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1. INTRODUCTION

Let k£ be a commutative ring and let A be a commutative k-algebra. We denote by
A-Mod the category of all A-modules and all A-homomorphisms. Let € be an additive
full subcategory of A-Mod. Since A is a k-algebra, every additive full subcategory € is
a k-category. A covariant functor € — € is called a k-linear automorphism of € if it is
a k-linear functor giving an auto-equivalence of the category €. We denote the set of all
the isomorphism classes of k-linear automorphisms of € by Autg(€), which forms a group
by defining the multiplication to be the composition of functors.

Our study was motivated by the following computational result. Recall that a local
ring (A, m) is said to have only an isolated singularity if Ay, is a regular local ring for all
prime ideals p except m.

Theorem 1. Let A be a Cohen-Macaulay local k-algebra with dimension d. Suppose that
A has only an isolated singularity. Then,

~ ] Auty_g(A d#2
Aut,(CM(A)) = { Auti_angA§ x CU(A) Ed = 2§7

where CM(A) is the additive full subcategory consisting of all mazimal Cohen-Macaulay
modules and CU(A) denotes the divisor class group of A.

In this note we generalize this computation to much wider classes of additive full sub-
categories € of A-Mod, and we shall show a certain structure theorem for Auty ().

2. AUTOMORPHISM GROUPS

Throughout the paper, k is a commutative ring and A is a commutative k-algebra.
When we say that € is a full subcategory of A-Mod, we always assume that € is closed
under isomorphisms, and we simply write X € € to indicate that X is an object of
¢. Suppose that we are given an additive full subcategory € of A-Mod and an additive
covariant functor F' : € — €. Recall that F' is a k-linear functor if it induces k-linear
mappings Homa(X,Y) — Homu(F(X), F(Y)) for all XY € €.

Definition 2. Aut,(€) is the group of all the isomorphism classes of k-linear automor-
phisms of €, i.e.

| F'is a k-linear covariant functor that

Auty(€) ={ F: €~ ¢ gives an equivalence of the category € b=

The detailed version of this paper will be submitted for publication elsewhere.
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Note that the multiplication in Autg(€) is defined to be the composition of functors, hence
the identity element of Auty(€) is represented by the class of the identity functor on €.

We denote by Autyag(A) the group of all the k-algebra automorphisms of A. For
0 € Autyag(A), we can define a covariant k-linear functor o, : A-Mod — A-Mod as
in the following manner. For each A-module M, we define 0,M to be M as an abelian
group on which the A-module structure is defined by aom = o~ (a)m fora € A, m € M.
For an A-homomorphism f : M — N, we define o,f : 0,M — o0,N to be the same
mapping as f. Note that o, f is an A-homomorphism, since (o, f)(aom) = f(oe~ (a)m) =
o~ Ya)f(m) =ao(o,)f(m) for alla € A and m € M. Notice that o, is a k-automorphism
of the category A-Mod.

Definition 3. Let € be an additive full subcategory of A-Mod. Then € is said to be
stable under Auty a,(A) if 0,(€) C € for all o € Auty_a(A).

Note that if € is stable under Auty ag(A) then o, |c gives a k-automorphism of € for all
o € Autyae(A). Therefore we have a natural group homomorphism ¥ : Auty_,s(A) —
Auty(€) which maps o to the class of o.|¢ It is easy to verify the following lemma.

Lemma 4. Assume that € is stable under Auty_,(A) and that A € €. Then the natural
group homomorphism U : Auty_q,(A) — Aut,(€) is an injection.

By this lemma, we can regard Auty.s(A) as a subgroup of Aut,(¢).

Definition 5. Let NV be an A-module. Given a k-algebra homomorphism o : A — A, we
define an (A ®; A)-module N, by N, = N as an abelian group on which the ring action
is defined by (a ® b) - n = ac(b)n for a @b € A®, A and n € N. In such a case, we
can define a k-linear functor Hom(N,, —) : A-Mod — A-Mod, for which the A-module
structure on Homu(N,, X) (X € A-Mod) is defined by (b- f)(n) = f((1 ®0b) - n) for
f € Homu(N,, X),be Aand n € N.

If 0 is a k-algebra automorphism of A, then it is easy to see the following equality of
functors holds:

(071). o Homu (N, ) = Homyu(N,, ).

The following theorem is one of the main results of this note.

Theorem 6 (]2, Theorem 2.5]). Let A be a commutative k-algebra and let € be an ad-
ditive full subcategory of A-Mod such that A € €. For a given k-linear automorphism
F € Auty(€), there is a k-algebra automorphism o € Auty qy(A) such that F is iso-

morphic to the composition of functors o, o Homa(N, —)|c, where N is any object in €
satisfying F(N) =2 A in €.

