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Abstract. We review recent results about a weak form of the Krull-Schmidt Theorem
that holds in some classes of modules.

1. Introduction

This is a survey about some direct-sum decompositions of modules with regular and
interesting behaviors presented in two talks given in Shizuoka at the “Fortyfirst Sympo-
sium on Ring Theory and Representation Theory” (September 5-7, 2008). In particular,
the first half of the paper will be devoted to describing some notions that have proved to
be useful in the study of direct-sum decompositions. The symbol R will always denote
an arbitrary associative ring with identity 1R �= 0R, and modules will be unital right
R-modules unless otherwise stated explicitly.

Our aim is to describe the direct-sum decompositions MR = M1 ⊕ · · · ⊕Mn of a fixed
module MR into a direct sum of finitely many direct summands M1, . . . ,Mn. Several
behaviors can take place. The best case we can have is when we have uniqueness up to
isomorphism, as in the case of the celebrated Krull-Schmidt Theorem, which we all know:

Theorem 1. [Krull-Schmidt Theorem] Every module M of finite composition length is a
direct sum of indecomposable modules. If

M = M1 ⊕ · · · ⊕Mt = N1 ⊕ · · · ⊕Ns

are two decompositions of M into direct sums of indecomposables, then t = s and there is
a permutation σ of {1, 2, . . . , t} such that Mi

∼= Nσ(i) for every i = 1, 2, . . . , t.

A theorem of this kind appeared for the first time in a paper of Frobenius and Stick-
elberger [19], who proved the structure theorem of finite abelian groups (finite abelian
groups are direct sums of cyclic subgroups whose orders are powers of primes, and these
powers of primes are uniquely determined by the group). The Krull-Schmidt Theorem
was later generalized by Azumaya in 1950 to infinite direct sums of modules with local
endomorphism ring [3]. Important work on the Krull-Schmidt-Azumaya Theorem can be
found in Harada [20], who introduced the use of factor categories in this setting. For
an interesting survey on these results and their relation with the exchange property and
extending modules, see [24].

Partially supported by Ministero dell’Istruzione, dell’Università e della Ricerca, Italy (Prin 2007
“Rings, algebras, modules and categories”) and by Università di Padova (Progetto di Ricerca di Ate-
neo CPDA071244/07).
The paper is in the final form and no version of it will be submitted for publication elsewhere.
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Uniqueness of direct-sum decomposition is an exception in Module Theory, and we will
give in §4.1 an easy example of failure of the Krull-Schmidt Theorem for finitely generated
modules over a noetherian commutative integral domain. A different possibility we can
have decomposing a module MR is that the module MR possesses only finitely many
direct-sum decompositions up to isomorphism. This is the case of finite-rank torsion-free
abelian groups [23].

Another possible case we can meet is that of the modules MR that do not decompose
in a unique way up to isomorphism, but their direct sums enjoy some kind of regularity.
We see in §4.2 that this happens for modules with a semilocal endomorphism ring, for
instance for artinian modules. Several other possibilities can occur: a module can be a
direct sum of indecomposables or not, can be decomposable but with no indecomposable
direct summands, and so on.

2. Commutative monoids, order-units,

and the Bergman-Dicks Theorem

Fix a class C of right R-modules. We want to study the direct-sum decompositions of
the modules belonging to C. We will assume that C is closed under isomorphism, direct
summands and finite direct sums. For every module AR, let 〈AR〉 := {BR | BR

∼= AR }
denote the isomorphism class of the module AR. Set V (C) := { 〈AR〉 | AR ∈ C }. Assume
that V (C) is a set1. Define 〈AR〉 + 〈BR〉 := 〈AR ⊕BR〉 for every AR, BR ∈ C. Then V (C)
becomes an additive commutative monoid, which is clearly the algebraic structure that
describes the direct-sum decompositions in C.

In our first example (the Krull-Schmidt Theorem, that is, Theorem 1), C is the class
of all right R-modules MR of finite composition length, and V (C) turns out to be a free

commutative monoid, that is, a monoid isomorphic to N
(X)
0 for some set X. In this

example, X can be any set of representatives, up to isomorphism, of the indecomposable
R-modules of finite composition length.

