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1. Introduction

Let k be a commutative ring and let A be a commutative k-algebra. We denote by
A-Mod the category of all A-modules and all A-homomorphisms. Let C be an additive
full subcategory of A-Mod. Since A is a k-algebra, every additive full subcategory C is
a k-category. A covariant functor C → C is called a k-linear automorphism of C if it is
a k-linear functor giving an auto-equivalence of the category C. We denote the set of all
the isomorphism classes of k-linear automorphisms of C by Autk(C), which forms a group
by defining the multiplication to be the composition of functors.

Our study was motivated by the following computational result. Recall that a local
ring (A, m) is said to have only an isolated singularity if A� is a regular local ring for all
prime ideals p except m.

Theorem 1. Let A be a Cohen-Macaulay local k-algebra with dimension d. Suppose that
A has only an isolated singularity. Then,

Autk(CM(A)) ∼=
{

Autk-alg(A) (d �= 2)
Autk-alg(A) � C�(A) (d = 2),

where CM(A) is the additive full subcategory consisting of all maximal Cohen-Macaulay
modules and C�(A) denotes the divisor class group of A.

In this note we generalize this computation to much wider classes of additive full sub-
categories C of A-Mod, and we shall show a certain structure theorem for Autk(C).

2. Automorphism groups

Throughout the paper, k is a commutative ring and A is a commutative k-algebra.
When we say that C is a full subcategory of A-Mod, we always assume that C is closed
under isomorphisms, and we simply write X ∈ C to indicate that X is an object of
C. Suppose that we are given an additive full subcategory C of A-Mod and an additive
covariant functor F : C → C. Recall that F is a k-linear functor if it induces k-linear
mappings HomA(X, Y ) → HomA(F (X), F (Y )) for all X, Y ∈ C.

Definition 2. Autk(C) is the group of all the isomorphism classes of k-linear automor-
phisms of C, i.e.

Autk(C) = { F : C → C | F is a k-linear covariant functor that
gives an equivalence of the category C

}/ ∼= .

The detailed version of this paper will be submitted for publication elsewhere.
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Note that the multiplication in Autk(C) is defined to be the composition of functors, hence
the identity element of Autk(C) is represented by the class of the identity functor on C.

We denote by Autk-alg(A) the group of all the k-algebra automorphisms of A. For
σ ∈ Autk-alg(A), we can define a covariant k-linear functor σ∗ : A-Mod → A-Mod as
in the following manner. For each A-module M , we define σ∗M to be M as an abelian
group on which the A-module structure is defined by a◦m = σ−1(a)m for a ∈ A, m ∈ M .
For an A-homomorphism f : M → N , we define σ∗f : σ∗M → σ∗N to be the same
mapping as f . Note that σ∗f is an A-homomorphism, since (σ∗f)(a◦m) = f(σ−1(a)m) =
σ−1(a)f(m) = a◦(σ∗)f(m) for all a ∈ A and m ∈ M . Notice that σ∗ is a k-automorphism
of the category A-Mod.

Definition 3. Let C be an additive full subcategory of A-Mod. Then C is said to be
stable under Autk-alg(A) if σ∗(C) ⊆ C for all σ ∈ Autk-alg(A).

Note that if C is stable under Autk-alg(A) then σ∗|� gives a k-automorphism of C for all
σ ∈ Autk-alg(A). Therefore we have a natural group homomorphism Ψ : Autk-alg(A) →
Autk(C) which maps σ to the class of σ∗|�. It is easy to verify the following lemma.

Lemma 4. Assume that C is stable under Autk-alg(A) and that A ∈ C. Then the natural
group homomorphism Ψ : Autk-alg(A) → Autk(C) is an injection.

By this lemma, we can regard Autk-alg(A) as a subgroup of Autk(C).

Definition 5. Let N be an A-module. Given a k-algebra homomorphism σ : A → A, we
define an (A ⊗k A)-module Nσ by Nσ = N as an abelian group on which the ring action
is defined by (a ⊗ b) · n = aσ(b)n for a ⊗ b ∈ A ⊗k A and n ∈ N . In such a case, we
can define a k-linear functor HomA(Nσ, −) : A-Mod → A-Mod, for which the A-module
structure on HomA(Nσ, X) (X ∈ A-Mod) is defined by (b · f)(n) = f((1 ⊗ b) · n) for
f ∈ HomA(Nσ, X), b ∈ A and n ∈ N .

If σ is a k-algebra automorphism of A, then it is easy to see the following equality of
functors holds:

(σ−1)∗ ◦ HomA(N, ) = HomA(Nσ, ).

The following theorem is one of the main results of this note.

