THE BUCHSBAUM-RIM FUNCTION OF A PARAMETER MODULE

FUTOSHI HAYASAKA

ABSTRACT. This note is basically a summary of a part of the paper [11] with Eero Hyry (University of Tampere). In this note we prove that the Buchsbaum-Rim function $\ell_A(S_{\nu+1}(F)/N^{\nu+1})$ of a parameter module N in F is bounded above by $e(F/N)\binom{\nu+d+r-1}{d+r-1}$ for every integer $\nu \geq 0$. Moreover, it turns out that the base ring A is Cohen-Macaulay once the equality holds for some integer ν . As a direct consequence, we observe that the first Buchsbaum-Rim coefficient $e_1(F/N)$ of a parameter module N is always non-positive.

1. INTRODUCTION

Let (A, \mathfrak{m}) be a Noetherian local ring of dimension d. Let $F = A^r$ be a free module of rank r > 0, and let $S = \mathcal{S}_A(F)$ be the symmetric algebra of F, which is a polynomial ring over A. For a submodule M of F, let $\mathcal{R}(M)$ denote the image of the natural homomorphism $\mathcal{S}_A(M) \to \mathcal{S}_A(F)$, which is a standard graded subalgebra of S. Assume that the quotient F/M has finite length and $M \subseteq \mathfrak{m}F$. Then we can consider the function

$$\lambda: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0} ; \quad \nu \mapsto \ell_A(S_\nu/M^\nu)$$

where S_{ν} and M^{ν} denote the homogeneous components of degree ν of S and $\mathcal{R}(M)$, respectively. Buchsbaum and Rim studied this function in [4] in order to generalize the notion of the usual Hilbert-Samuel multiplicity of an **m**-primary ideal. They proved that $\lambda(\nu)$ eventually coincides with a polynomial $P(\nu)$ of degree d + r - 1. This polynomial can then be written in the form

$$P(\nu) = \sum_{i=0}^{d+r-1} (-1)^{i} e_{i}(F/M) \binom{\nu+d+r-2-i}{d+r-1-i}$$

with integer coefficients $e_i(F/M)$. The coefficients $e_i(F/M)$ are called the Buchsbaum-Rim coefficients of F/M. The Buchsbaum-Rim multiplicity of F/M, denoted by e(F/M), is now defined to be the leading coefficient $e_0(F/M)$.

In their article Buchsbaum and Rim also introduced the notion of a parameter module (matrix), which generalizes the notion of a parameter ideal (system of parameters). The module N in F is said to be a parameter module in F, if the following three conditions are satisfied: (i) F/N has finite length, (ii) $N \subseteq \mathfrak{m}F$, and (iii) $\mu_A(N) = d + r - 1$, where $\mu_A(N)$ is the minimal number of generators of N.

A starting point of this note is the characterization of the Cohen-Macaulay property of A given in [4, Corollary 4.5] by means of the equality $\ell_A(F/N) = e(F/N)$ for every

The detailed version of this paper has been submitted for publication elsewhere.

parameter module N of rank r in $F = A^r$. Brennan, Ulrich and Vasconcelos observed in [1, Theorem 3.4] that if A is Cohen-Macaulay, then in fact

$$\ell_A(S_{\nu+1}/N^{\nu+1}) = e(F/N) \binom{\nu+d+r-1}{d+r-1}$$

for all integers $\nu \geq 0$. Our main result is now as follows:

Theorem 1. Let (A, \mathfrak{m}) be a Noetherian local ring of dimension d > 0.

(1) For any rank r > 0, the inequality

$$\ell_A(S_{\nu+1}/N^{\nu+1}) \ge e(F/N) \binom{\nu+d+r-1}{d+r-1}$$

always holds true for every parameter module N in $F = A^r$ and for every integer $\nu \ge 0$.