All the monoids we will consider in this paper are commutative, and the operation
will be denoted as addition. Thus our monoids will be commutative additive semigroups
with a zero element 0. For such a monoid M , U(M) will denote the set of all invertible
elements with respect to the addition, that is, all elements a ∈ M with an opposite
−a in M . A commutative monoid M is said to be reduced if U(M) = {0}. For every
monoid M , the quotient monoid M/U(M) = { x+ U(M) | x ∈M } is a reduced monoid.
For any class C of modules, the commutative monoid V (C) is reduced. The converse
appears in the following wonderful theorem, due to Bergman [4, Theorems 6.2 and 6.4]
and Bergman-Dicks [5, p. 315]. See [12, Corollary 5].

1This is an odd assumption, because in Axiomatic Set Theory, where elements of sets are sets, V (C)
can never be a set. More precisely, V (C) cannot be a set by Zermelo’s Sum Axiom (Union Axiom) of
General Set Theory, which is the axiom that guarantees that the union of a set of sets is still a set
(“for any set S there exists the set whose elements are the elements of the elements of S”). This set
theoretical difficulty can be avoided fixing once for all a set of representatives of V (C) up to isomorphism.
Hence, when we say “assume that V (C) is a set” we mean “assume that V (C) can be put in one-to-one
correspondence with a set”, that is, a class whose cardinality can be measured with a cardinal number.
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Theorem 2. Let k be a field and M a reduced commutative monoid. Then there exist
a right and left hereditary k-algebra R and a class C of finitely generated projective right
R-modules with C closed under isomorphism, direct summands and finite direct sums, and
V (C) ∼= M .

This theorem gives, in a sense, a complete answer to what can be done with our
description of direct-sum decompositions in a class C of modules making use of the monoid
V (C).

If, instead of the direct-sum decompositions of the modules in a class C, we want to
study the direct-sum decompositions of one fixed module AR, t he following refinement
of the construction of V (C) is sufficient. Given a fixed module AR, we can construct the
class add(AR) whose elements are all modules BR isomorphic to a direct summand of An

R

for some integer n ≥ 0. This is the smallest class of right R-modules containing AR

and closed under isomorphism, direct summands and finite direct sums. For instance,
if AR is the right module RR, then add(RR) is the class proj-R of all finitely generated
projective right R-modules. For any ring R and module AR, we will denote with V (R) and
V (AR) the monoids V (proj-R) and V (add(AR)), respectively. Clearly, for every module
AR, the element 〈AR〉 of the monoid V (AR) is a special element: it is an order-unit in the
commutative monoid. Let us briefly present order-units, monoids with order-unit, and
the category of commutative monoids with order-unit.

An element u of a commutative additive monoid M is an order-unit if, for every x ∈M ,
there exist y ∈M and an integer n ≥ 0 with x+ y = nu. For instance, the element 〈RR〉
of the commutative additive reduced monoid V (R) is an order-unit. More generally,
as we have said above, 〈AR〉 is an order-unit in the monoid V (AR). The category of
commutative monoids with order-unit has as its objects the pairs (M,u), where M is a
commutative monoid and u ∈M is an order-unit, and as morphisms f : (M,u) → (M ′, u′)
the monoid homomorphisms f : M →M ′ that preserve the order-units, that is, such that
f(u) = u′. Notice that V is a functor of the category of associative rings with identity
into the category of commutative monoids with order-unit.

Clearly, as the commutative monoid V (C) describes the direct-sum decompositions of
the modules in a fixed class C, so the commutative monoid with order-unit (V (addAR), 〈AR〉)
describes the direct-sum decompositions of a fixed module AR.

For any given module AR, we can consider the endomorphism ring E := End(AR) and
the covariant functor

HomR(AR,−) : Mod-R → Mod-E.

By restriction, the functor HomR(AR,−) induces a categorical equivalence between the
full subcategory of Mod-R whose class of objects is add(AR) and the full subcategory of
Mod-E whose class of objects is proj-E [10, Theorem 4.7]. This equivalence induces an
isomorphism (V (add(AR)), 〈AR〉) ∼= (V (E), 〈EE〉) of monoids with order-unit. Therefore,
in the study of “pathologies” of direct-sums, we can suppose AR = RR, that is, it suffices
to study direct-sum decompositions of finitely generated projective modules.