Theorem 6 ([2, Theorem 2.5]). Let A be a commutative k-algebra and let C be an ad-
ditive full subcategory of A-Mod such that A ∈ C. For a given k-linear automorphism
F ∈ Autk(C), there is a k-algebra automorphism σ ∈ Autk-alg(A) such that F is iso-
morphic to the composition of functors σ∗ ◦ HomA(N, −)|�, where N is any object in C
satisfying F (N) ∼= A in C.

Proof. We give below an outline of the proof. See [2, Theorem 2.5] for the detail.
Since A is commutative, the multiplication map aX : X → X by an element a ∈ A is

an A-homomorphism for all objects X ∈ C. Thus we can define a natural transformation
α(a) : F → F by α(a)(X) = F (aX) : F (X) → F (X). Denote by End(F ) the set of all
the natural transformations F → F , and this induces the mapping

α : A → End(F ) ; a 	→ F (a( )).
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Note that End(F ) is a ring by defining the composition of natural transformations as
the multiplication and it is also a k-algebra, since F is a k-linear functor. By using
the fact that F is an auto-equivalence, it is straightforward to see that α is a k-algebra
isomorphism.

Since F is a dense functor and A ∈ C, there is an object N ∈ C such that F (N) ∼= A.
For such an object N , we can identify EndA(F (N)) with A as k-algebra through the
mapping A → EndA(F (N)) which sends a ∈ A to the multiplication mapping aF (N) by a
on F (N). Thus we have a k-algebra homomorphism

β : End(F ) → EndA(F (N)) ∼= A ; ϕ 	→ ϕ(N).

We easily see that β is a k-algebra isomorphism.
Now define a k-algebra automorphism σ : A → A as the composition of α and β;

A
α−−−→ End(F )

β−−−→ EndA(F (N))
∼=−−−→ A

a −−−→ F (a( )) −−−→ F (a(N)) −−−→ σ(a).

Then, for each object X ∈ C, we have isomorphisms of k-modules;

F (X)
∼=−−−→ HomA(F (N), F (X))

∼=−−−→ HomA(Nσ−1 , X)

x −−−→ (xF (N) : 1 	→ x) −−−→ F−1(xF (N)),

whose composition we denote by ϕX . Since F−1(σ(a)F (N)) = a(N) holds for a ∈ A, we can
show that ϕX is an A-module isomorphism for all X ∈ C. Since it is easily verified that
ϕX is functorial in X, we have the isomorphism of functors F ∼= HomA(Nσ−1 , ), and the
proof is completed.

3. Picard groups

In this section, we study the group of all the A-linear automorphisms of an additive
full subcategory of A-Mod. As in the previous section C is an additive full subcategory
of A-Mod. We always assume that C contains A as an object.

By virtue of Theorem 6, we have the following corollary.

Corollary 7 ([2, Corollary 3.1]). For any element [F ] ∈ AutA(C), there is an isomor-
phism of functors F ∼= HomA(N,−)|� for some N ∈ C.

Taking this corollary into consideration, we make the following definition.

Definition 8. We define Pic(C) to be the set of all the isomorphism classes of A-modules
M ∈ C such that HomA(M,−)|� gives an auto-equivalence of the category C. That is,

Pic(C) = {M ∈ C | HomA(M,−)|� gives an (A-linear) equivalence C → C}/ ∼= .

We define the group structure on Pic(C) as follows: Let [M ] and [N ] be in Pic(C). Since
the composition HomA(M,−)|�◦HomA(N,−)|� is also an A-linear equivalence, it follows
from Corollary 7 that there exists an L ∈ C such that

HomA(L,−)|�∼= HomA(M,−)|�◦ HomA(N,−)|�.
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We define the multiplication in Pic(C) by [M ] · [N ] = [L]. Note that

HomA(M,−)|� ◦ HomA(N,−)|� ∼= HomA(M ⊗A N,−)|�
∼= HomA(N,−)|� ◦ HomA(M,−)|�,

and hence [M ] · [N ] = [N ] · [M ]. In such a way Pic(C) is an abelian group with the identity
element [A]. We call Pic(C) the Picard group of C.

Note from Yoneda’s lemma that the multiplication in Pic(C) is well-defined. Further-
more, the mapping Pic(C) → AutA(C) which sends [M ] to HomA(M,−)|� is an isomor-
phism of groups by Corollary 7. Since AutA(C) is naturally a subgroup of Autk(C), we
can regard Pic(C) as a subgroup Autk(C) through the isomorphism Pic(C) ∼= AutA(C).

Assume furthermore that an additive full subcategory C is stable under Autk-alg(A).
Then we have shown by the above argument together with Lemma 4 that Autk(C) contains
two subgroups, Pic(C) and Autk-alg(A). Moreover, Theorem 6 implies that these two
subgroups generate the group Autk(C). Thus it is straightforward to see that the following
theorem holds.

Theorem 9 ([2, Theorem 4.9]). Assume that an additive full subcategory C is stable un-
der Autk-alg(A) and assume that A ∈ C. Then there is an isomorphism of groups

Autk(C) ∼= Autk-alg(A) � Pic(C).

