PICARD GROUPS OF ADDITIVE FULL SUBCATEGORIES

NAOYA HIRAMATSU AND YUJI YOSHINO (OKAYAMA UNIVERSITY)

1. INTRODUCTION

Let k be a commutative ring and let A be a commutative k-algebra. We denote by A-Mod the category of all A-modules and all A-homomorphisms. Let \mathfrak{C} be an additive full subcategory of A-Mod. Since A is a k-algebra, every additive full subcategory \mathfrak{C} is a k-category. A covariant functor $\mathfrak{C} \to \mathfrak{C}$ is called a k-linear automorphism of \mathfrak{C} if it is a k-linear functor giving an auto-equivalence of the category \mathfrak{C} . We denote the set of all the isomorphism classes of k-linear automorphisms of \mathfrak{C} by $\operatorname{Aut}_k(\mathfrak{C})$, which forms a group by defining the multiplication to be the composition of functors.

Our study was motivated by the following computational result. Recall that a local ring (A, \mathfrak{m}) is said to have only an isolated singularity if A_p is a regular local ring for all prime ideals \mathfrak{p} except \mathfrak{m} .

Theorem 1. Let A be a Cohen-Macaulay local k-algebra with dimension d. Suppose that A has only an isolated singularity. Then,

$$\operatorname{Aut}_{k}(\operatorname{CM}(A)) \cong \begin{cases} \operatorname{Aut}_{k\text{-}alg}(A) & (d \neq 2) \\ \operatorname{Aut}_{k\text{-}alg}(A) \ltimes C\ell(A) & (d = 2) \end{cases}$$

where CM(A) is the additive full subcategory consisting of all maximal Cohen-Macaulay modules and $C\ell(A)$ denotes the divisor class group of A.

In this note we generalize this computation to much wider classes of additive full subcategories \mathfrak{C} of A-Mod, and we shall show a certain structure theorem for $\operatorname{Aut}_k(\mathfrak{C})$.

2. Automorphism groups

Throughout the paper, k is a commutative ring and A is a commutative k-algebra. When we say that \mathfrak{C} is a full subcategory of A-Mod, we always assume that \mathfrak{C} is closed under isomorphisms, and we simply write $X \in \mathfrak{C}$ to indicate that X is an object of \mathfrak{C} . Suppose that we are given an additive full subcategory \mathfrak{C} of A-Mod and an additive covariant functor $F : \mathfrak{C} \to \mathfrak{C}$. Recall that F is a k-linear functor if it induces k-linear mappings $\operatorname{Hom}_A(X, Y) \to \operatorname{Hom}_A(F(X), F(Y))$ for all $X, Y \in \mathfrak{C}$.

Definition 2. Aut_k(\mathfrak{C}) is the group of all the isomorphism classes of k-linear automorphisms of \mathfrak{C} , i.e.

$$\operatorname{Aut}_{k}(\mathfrak{C}) = \{ F : \mathfrak{C} \to \mathfrak{C} \mid \begin{array}{c} F \text{ is a } k \text{-linear covariant functor that} \\ \text{gives an equivalence of the category } \mathfrak{C} \end{array} \} / \cong$$

The detailed version of this paper will be submitted for publication elsewhere.

Note that the multiplication in $\operatorname{Aut}_k(\mathfrak{C})$ is defined to be the composition of functors, hence the identity element of $\operatorname{Aut}_k(\mathfrak{C})$ is represented by the class of the identity functor on \mathfrak{C} .

We denote by $\operatorname{Aut}_{k-\operatorname{alg}}(A)$ the group of all the k-algebra automorphisms of A. For $\sigma \in \operatorname{Aut}_{k-\operatorname{alg}}(A)$, we can define a covariant k-linear functor $\sigma_* : A\operatorname{-Mod} \to A\operatorname{-Mod}$ as in the following manner. For each A-module M, we define σ_*M to be M as an abelian group on which the A-module structure is defined by $a \circ m = \sigma^{-1}(a)m$ for $a \in A, m \in M$. For an A-homomorphism $f : M \to N$, we define $\sigma_*f : \sigma_*M \to \sigma_*N$ to be the same mapping as f. Note that σ_*f is an A-homomorphism, since $(\sigma_*f)(a \circ m) = f(\sigma^{-1}(a)m) = \sigma^{-1}(a)f(m) = a \circ (\sigma_*)f(m)$ for all $a \in A$ and $m \in M$. Notice that σ_* is a k-automorphism of the category A-Mod.