- (2) The following statements are equivalent:
 - (i) A is a Cohen-Macaulay local ring;
 - (ii) There exists an integer r > 0 and a parameter module N of rank r in $F = A^r$ such that the equality

$$\ell_A(S_{\nu+1}/N^{\nu+1}) = e(F/N) \binom{\nu+d+r-1}{d+r-1}$$

holds true for some integer $\nu \geq 0$.

This generalizes our previous result [10, Theorem 1.3] where we assumed that $\nu = 0$. The equivalence of (i) and (ii) in (2) seems to contain some new information even in the ideal case. Indeed, it improves a recent observation that the ring A is Cohen-Macaulay if there exists a parameter ideal Q in A such that $\ell_A(A/Q^{\nu+1}) = e(A/Q) \binom{\nu+d}{d}$ for all $\nu \gg 0$ (see [8, 12]). Moreover, as a direct consequence of (1), we have the non-positivity of the first Buchsbaum-Rim coefficient of a parameter module.

Corollary 2. For any rank r > 0, the inequality

 $e_1(F/N) \le 0$

always holds true for every parameter module N in $F = A^r$.

Mandal and Verma have recently proved that $e_1(A/Q) \leq 0$ for any parameter ideal Q in A (see [15], and also [8]). Corollary 2 can be viewed as the module version of this fact. However, our proof based on the inequality in Theorem 1 (1) is completely different from theirs and is considerably more simpler.

2. Preliminaries

Let (A, \mathfrak{m}) be a Noetherian local ring of dimension d. Let $F = A^r$ be a free module of rank r > 0. Let $S = \mathcal{S}_A(F)$ be the symmetric algebra of F. Let N be a parameter module in F, that is, N is a submodule of F satisfying the conditions: (i) $\ell_A(F/N) < \infty$, (ii) $N \subseteq \mathfrak{m}F$, and (iii) $\mu_A(N) = d + r - 1$. We put n = d + r - 1. Let N^{ν} be the homogeneous component of degree ν of the standard graded subalgebra $\mathcal{R}(N) = \operatorname{Im}(\mathcal{S}_A(N) \to S)$ of S. Let $\tilde{N} = (c_{ij})$ be the matrix associated to a minimal free presentation

$$A^n \xrightarrow{N} F \to F/N \to 0$$

of F/N. Let $X = (X_{ij})$ be a generic matrix of the same size $r \times n$. We denote by $I_s(X)$ the ideal in the polynomial ring $A[X] = A[X_{ij} \mid 1 \leq i \leq r, 1 \leq j \leq n]$ generated by the s-minors of X. Let $B = A[X]_{(\mathfrak{m},X)}$ be the ring localized at the graded maximal ideal (\mathfrak{m}, X) of A[X]. The substitution map $A[X] \to A$ where $X_{ij} \mapsto c_{ij}$ now induces a map $\varphi: B \to A$. We consider the ring A as a B-algebra via the map φ . Let

$$\mathfrak{b} = \operatorname{Ker} \varphi = (X_{ij} - c_{ij} \mid 1 \le i \le r, 1 \le j \le n)B.$$

Set $G = B^r$, and let L denote the submodule $\operatorname{Im}(B^n \xrightarrow{X} G)$ of G. Let G_{ν} and L^{ν} be the homogeneous components of degree ν of the graded algebras $\mathcal{S}_B(G)$ and $\mathcal{R}(L)$, respectively. Then one can check the following.

Lemma 3. For any integers $\nu \ge 0$, we have the following:

- (1) $(G_{\nu+1}/L^{\nu+1}) \otimes_B (B/\mathfrak{b}) \cong S_{\nu+1}/N^{\nu+1};$
- (2) $\operatorname{Supp}_B(G_{\nu+1}/L^{\nu+1}) = \operatorname{Supp}_B(B/I_r(X)B);$
- (3) The ideal \mathfrak{b} is generated by a system of parameters of the module $G_{\nu+1}/L^{\nu+1}$.

