SA(F ) be the symmetric algebra of F . Let N be a parameter module
in F , that is, N is a submodule of F satisfying the conditions: (i) `A(F/N) < ∞, (ii)
N ⊆ mF , and (iii) µA(N) = d+ r−1. We put n = d+ r−1. Let Nν be the homogeneous
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component of degree ν of the standard graded subalgebra R(N) = Im(SA(N) → S) of S.
Let Ñ = (cij) be the matrix associated to a minimal free presentation

An Ñ→ F → F/N → 0

of F/N . Let X = (Xij) be a generic matrix of the same size r × n. We denote by Is(X)
the ideal in the polynomial ring A[X] = A[Xij | 1 ≤ i ≤ r, 1 ≤ j ≤ n] generated by
the s-minors of X. Let B = A[X](m,X) be the ring localized at the graded maximal ideal
(m, X) of A[X]. The substitution map A[X] → A where Xij 7→ cij now induces a map
ϕ : B → A. We consider the ring A as a B-algebra via the map ϕ. Let

b = Ker ϕ = (Xij − cij | 1 ≤ i ≤ r, 1 ≤ j ≤ n)B.

Set G = Br, and let L denote the submodule Im(Bn X→ G) of G. Let Gν and Lν

be the homogeneous components of degree ν of the graded algebras SB(G) and R(L),
respectively. Then one can check the following.

Lemma 3. For any integers ν ≥ 0, we have the following:

(1) (Gν+1/L
ν+1) ⊗B (B/b) ∼= Sν+1/N

ν+1;
(2) SuppB(Gν+1/L

ν+1) = SuppB(B/Ir(X)B);
(3) The ideal b is generated by a system of parameters of the module Gν+1/L

ν+1.

The following fact concerning Gν+1/L
ν+1 is known by [3, Corollary 3.2] (see also [13,

Proposition 3.3]).

Lemma 4. For any integer ν ≥ 0, we have Gν+1/L
ν+1 is a perfect B-module of grade d.

The following plays a key role in the proof of Theorem 1. See [11, Proposition 2.4] for
the proof.

Proposition 5. For any p ∈ MinB(B/Ir(X)B), the equality

`Bp

(
(Gν+1/L

ν+1)p

)
= `Bp ((B/Ir(X)B)p)

(
ν + d + r − 1

d + r − 1

)
holds true for all integers ν ≥ 0.

3. Proof of Theorem 1

In order to prove Theorem 1, we need to introduce more notation. For any matrix a
of size r × n over an arbitrary ring, we denote by K•(a) its Eagon-Northcott complex [6].
When r = 1, the complex K•(a) is just the ordinary Koszul complex of the sequence a.
See [7, Appendix A2] for the definition and more details of complexes of this type. Recall
in particular that if N is a parameter module in a free module F as in section 2, then

e(F/N) = χ(K•(Ñ)),

where χ(K•(Ñ)) denotes the Euler-Poincaré characteristic of the complex K•(Ñ) (see [4]
and [14]). Moreover, one can check the following by computing TorB

p (B/IB,A) for any
p ≥ 0 (see [5]).
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Lemma 6. Using the setting and notation of section 2, we have

χ(K•(b) ⊗B (B/Ir(X)B)) = χ(K•(Ñ)).

Now we can give the proof of Theorem 1.

Proof of Theorem 1. We use the same notation as in section 2. Put I = Ir(X).
(1): Fix integers ν ≥ 0. The ideal b being generated by a system of parameters of the

module Gν+1/L
ν+1, we get

`A(Sν+1/N
ν+1)

= `B((Gν+1/L
ν+1) ⊗B (B/b))

≥ e(b; Gν+1/L
ν+1)

=
∑

p∈AsshB(Gν+1/Lν+1)

e(b; B/p) · `Bp((Gν+1/L
ν+1)p)

=
∑

p∈AsshB(B/IB)

e(b; B/p) · `Bp((B/IB)p)

(
ν + d + r − 1

d + r − 1

)

= e(b; B/IB)

(
ν + d + r − 1

d + r − 1

)
= χ(K•(b) ⊗B (B/IB))

(
ν + d + r − 1

d + r − 1

)
= χ(K•(Ñ))

(
ν + d + r − 1

d + r − 1

)
= e(F/N)

(
ν + d + r − 1

d + r − 1

)
as desired, where e(b; ∗) denotes the multiplicity of ∗ with respect to b.

(2): The other implication being clear, by the ideal case, for example, it is enough to
show that (ii) implies (i). Assume thus that

`A(Sν+1/N
ν+1) = e(F/N)

(
ν + d + r − 1

d + r − 1

)
for some ν ≥ 0. The above argument then gives

`B((Gν+1/L
ν+1) ⊗B (B/b)) = e(b; Gν+1/L

ν+1).

It follows that Gν+1/L
ν+1 is a Cohen-Macaulay B-module of dimension rn ([2, (5.12)

Corollary]). By Lemma 4, Gν+1/L
ν+1 is a perfect B-module of grade d. Thus, by the

Auslander-Buchsbaum formula,

depth B = depthB(Gν+1/L
ν+1) + pdB(Gν+1/L

ν+1)

= dimB(Gν+1/L
ν+1) + gradeB(Gν+1/L

ν+1)

= rn + d

= dim B.

Therefore B is Cohen-Macaulay so that A is Cohen-Macaulay, too. ¤
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