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Abstract. Suppose B is an algebra with a stratifying ideal BeB generated by an
idempotent e. We will establish long exact sequences relating the Hochschild cohomology
groups of the three algebras B, B/BeB and eBe. This provides a common generalization
of various known results, all of which extend Happel’s long exact sequence for one-point
extensions. Applying one of these sequences to Hochschild cohomology algebras modulo
the ideal generated by homogeneous nilpotent elements, we obtain, in some cases, that
these algebras are finitely generated.

1. Introduction

Let B be an algebra with a stratifying ideal BeB generated by an idempotent e and
HHn(B) the nth Hochschild cohomology group of B. In [11], we obtain a long exact
sequence

· · · → Extn
Be(B/BeB, BeB) → HHn(B) → HHn(B/BeB) ⊕ HHn(eBe) → · · · ,

which is a generalization of Happel’s long exact sequence in [9]. Moreover this is a
generalization of various known long exact sequences in the case of triangular matrix
algebras by Michelena and Platzeck in [13], Green and Solberg in [8] and Cibils, Marcos,
Redondo and Solotar in [2], and in the case of algebras with heredity ideals by de la Peña
and Xi in [14].

For any finite dimensional algebra B with a stratifying ideal BeB, we will apply our
long exact sequence to the quotient of the Hochschild cohomology algebra HH∗(B) modulo

the ideal NB generated by homogeneous nilpotent elements. We denote by HH
∗
(B) the

graded factor algebra HH∗(B)/NB.
In [16], for any finite dimensional algebra A, Snashall and Solberg studied support

variety by using Hocschild cohomology algebra HH∗(A) and conjectured that HH
∗
(A) is a

finitely generated algebra. Green, Snashall and Solberg have shown the conjecture to hold
true for self-injective algebras of finite representation type [6] and for monomial algebras
[7]. Recently Xu has shown that there exists a counter example to the conjecture in [17].

We are, however, interested in the condition when HH
∗
(A) is finitely generated.

Applying the long exact sequence above to Brauer algebra Bk(n, δ), we obtain an em-
bedding

HH
∗
(Bk(n, δ)) ↪→ HH

∗
(kΣn) × HH

∗
(kΣn−2) × · · · × HH

∗
(kΣt)

where Σm is the symmetric group on m letters, kΣ0 = k and t is 0 or 1 depending on
whether n is even or odd (see Proposition 5). By using this embedding, we obtain the

result that HH
∗
(Bk(n, δ)) is finitely generated in some cases.

The detailed version of this paper will be submitted for publication elsewhere.
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2. Stratifying ideals

In this section we recall some results about Hochschild cohomology groups of algebras
with stratifying ideals in [11]. The following definition is due to Cline, Parshall and Scott
([3], 2.1.1 and 2.1.2), who work with finite dimensional algebras over fields. We keep our
general setup of algebras projective over a commutative noetherian ring.

Definition 1. Let B be an algebra and e an idempotent. The two-sided ideal BeB
generated by e is called a stratifying ideal if the following equivalent conditions (A) and
(B) are satisfied:
(A) (a) The multiplication map Be ⊗eBe eB → BeB is an isomorphism.

(b) For all n > 0, ToreBe
n (Be, eB) = 0.

(B) The epimorphism B → A := B/BeB induces isomorphisms

Ext∗A(X, Y ) � Ext∗B(X, Y )

for all A-modules X and Y .

The following remark can be used to check if an ideal is stratifying.

Remark 2. Let e be an idempotent element in B. Then BeB is projective as a left (resp.
right) B-module if and only if eB (resp. Be) is projective as a left (respectively right)
eBe-module and the multiplication map Be ⊗eBe eB → BeB is an isomorphism.

Heredity ideals are examples of stratifying ideals, thus our results will extend results
obtained in [14]. On the other hand, for any triangulated algebra B has an idempotent
e such that BeB is projective. By Remark 2, BeB is a stratifying ideal. Thus our
results also will extend results of [2, 8, 13]. There are, however, plenty of other examples.
Stratifying ideals and stratified algebras occur frequently in applications, for example
in algebraic Lie theory in the context of Schur algebras and of blocks of the Bernstein-
Gelfand-Gelfand category of a semisimple complex Lie algebra.

From now on, we assume that BeB is a stratifying ideal of B and we put A := B/BeB.

Theorem 3. There are long exact sequences as follows:

(1) · · · → Extn
Be(B, BeB) → HHn(B) → HHn(A) → · · · ;

(2) · · · → Extn
Be(A, B) → HHn(B) → HHn(eBe) → · · · ; and

(3) · · · → Extn
Be(A, BeB) → HHn(B)

f→ HHn(A) ⊕ HHn(eBe) → · · · .