Definition 3. Let \mathfrak{C} be an additive full subcategory of A-Mod. Then \mathfrak{C} is said to be stable under $\operatorname{Aut}_{k-\operatorname{alg}}(A)$ if $\sigma_*(\mathfrak{C}) \subseteq \mathfrak{C}$ for all $\sigma \in \operatorname{Aut}_{k-\operatorname{alg}}(A)$.

Note that if \mathfrak{C} is stable under $\operatorname{Aut}_{k-\operatorname{alg}}(A)$ then $\sigma_*|_{\mathbb{C}}$ gives a k-automorphism of \mathfrak{C} for all $\sigma \in \operatorname{Aut}_{k-\operatorname{alg}}(A)$. Therefore we have a natural group homomorphism $\Psi : \operatorname{Aut}_{k-\operatorname{alg}}(A) \to \operatorname{Aut}_k(\mathfrak{C})$ which maps σ to the class of $\sigma_*|_{\mathbb{C}}$. It is easy to verify the following lemma.

Lemma 4. Assume that \mathfrak{C} is stable under $\operatorname{Aut}_{k-alg}(A)$ and that $A \in \mathfrak{C}$. Then the natural group homomorphism Ψ : $\operatorname{Aut}_{k-alg}(A) \to \operatorname{Aut}_k(\mathfrak{C})$ is an injection.

By this lemma, we can regard $\operatorname{Aut}_{k-\operatorname{alg}}(A)$ as a subgroup of $\operatorname{Aut}_k(\mathfrak{C})$.

Definition 5. Let N be an A-module. Given a k-algebra homomorphism $\sigma : A \to A$, we define an $(A \otimes_k A)$ -module N_{σ} by $N_{\sigma} = N$ as an abelian group on which the ring action is defined by $(a \otimes b) \cdot n = a\sigma(b)n$ for $a \otimes b \in A \otimes_k A$ and $n \in N$. In such a case, we can define a k-linear functor $\operatorname{Hom}_A(N_{\sigma}, -) : A\operatorname{-Mod} \to A\operatorname{-Mod}$, for which the A-module structure on $\operatorname{Hom}_A(N_{\sigma}, X)$ $(X \in A\operatorname{-Mod})$ is defined by $(b \cdot f)(n) = f((1 \otimes b) \cdot n)$ for $f \in \operatorname{Hom}_A(N_{\sigma}, X), b \in A$ and $n \in N$.

If σ is a k-algebra automorphism of A, then it is easy to see the following equality of functors holds:

$$(\sigma^{-1})_* \circ \operatorname{Hom}_A(N,) = \operatorname{Hom}_A(N_{\sigma},).$$

The following theorem is one of the main results of this note.

Theorem 6 ([2, Theorem 2.5]). Let A be a commutative k-algebra and let \mathfrak{C} be an additive full subcategory of A-Mod such that $A \in \mathfrak{C}$. For a given k-linear automorphism $F \in \operatorname{Aut}_k(\mathfrak{C})$, there is a k-algebra automorphism $\sigma \in \operatorname{Aut}_{k-alg}(A)$ such that F is isomorphic to the composition of functors $\sigma_* \circ \operatorname{Hom}_A(N, -)|_{\mathbb{C}}$, where N is any object in \mathfrak{C} satisfying $F(N) \cong A$ in \mathfrak{C} .

Proof. We give below an outline of the proof. See [2, Theorem 2.5] for the detail.

Since A is commutative, the multiplication map $a_X : X \to X$ by an element $a \in A$ is an A-homomorphism for all objects $X \in \mathfrak{C}$. Thus we can define a natural transformation $\alpha(a) : F \to F$ by $\alpha(a)(X) = F(a_X) : F(X) \to F(X)$. Denote by $\operatorname{End}(F)$ the set of all the natural transformations $F \to F$, and this induces the mapping

$$\alpha : A \to \operatorname{End}(F) ; \quad a \mapsto F(a_{()}).$$

$$-24$$
-

Note that $\operatorname{End}(F)$ is a ring by defining the composition of natural transformations as the multiplication and it is also a k-algebra, since F is a k-linear functor. By using the fact that F is an auto-equivalence, it is straightforward to see that α is a k-algebra isomorphism.