Proof. We give below an outline of the proof. See [2, Theorem 2.5] for the detail.

Since A is commutative, the multiplication map ax : X — X by an element a € A is
an A-homomorphism for all objects X € €. Thus we can define a natural transformation
aa) : F — F by a(a)(X) = F(ayx) : F(X) — F(X). Denote by End(F) the set of all
the natural transformations F' — F, and this induces the mapping

a:A—End(F); a~— F(ag)y).
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Note that End(F') is a ring by defining the composition of natural transformations as
the multiplication and it is also a k-algebra, since F' is a k-linear functor. By using
the fact that I’ is an auto-equivalence, it is straightforward to see that « is a k-algebra
isomorphism.

Since F'is a dense functor and A € €, there is an object N € € such that F'(N) = A.
For such an object N, we can identify Ends(F(N)) with A as k-algebra through the
mapping A — Enda(F(N)) which sends a € A to the multiplication mapping ap(ny by a
on F(N). Thus we have a k-algebra homomorphism

B :End(F) — Enda(F(N)) =2 A;  p— p(N).

We easily see that 3 is a k-algebra isomorphism.
Now define a k-algebra automorphism o : A — A as the composition of o and 3;

A —% End(F) — Ends(F(N)) —— A
a —— Flagy) —  Flaw) —— o(a).
Then, for each object X € &€, we have isomorphisms of k-modules;
F(X) —— Homu(F(N), F(X)) —— Homy(N,-1, X)
v ——  (erw) i lew) —— F i (zewy),

whose composition we denote by ¢x. Since F~*(o(a)p(n)) = a(v) holds for a € A, we can
show that ¢x is an A-module isomorphism for all X € €. Since it is easily verified that
¢x is functorial in X, we have the isomorphism of functors F' = Hom(N,-1, ), and the
proof is completed. O

3. PICARD GROUPS

In this section, we study the group of all the A-linear automorphisms of an additive
full subcategory of A-Mod. As in the previous section € is an additive full subcategory
of A-Mod. We always assume that € contains A as an object.

By virtue of Theorem 6, we have the following corollary.

Corollary 7 ([2, Corollary 3.1]). For any element [F] € Auta(€), there is an isomor-
phism of functors F = Homa(N, —)|c for some N € €.

Taking this corollary into consideration, we make the following definition.

Definition 8. We define Pic(€) to be the set of all the isomorphism classes of A-modules
M € € such that Hom (M, —)|c gives an auto-equivalence of the category €. That is,

Pic(€) = {M € € | Homa(M, —)|c gives an (A-linear) equivalence € — €}/ = .

We define the group structure on Pic(€) as follows: Let [M] and [N] be in Pic(€). Since
the composition Hom4 (M, —)|co Homy4 (N, —)|cis also an A-linear equivalence, it follows
from Corollary 7 that there exists an L € € such that

Homy (L, —)|c= Homa (M, —)|co Homa (N, —)|c
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We define the multiplication in Pic(€) by [M] - [N] = [L]. Note that
Hom (M, —)|c o Homa(N,—)|c = Homa(M ®4 N, -)[c
=~ Hom (N, —)|c o Homu (M, —)|c,

and hence [M]-[N] = [N]-[M]. In such a way Pic(€) is an abelian group with the identity
element [A]. We call Pic(€) the Picard group of €.

Note from Yoneda’s lemma that the multiplication in Pic(€) is well-defined. Further-
more, the mapping Pic(€) — Aut4(€) which sends [M] to Hom (M, —)|¢is an isomor-
phism of groups by Corollary 7. Since Auts(€) is naturally a subgroup of Auty(€), we
can regard Pic(€) as a subgroup Autg(€) through the isomorphism Pic(€) = Aut ().

Assume furthermore that an additive full subcategory € is stable under Auty_,5(A).
Then we have shown by the above argument together with Lemma 4 that Aut, (&) contains
two subgroups, Pic(€) and Autyage(A). Moreover, Theorem 6 implies that these two
subgroups generate the group Auty(€). Thus it is straightforward to see that the following
theorem holds.

Theorem 9 ([2, Theorem 4.9]). Assume that an additive full subcategory € is stable un-
der Auty_q(A) and assume that A € €. Then there is an isomorphism of groups

Autk(Q) = Autk_alg(A) X PIC(Q:)
Now we give several examples for Pic(€).