We remark that by using the partial recollement of bounded below derived categories

D+(mod A) �� D+(mod B)��
�� D+(mod eBe),��

we also can obtain the long exact sequence (3).
We also note that Suarez-Alvarez [15] independently has obtained the first long exact

sequence in Theorem 3 above by using different methods based on spectral sequences.
Recall the notation that NB is the ideal of HH∗(B) which is generated by homogeneous

nilpotent elements, and HH
∗
(B) is the factor algebra HH∗(B)/NB.

Corollary 4.

(1) Let f : HH∗(B) → HH∗(A) × HH∗(eBe) be the graded algebra homomorphism in
sequence (3) above. Then (Ker f)2 vanishes.
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(2) The induced homomorphism f : HH
∗
(B) → HH

∗
(A) × HH

∗
(eBe) is injective.

We note that the the graded algebra homomorphism in Corollary above was studied in
the case of a one point extension by Green, Marcos and Snashall [5].

3. Brauer algebras

Finally we give an example of an algebra occurring in algebraic Lie theory, see for
instance [12] or [10] for the properties of Brauer algebras used in this example. We denote
by Σn the symmetric group on n letters and k an algebraically closed field. For any
natural number n and any δ in k, we denote by Bk(n, δ) the Brauer algebra.

Proposition 5. If δ is not 0 or n is odd, then there is an injective graded algebra homo-
morhism

HH
∗
(Bk(n, δ)) ↪→ HH

∗
(kΣn) × HH

∗
(kΣn−2) × · · · × HH

∗
(kΣt)

where kΣ0 = k and t is 0 or 1 depending on whether n is even or odd.

Proof. For any Brauer algebra Bk(n, δ), if δ is not 0 or n is odd, then there is a filtration

0 < It < It+2 < · · · < In−2 < In = Bk(n, δ)

such that the subquotient Is/Is−2 is a stratifying ideal of Bs = Bk(n, δ)/Is−2 ,where t is 0
or 1 depending on whether n is even or odd and Is = 0 if s < 0 (see [10]). Moreover there
is an idempotent es in Bs such that Is/Is−2 = BsesBs, esBses

∼= kΣs and en is the identity
of Bn (see [4]). By Corollary 4, there exists an injective graded algebra homomorphism

HH
∗
(Bs) ↪→ HH

∗
(Bs+2) × HH

∗
(kΣs).

Since Bt = Bk(n, δ) and Bn
∼= kΣn, the claim follows.

Corollary 6. Suppose that δ is not 0 or n is odd. If the characteristic of k is either zero
or bigger than n, then HH

∗
(Bk(n, δ)) is a finitely generated algebra.

Proof. If the characteristic of k is either zero or bigger than n, then for any s < n, kΣs

is semisimple and HH
∗
(kΣs) ∼= km where m is the number of the blocks of kΣs. By

Proposition 5, HH
∗
(Bk(n, δ)) is a finitely generated algebra.

Corollary 7. HH
∗
(Bk(2, δ)) and HH

∗
(Bk(3, δ)) are finitely generated algebras.

Proof. By Proposition 5, there exists an embedding

HH
∗
(Bk(3, δ)) ↪→ HH

∗
(kΣ3) × HH

∗
(kΣ1)

as a graded algebra homomorphism. Since kΣ1
∼= k and kΣ3 is a self-injective algebra

of finite representation type, HH
∗
(kΣ3) × HH

∗
(kΣ1) is isomorphic to a product of some

polynomial algebras in one variable k[x] and some copies of the ground field k (see [6]).
Because any graded subalgebra of a product of some polynomial algebras with one variable
k[x] is a finitely generated algebra, we obtain the result that HH

∗
(Bk(3, δ)) is a finitely

generated algebra.
By Proposition 5, if δ is not zero, then there exists an embedding

HH
∗
(Bk(2, δ)) ↪→ HH

∗
(kΣ2) × HH

∗
(kΣ0)
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as a graded algebra homomorphism. Since kΣ0 = k and kΣ2 is a self-injective algebra
of finite representation type, HH

∗
(Bk(2, δ)) is a finitely generated algebra by the same

argument above. If δ = 0, then Bk(2, δ) is isomorphic to

k × k[x]/x2 (chark �= 2) or k[x, y]/(x2, xy, y2) (chark = 2).

Since both are radical square zero algebras, HH
∗
(Bk(2, δ)) is a finitely generated algebra

(see [1] or [7]).
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