Since F is a dense functor and $A \in \mathfrak{C}$, there is an object $N \in \mathfrak{C}$ such that $F(N) \cong A$. For such an object N, we can identify $\operatorname{End}_A(F(N))$ with A as k-algebra through the mapping $A \to \operatorname{End}_A(F(N))$ which sends $a \in A$ to the multiplication mapping $a_{F(N)}$ by a on F(N). Thus we have a k-algebra homomorphism

$$\beta : \operatorname{End}(F) \to \operatorname{End}_A(F(N)) \cong A ; \quad \varphi \mapsto \varphi(N).$$

We easily see that β is a k-algebra isomorphism.

Now define a k-algebra automorphism $\sigma : A \to A$ as the composition of α and β ;

$$A \xrightarrow{\alpha} \operatorname{End}(F) \xrightarrow{\beta} \operatorname{End}_A(F(N)) \xrightarrow{\cong} A$$
$$a \longrightarrow F(a_{()}) \longrightarrow F(a_{(N)}) \longrightarrow \sigma(a).$$

Then, for each object $X \in \mathfrak{C}$, we have isomorphisms of k-modules;

$$F(X) \xrightarrow{\cong} \operatorname{Hom}_{A}(F(N), F(X)) \xrightarrow{\cong} \operatorname{Hom}_{A}(N_{\sigma^{-1}}, X)$$
$$x \xrightarrow{} (x_{F(N)} : 1 \mapsto x) \xrightarrow{} F^{-1}(x_{F(N)}),$$

whose composition we denote by φ_X . Since $F^{-1}(\sigma(a)_{F(N)}) = a_{(N)}$ holds for $a \in A$, we can show that φ_X is an A-module isomorphism for all $X \in \mathfrak{C}$. Since it is easily verified that φ_X is functorial in X, we have the isomorphism of functors $F \cong \operatorname{Hom}_A(N_{\sigma^{-1}}, \)$, and the proof is completed.

3. Picard groups

In this section, we study the group of all the A-linear automorphisms of an additive full subcategory of A-Mod. As in the previous section \mathfrak{C} is an additive full subcategory of A-Mod. We always assume that \mathfrak{C} contains A as an object.

By virtue of Theorem 6, we have the following corollary.

Corollary 7 ([2, Corollary 3.1]). For any element $[F] \in Aut_A(\mathfrak{C})$, there is an isomorphism of functors $F \cong Hom_A(N, -)|_{\mathbb{C}}$ for some $N \in \mathfrak{C}$.

Taking this corollary into consideration, we make the following definition.

Definition 8. We define $Pic(\mathfrak{C})$ to be the set of all the isomorphism classes of A-modules $M \in \mathfrak{C}$ such that $Hom_A(M, -)|_{\mathbb{C}}$ gives an auto-equivalence of the category \mathfrak{C} . That is,

 $\operatorname{Pic}(\mathfrak{C}) = \{M \in \mathfrak{C} \mid \operatorname{Hom}_A(M, -) | C \text{ gives an } (A \text{-linear}) \text{ equivalence } \mathfrak{C} \to \mathfrak{C} \} / \cong$.

We define the group structure on $\operatorname{Pic}(\mathfrak{C})$ as follows: Let [M] and [N] be in $\operatorname{Pic}(\mathfrak{C})$. Since the composition $\operatorname{Hom}_A(M, -)|_{\mathbb{C}} \circ \operatorname{Hom}_A(N, -)|_{\mathbb{C}}$ is also an A-linear equivalence, it follows from Corollary 7 that there exists an $L \in \mathfrak{C}$ such that

$$\operatorname{Hom}_A(L, -)|_{\mathbb{C}} \cong \operatorname{Hom}_A(M, -)|_{\mathbb{C}} \circ \operatorname{Hom}_A(N, -)|_{\mathbb{C}}$$

We define the multiplication in $\operatorname{Pic}(\mathfrak{C})$ by $[M] \cdot [N] = [L]$. Note that

$$\operatorname{Hom}_{A}(M,-)|_{\mathcal{C}} \circ \operatorname{Hom}_{A}(N,-)|_{\mathcal{C}} \cong \operatorname{Hom}_{A}(M \otimes_{A} N,-)|_{\mathcal{C}}$$
$$\cong \operatorname{Hom}_{A}(N,-)|_{\mathcal{C}} \circ \operatorname{Hom}_{A}(M,-)|_{\mathcal{C}},$$

and hence $[M] \cdot [N] = [N] \cdot [M]$. In such a way $\operatorname{Pic}(\mathfrak{C})$ is an abelian group with the identity element [A]. We call $\operatorname{Pic}(\mathfrak{C})$ the Picard group of \mathfrak{C} .