Example 10 ([2, Example 3.8, 3.11]). We denote by A-mod the full subcategory consist-
ing of all finitely generated A-modules. We also denote by Proj(A) (resp. proj(A)) the
full subcategory consisting of all projective A-modules (resp. all finitely generated pro-
jective A-modules). If A is an integral domain, we denote by Tf(A) (resp. tf(A)) the full
subcategory consisting of all torsion free A-modules (resp. all finitely generated torsion
free A-modules). Let € be one of the full subcategories A-Mod, A-mod, Proj(A), proj(A),
Tf(A) and tf(A). Then we have an isomorphism Pic(€) = Pic A, where Pic A denotes
the (classical) Picard group of the ring A, i.e. Pic A = {invertible A-modules}/ = . See
also [2, Proposition 3.7].

Example 11 ([2, Example 3.9, 3.10]). Let A be a Krull domain and let Ref(A) be the
full subcategory consisting of all reflexive A-lattices. (Respectively, let A be a Noetherian
normal domain and let ref(A) be the full subcategory consisting of all finitely gener-
ated reflexive A-modules.) Then there is an isomorphism Pic(Ref(A)) = C/l(A) (resp.
Pic(ref(A)) = C¢(A)), where C¢(A) denotes the divisor class group of A.

Example 12 ([2, Example 3.12]). Let (A, m) be a Noetherian local ring. We consider the
full subcategory d='(A) of A-Mod which consists of all the finitely generated A-modules
M satisfying depth M > 1. If depth A > 1, then Pic(d='(A)) is a trivial group.

4. PICARD GROUP OF CM(A)

In this section, let (A, m) be a Cohen-Macaulay local k-algebra, i.e. A is a Noetherian
local k-algebra with maximal ideal m and satisfies the equality depth A = dim A. We focus
on the additive full subcategory CM(A) consisting of all the maximal Cohen-Macaulay
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modules over A and we give the reason why Theorem 1 holds. See [3] for the details of
CM(A).
For the Picard group of CM(A), we have the following result.

Theorem 13 ([2, Theorem 5.2]). Let A be a Cohen-Macaulay local k-algebra of any di-
mension. Suppose that A is reqular in codimension two, i.e. Ap is a reqular local ring for
any prime ideal p with ht(p) = 2. Then Pic(CM(A)) is a trivial group.

Proof. 1f dim A = 0, then CM(A) = A-mod and hence Pic(CM(A)) = Pic A is a trivial
group by Example 10. If dim A = 1, then CM(A) = d='(A) and we have shown in
Example 12 that Pic(CM(A)) is again a trivial group. If dim A = 2, then our assumption
means that A is a regular local ring hence a UFD. Note that CM(A) = ref(A) in this
case. Therefore Pic(CM(A)) = CY(A) is a trivial group.

In the rest we assume d = dim A > 3. Let [M] € Pic(CM(A)). Assuming that M is
not free, we shall show a contradiction. Take a free cover F' of M and we obtain an exact
sequence 0 — Q(M) — F — M — 0. Note that the first syzygy module Q(M)
belongs to CM(A). Apply Hom4 (M, —) to the sequence, and we get an exact sequence

0 — Hom (M, Q(M)) — Hom (M, F) — Homu (M, M) L Ext!, (M, Q(M)) .

Notice that f # 0, since we have assumed that M is not free. Because of the assumption,
we see that Extl(M,Q(M))p, = 0 for all prime ideals p with ht(p) = 2. This implies
that dim Ext!(M,Q(M)) < d — 3, hence the image Im(f) is a nontrivial A-module of
dimension at most d — 3. In particular, we have depth Im(f) < d — 3.

On the other hand, since Hom4 (M, —)|cmca) is a functor from CM(A) to itself, the
modules Hom4 (M, Q(M)), Homa (M, F') and Hom (M, M) have depth d. Hence we con-
clude from the depth argument [1, Proposition 1.2.9] that depth Im(f) > d — 2. This is
a contradiction, and the proof is completed. O

As in Theorem 1, let A be a Cohen-Macaulay local k-algebra of dimension d that has
only an isolated singularity. We give a proof for the equalities in Theorem 1. If d # 2,
then we see from Theorem 13 that Pic(CM(A)) is a trivial group, hence Aut,(CM(A)) =
Auty_s(A) by Theorem 9. On the other hand, if d = 2 then A is a normal domain
and we have CM(A) = ref(A), hence Pic(CM(A)) = C¢(A) by Example 11. Therefore
Auty(CM(A)) = Autyag(A) x CL(A) by Theorem 9.
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