The following fact concerning $G_{\nu+1}/L^{\nu+1}$ is known by [3, Corollary 3.2] (see also [13, Proposition 3.3]).

Lemma 4. For any integer $\nu \geq 0$, we have $G_{\nu+1}/L^{\nu+1}$ is a perfect B-module of grade d.

The following plays a key role in the proof of Theorem 1. See [11, Proposition 2.4] for the proof.

Proposition 5. For any $\mathfrak{p} \in \operatorname{Min}_B(B/I_r(X)B)$, the equality

$$\ell_{B_{\mathfrak{p}}}\left((G_{\nu+1}/L^{\nu+1})_{\mathfrak{p}}\right) = \ell_{B_{\mathfrak{p}}}\left((B/I_r(X)B)_{\mathfrak{p}}\right)\binom{\nu+d+r-1}{d+r-1}$$

holds true for all integers $\nu \geq 0$.

3. Proof of Theorem 1

In order to prove Theorem 1, we need to introduce more notation. For any matrix \mathfrak{a} of size $r \times n$ over an arbitrary ring, we denote by $K_{\bullet}(\mathfrak{a})$ its Eagon-Northcott complex [6]. When r = 1, the complex $K_{\bullet}(\mathfrak{a})$ is just the ordinary Koszul complex of the sequence \mathfrak{a} . See [7, Appendix A2] for the definition and more details of complexes of this type. Recall in particular that if N is a parameter module in a free module F as in section 2, then

$$e(F/N) = \chi(K_{\bullet}(N)),$$

where $\chi(K_{\bullet}(\tilde{N}))$ denotes the Euler-Poincaré characteristic of the complex $K_{\bullet}(\tilde{N})$ (see [4] and [14]). Moreover, one can check the following by computing $\operatorname{Tor}_{p}^{B}(B/IB, A)$ for any $p \geq 0$ (see [5]).

Lemma 6. Using the setting and notation of section 2, we have

$$\chi(K_{\bullet}(\mathfrak{b}) \otimes_B (B/I_r(X)B)) = \chi(K_{\bullet}(N))$$

Now we can give the proof of Theorem 1.

Proof of Theorem 1. We use the same notation as in section 2. Put $I = I_r(X)$.

(1): Fix integers $\nu \geq 0$. The ideal \mathfrak{b} being generated by a system of parameters of the module $G_{\nu+1}/L^{\nu+1}$, we get

$$\begin{split} &\ell_A(S_{\nu+1}/N^{\nu+1}) \\ &= \ell_B((G_{\nu+1}/L^{\nu+1}) \otimes_B (B/\mathfrak{b})) \\ &\geq e(\mathfrak{b}; G_{\nu+1}/L^{\nu+1}) \\ &= \sum_{\mathfrak{p}\in \operatorname{Assh}_B(G_{\nu+1}/L^{\nu+1})} e(\mathfrak{b}; B/\mathfrak{p}) \cdot \ell_{B\mathfrak{p}}((G_{\nu+1}/L^{\nu+1})\mathfrak{p}) \\ &= \sum_{\mathfrak{p}\in \operatorname{Assh}_B(B/IB)} e(\mathfrak{b}; B/\mathfrak{p}) \cdot \ell_{B\mathfrak{p}}((B/IB)\mathfrak{p}) \binom{\nu+d+r-1}{d+r-1} \\ &= e(\mathfrak{b}; B/IB) \binom{\nu+d+r-1}{d+r-1} \\ &= \chi(K_{\bullet}(\mathfrak{b}) \otimes_B (B/IB)) \binom{\nu+d+r-1}{d+r-1} \\ &= \chi(K_{\bullet}(\tilde{N})) \binom{\nu+d+r-1}{d+r-1} \\ &= e(F/N) \binom{\nu+d+r-1}{d+r-1} \\ &= e(F/N) \binom{\nu+d+r-1}{d+r-1} \end{split}$$

as desired, where $e(\mathfrak{b}; *)$ denotes the multiplicity of * with respect to \mathfrak{b} .