Note from Yoneda's lemma that the multiplication in $\operatorname{Pic}(\mathfrak{C})$ is well-defined. Furthermore, the mapping $\operatorname{Pic}(\mathfrak{C}) \to \operatorname{Aut}_A(\mathfrak{C})$ which sends [M] to $\operatorname{Hom}_A(M, -)|_{\mathbb{C}}$ is an isomorphism of groups by Corollary 7. Since $\operatorname{Aut}_A(\mathfrak{C})$ is naturally a subgroup of $\operatorname{Aut}_k(\mathfrak{C})$, we can regard $\operatorname{Pic}(\mathfrak{C})$ as a subgroup $\operatorname{Aut}_k(\mathfrak{C})$ through the isomorphism $\operatorname{Pic}(\mathfrak{C}) \cong \operatorname{Aut}_A(\mathfrak{C})$.

Assume furthermore that an additive full subcategory \mathfrak{C} is stable under $\operatorname{Aut}_{k-\operatorname{alg}}(A)$. Then we have shown by the above argument together with Lemma 4 that $\operatorname{Aut}_k(\mathfrak{C})$ contains two subgroups, $\operatorname{Pic}(\mathfrak{C})$ and $\operatorname{Aut}_{k-\operatorname{alg}}(A)$. Moreover, Theorem 6 implies that these two subgroups generate the group $\operatorname{Aut}_k(\mathfrak{C})$. Thus it is straightforward to see that the following theorem holds.

Theorem 9 ([2, Theorem 4.9]). Assume that an additive full subcategory \mathfrak{C} is stable under $\operatorname{Aut}_{k-alg}(A)$ and assume that $A \in \mathfrak{C}$. Then there is an isomorphism of groups

$$\operatorname{Aut}_k(\mathfrak{C}) \cong \operatorname{Aut}_{k-alg}(A) \ltimes \operatorname{Pic}(\mathfrak{C}).$$

Now we give several examples for $Pic(\mathfrak{C})$.

Example 10 ([2, Example 3.8, 3.11]). We denote by A-mod the full subcategory consisting of all finitely generated A-modules. We also denote by $\operatorname{Proj}(A)$ (resp. $\operatorname{proj}(A)$) the full subcategory consisting of all projective A-modules (resp. all finitely generated projective A-modules). If A is an integral domain, we denote by $\operatorname{Tf}(A)$ (resp. $\operatorname{tf}(A)$) the full subcategory consisting of all torsion free A-modules (resp. all finitely generated torsion free A-modules). Let \mathfrak{C} be one of the full subcategories A-Mod, A-mod, $\operatorname{Proj}(A)$, $\operatorname{proj}(A)$, $\operatorname{Tf}(A)$ and $\operatorname{tf}(A)$. Then we have an isomorphism $\operatorname{Pic}(\mathfrak{C}) \cong \operatorname{Pic} A$, where $\operatorname{Pic} A$ denotes the (classical) Picard group of the ring A, i.e. $\operatorname{Pic} A = \{\operatorname{invertible} A-\operatorname{modules}\}/\cong$. See also [2, Proposition 3.7].

Example 11 ([2, Example 3.9, 3.10]). Let A be a Krull domain and let $\operatorname{Ref}(A)$ be the full subcategory consisting of all reflexive A-lattices. (Respectively, let A be a Noetherian normal domain and let $\operatorname{ref}(A)$ be the full subcategory consisting of all finitely generated reflexive A-modules.) Then there is an isomorphism $\operatorname{Pic}(\operatorname{Ref}(A)) \cong C\ell(A)$ (resp. $\operatorname{Pic}(\operatorname{ref}(A)) \cong C\ell(A)$), where $C\ell(A)$ denotes the divisor class group of A.

Example 12 ([2, Example 3.12]). Let (A, \mathfrak{m}) be a Noetherian local ring. We consider the full subcategory $d^{\geq 1}(A)$ of A-Mod which consists of all the finitely generated A-modules M satisfying depth $M \geq 1$. If depth $A \geq 1$, then $\operatorname{Pic}(d^{\geq 1}(A))$ is a trivial group.

4. Picard group of CM(A)

In this section, let (A, \mathfrak{m}) be a Cohen-Macaulay local k-algebra, i.e. A is a Noetherian local k-algebra with maximal ideal \mathfrak{m} and satisfies the equality depth $A = \dim A$. We focus on the additive full subcategory CM(A) consisting of all the maximal Cohen-Macaulay modules over A and we give the reason why Theorem 1 holds. See [3] for the details of CM(A).