Now we give several examples for Pic(C).

Example 10 ([2, Example 3.8, 3.11]). We denote by A-mod the full subcategory consist-
ing of all finitely generated A-modules. We also denote by Proj(A) (resp. proj(A)) the
full subcategory consisting of all projective A-modules (resp. all finitely generated pro-
jective A-modules). If A is an integral domain, we denote by Tf(A) (resp. tf(A)) the full
subcategory consisting of all torsion free A-modules (resp. all finitely generated torsion
free A-modules). Let C be one of the full subcategories A-Mod, A-mod, Proj(A), proj(A),
Tf(A) and tf(A). Then we have an isomorphism Pic(C) ∼= Pic A, where Pic A denotes
the (classical) Picard group of the ring A, i.e. Pic A = {invertible A-modules}/ ∼= . See
also [2, Proposition 3.7].

Example 11 ([2, Example 3.9, 3.10]). Let A be a Krull domain and let Ref(A) be the
full subcategory consisting of all reflexive A-lattices. (Respectively, let A be a Noetherian
normal domain and let ref(A) be the full subcategory consisting of all finitely gener-
ated reflexive A-modules.) Then there is an isomorphism Pic(Ref(A)) ∼= C�(A) (resp.
Pic(ref(A)) ∼= C�(A)), where C�(A) denotes the divisor class group of A.

Example 12 ([2, Example 3.12]). Let (A, m) be a Noetherian local ring. We consider the
full subcategory d≥1(A) of A-Mod which consists of all the finitely generated A-modules
M satisfying depth M ≥ 1. If depth A ≥ 1, then Pic(d≥1(A)) is a trivial group.

4. Picard group of CM(A)

In this section, let (A, m) be a Cohen-Macaulay local k-algebra, i.e. A is a Noetherian
local k-algebra with maximal ideal m and satisfies the equality depth A = dim A. We focus
on the additive full subcategory CM(A) consisting of all the maximal Cohen-Macaulay
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modules over A and we give the reason why Theorem 1 holds. See [3] for the details of
CM(A).

For the Picard group of CM(A), we have the following result.

Theorem 13 ([2, Theorem 5.2]). Let A be a Cohen-Macaulay local k-algebra of any di-
mension. Suppose that A is regular in codimension two, i.e. A� is a regular local ring for
any prime ideal p with ht(p) = 2. Then Pic(CM(A)) is a trivial group.

Proof. If dim A = 0, then CM(A) = A-mod and hence Pic(CM(A)) = Pic A is a trivial
group by Example 10. If dim A = 1, then CM(A) = d≥1(A) and we have shown in
Example 12 that Pic(CM(A)) is again a trivial group. If dim A = 2, then our assumption
means that A is a regular local ring hence a UFD. Note that CM(A) = ref(A) in this
case. Therefore Pic(CM(A)) ∼= C�(A) is a trivial group.

In the rest we assume d = dim A ≥ 3. Let [M ] ∈ Pic(CM(A)). Assuming that M is
not free, we shall show a contradiction. Take a free cover F of M and we obtain an exact
sequence 0 −→ Ω(M) −→ F −→ M −→ 0. Note that the first syzygy module Ω(M)
belongs to CM(A). Apply HomA(M,−) to the sequence, and we get an exact sequence

0 → HomA(M, Ω(M)) → HomA(M, F ) → HomA(M, M)
f−→Ext1

A(M, Ω(M)) .

Notice that f �= 0, since we have assumed that M is not free. Because of the assumption,
we see that Ext1

A(M, Ω(M))� = 0 for all prime ideals p with ht(p) = 2. This implies
that dim Ext1

A(M, Ω(M)) ≤ d − 3, hence the image Im(f) is a nontrivial A-module of
dimension at most d − 3. In particular, we have depth Im(f) ≤ d − 3.

On the other hand, since HomA(M,−)|CM(A) is a functor from CM(A) to itself, the
modules HomA(M, Ω(M)), HomA(M, F ) and HomA(M, M) have depth d. Hence we con-
clude from the depth argument [1, Proposition 1.2.9] that depth Im(f) ≥ d − 2. This is
a contradiction, and the proof is completed.

As in Theorem 1, let A be a Cohen-Macaulay local k-algebra of dimension d that has
only an isolated singularity. We give a proof for the equalities in Theorem 1. If d �= 2,
then we see from Theorem 13 that Pic(CM(A)) is a trivial group, hence Autk(CM(A)) ∼=
Autk-alg(A) by Theorem 9. On the other hand, if d = 2 then A is a normal domain
and we have CM(A) = ref(A), hence Pic(CM(A)) ∼= C�(A) by Example 11. Therefore
Autk(CM(A)) ∼= Autk-alg(A) � C�(A) by Theorem 9.
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