(2): The other implication being clear, by the ideal case, for example, it is enough to show that (ii) implies (i). Assume thus that

$$\ell_A(S_{\nu+1}/N^{\nu+1}) = e(F/N) \binom{\nu+d+r-1}{d+r-1}$$

for some $\nu \geq 0$. The above argument then gives

$$\ell_B((G_{\nu+1}/L^{\nu+1})\otimes_B (B/\mathfrak{b})) = e(\mathfrak{b}; G_{\nu+1}/L^{\nu+1}).$$

It follows that $G_{\nu+1}/L^{\nu+1}$ is a Cohen-Macaulay *B*-module of dimension rn ([2, (5.12) Corollary]). By Lemma 4, $G_{\nu+1}/L^{\nu+1}$ is a perfect *B*-module of grade *d*. Thus, by the Auslander-Buchsbaum formula,

depth
$$B$$
 = depth_B($G_{\nu+1}/L^{\nu+1}$) + pd_B($G_{\nu+1}/L^{\nu+1}$)
= dim_B($G_{\nu+1}/L^{\nu+1}$) + grade_B($G_{\nu+1}/L^{\nu+1}$)
= $rn + d$
= dim B .

Therefore B is Cohen-Macaulay so that A is Cohen-Macaulay, too.

References

- J. Brennan, B. Ulrich and W. V. Vasconcelos, *The Buchsbaum-Rim polynomial of a module*, J. Algebra 241 (2001), 379–392
- [2] W. Bruns and U. Vetter, *Determinantal Rings*, Lecture Notes in Math. 1327, Springer-Verlag Berlin Heidelberg, 1988
- [3] D. A. Buchsbaum and D. Eisenbud, Generic free resolutions and a family of generically perfect ideals, Adv. in Math. 18 (1975), 245–301
- [4] D. A. Buchsbaum and D. S. Rim, A generalized Koszul complex. II. Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1964), 197–224
- [5] D. A. Buchsbaum and D. S. Rim, A generalized Koszul complex. III. A Remark on Generic Acyclicity, Proc. Amer. Math. Soc. 16 (1965), 555–558
- [6] J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. Ser. A 269 (1962), 188–204
- [7] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995
- [8] L. Ghezzi, S. Goto, J. Hong, K. Ozeki, T. T. Phuong, and W. V. Vasconcelos, *Cohen-Macaulayness versus the vanishing of the first Hilbert coefficient of parameters*, to appear in J. London Math. Soc.
- F. Hayasaka and E. Hyry, A family of graded modules associated to a module, Communications in Algebra, Volume 36 (2008), Issue 11, 4201–4217
- [10] F. Hayasaka and E. Hyry, A note on the Buchsbaum-Rim multiplicity of a parameter module, Proc. Amer. Math. Soc. 138 (2010), 545–551
- [11] F. Hayasaka and E. Hyry, A note on the Buchsbaum-Rim function of a parameter module, Preprint 2009 (submitted)
- [12] Y. Kamoi, Remark on the polynomial type Poincaré series, Proceedings of The Second Japan-Vietnam Joint Seminar on Commutative Algebra (2006), 162–168
- [13] D. Katz and C. Naudé, Prime ideals associated to symmetric powers of a module, Comm. Algebra 23 (1995), no. 12, 4549–4555
- [14] D. Kirby, On the Buchsbaum-Rim multiplicity associated with a matrix, J. London Math. Soc. (2) 32 (1985), no. 1, 57–61
- [15] M. Mandal and J. K. Verma, On the Chern number of an ideal, Preprint 2008

DEPARTMENT OF MATHEMATICS SCHOOL OF SCIENCE AND TECHNOLOGY MEIJI UNIVERSITY 1-1-1 HIGASHIMITA, TAMA-KU, KAWASAKI 214-8571, JAPAN *E-mail address*: hayasaka@isc.meiji.ac.jp