For the Picard group of CM(A), we have the following result.

Theorem 13 ([2, Theorem 5.2]). Let A be a Cohen-Macaulay local k-algebra of any dimension. Suppose that A is regular in codimension two, i.e. A_p is a regular local ring for any prime ideal \mathfrak{p} with $ht(\mathfrak{p}) = 2$. Then Pic(CM(A)) is a trivial group.

Proof. If dim A = 0, then CM(A) = A-mod and hence Pic(CM(A)) = Pic A is a trivial group by Example 10. If dim A = 1, then $CM(A) = d^{\geq 1}(A)$ and we have shown in Example 12 that Pic(CM(A)) is again a trivial group. If dim A = 2, then our assumption means that A is a regular local ring hence a UFD. Note that CM(A) = ref(A) in this case. Therefore $Pic(CM(A)) \cong C\ell(A)$ is a trivial group.

In the rest we assume $d = \dim A \ge 3$. Let $[M] \in \operatorname{Pic}(\operatorname{CM}(A))$. Assuming that M is not free, we shall show a contradiction. Take a free cover F of M and we obtain an exact sequence $0 \longrightarrow \Omega(M) \longrightarrow F \longrightarrow M \longrightarrow 0$. Note that the first syzygy module $\Omega(M)$ belongs to $\operatorname{CM}(A)$. Apply $\operatorname{Hom}_A(M, -)$ to the sequence, and we get an exact sequence

$$0 \to \operatorname{Hom}_{A}(M, \Omega(M)) \to \operatorname{Hom}_{A}(M, F) \to \operatorname{Hom}_{A}(M, M) \xrightarrow{f} \operatorname{Ext}_{A}^{1}(M, \Omega(M))$$

Notice that $f \neq 0$, since we have assumed that M is not free. Because of the assumption, we see that $\operatorname{Ext}_{A}^{1}(M, \Omega(M))_{p} = 0$ for all prime ideals \mathfrak{p} with $\operatorname{ht}(\mathfrak{p}) = 2$. This implies that dim $\operatorname{Ext}_{A}^{1}(M, \Omega(M)) \leq d - 3$, hence the image $\operatorname{Im}(f)$ is a nontrivial A-module of dimension at most d - 3. In particular, we have depth $\operatorname{Im}(f) \leq d - 3$.

On the other hand, since $\operatorname{Hom}_A(M, -)|_{\operatorname{CM}(A)}$ is a functor from $\operatorname{CM}(A)$ to itself, the modules $\operatorname{Hom}_A(M, \Omega(M))$, $\operatorname{Hom}_A(M, F)$ and $\operatorname{Hom}_A(M, M)$ have depth d. Hence we conclude from the depth argument [1, Proposition 1.2.9] that depth $\operatorname{Im}(f) \geq d - 2$. This is a contradiction, and the proof is completed.

As in Theorem 1, let A be a Cohen-Macaulay local k-algebra of dimension d that has only an isolated singularity. We give a proof for the equalities in Theorem 1. If $d \neq 2$, then we see from Theorem 13 that $\operatorname{Pic}(\operatorname{CM}(A))$ is a trivial group, hence $\operatorname{Aut}_k(\operatorname{CM}(A)) \cong$ $\operatorname{Aut}_{k-\operatorname{alg}}(A)$ by Theorem 9. On the other hand, if d = 2 then A is a normal domain and we have $\operatorname{CM}(A) = \operatorname{ref}(A)$, hence $\operatorname{Pic}(\operatorname{CM}(A)) \cong C\ell(A)$ by Example 11. Therefore $\operatorname{Aut}_k(\operatorname{CM}(A)) \cong \operatorname{Aut}_{k-\operatorname{alg}}(A) \ltimes C\ell(A)$ by Theorem 9.

References

- W. BRUNS and J. HERZOG, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge, 1993. xii+403 pp. Revised edition, 1998.
- [2] N. Hiramatsu, and Y. Yoshino Automorphism groups and Picard groups of additive full subcategories. Preprint (2008). http://www.math.okayama-u.ac.jp/~yoshino/pdffiles/picardgp1.pdf
- Y. YOSHINO, Cohen-Macaulay Modules over Cohen-Macaulay Rings, London Mathematical Society Lecture Note Series 146. Cambridge University Press, Cambridge, 1990. viii+177 pp.

Department of Mathematics, Okayama University, 700-8530, Okayama, Japan naoya_h@math.okayama-u.ac.jp, yoshino@math.okayama-u.ac.jp