Similarly, notice that the contravariant functor

HomR(−, R) : Mod-R → R-Mod
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induces by restriction a duality between the full subcategory of Mod-R whose class of
objects is proj-R and the full subcategory of R-Mod whose class of objects R-proj consists
of all finitely generated projective left R-modules. This duality induces an isomorphism
of monoids with order-unit (V (proj-R), 〈RR〉) ∼= (V (R-proj), 〈RR〉). In other words, in
the definition of the monoid V (R) there is no difference considering right or left finitely
generated projective modules. The monoid V (R) is the object of study of Non-Stable
Algebraic K-Theory, as the Grothendieck group K0(R) is the object of study of (classical)
Algebraic K-Theory. Here the Grothendieck group K0(R) is the enveloping group of
V (R), and its elements are the stable isomorphism classes [PR] of the finitely generated
projective R-modules PR. There is a pre-order (= reflexive, transitive and translation-
invariant relation) on K0(R), for which the positive cone (= set of non-negative elements
of K0(R)) is the image of the universal mapping ψR : V (R) → K0(R). If J(R) denotes
the Jacobson radical of R, the canonical projection p : R → R/J(R) induces a pullback
diagram

V (R)
V (p)
−→ V (R/J(R))

ψR ↓ ↓ ψR/J(R)

K0(R)
K0(p)−→ K0(R/J(R))

in the category of commutative monoids [2].
We can adapt the Bergman-Dicks Theorem (Theorem 2) to monoids with order-units

as follows.

Theorem 3. Let k be a field and let M be a commutative reduced monoid with order-
unit u. Then there exists a right and left hereditary k-algebra R such that (M,u) and
(V (R), 〈RR〉) are isomorphic as monoids with order-unit.

3. Local morphisms and semilocal rings

3.1. Local morphisms. In Algebraic Geometry and Commutative Algebra, local mor-
phisms are defined as the ring morphisms ϕ : R → S, between local commutative rings
(R,M) and (S,N ), for which ϕ(M) ⊆ N . Here M and N denote the maximal ideals
of R and S respectively. More generally, let R and S be arbitrary associative rings with
identity (not necessarily commutative and not necessarily local). We will say that a ring
morphism ϕ : R → S is local if, for every r ∈ R, ϕ(r) invertible in S implies r invertible
in R. These two definitions coincide in the case of R and S local commutative rings. The
notion of local morphism for non-commutative rings was introduced, in the case in which
S was a division ring, by Cohn [8].

Here is a list of trivial properties of local morphisms. Their proofs follow immediately
from the definition. Let ϕ : R → S, ψ : S → T be ring morphisms.

(1) If ϕ is a local morphsm, then ker(ϕ) ⊆ J(R).
(2) If ϕ is onto and is a local morphism, then ϕ(J(R)) = J(S), and the induced

morphism Mn(ϕ) : Mn(R) → Mn(S) between the n × n matrix rings is local for every
n > 1.

(3) If ϕ and ψ are local morphisms, then so is ψ ◦ ϕ.
(4) If the composite morpisms ψ ◦ ϕ is local, then ϕ local.
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(5) If I is any two-sided ideal of R contained in the Jacobson radical J(R), the canonical
projection R → R/I is a local morphism.

3.2. Semilocal rings, dual Goldie dimension. A ring R is a semilocal ring if R/J(R)
is a semisimple artinian ring. (In Commutative Algebra a commutative ring is semilocal
if it has only finitely many maximal ideals. The two definitions coincide in the case of
commutative rings, but notice that a semilocal non-commutative ring can have infinitely
many maximal right ideals, as the example of the ring Mn(k) of n × n matrices over an
infinite field k shows.)

The relation between the notions of semilocal ring and local morphism is given by the
following theorem, due to Camps and Dicks [6].

Theorem 4. A ring R is semilocal if and only if there exists a local morphism of R into a
semilocal ring, if and only if there exists a local morphism of R into a semisimple artinian
ring.

The notion of semilocal ring is also related to the notion of dual Goldie dimension.
Goldie dimension can be defined not only for modules MR, but more generally for any
modular lattice L with a greatest element 1 and a least element 0 [10, § 2.6]. If L(MR)
denotes the lattice of all submodules of a module MR, the Goldie dimension dim(MR) of
the module MR coincides with the Goldie dimension dim(L(MR)) of the lattice L(MR).
The dual Goldie dimension codim(MR) of a module MR is by definition the Goldie di-
mension of the dual (=opposite) lattice of the lattice L(MR). The next result describes
the relation between the notions of semilocal ring and dual Goldie dimension of a ring.

Proposition 5. A ring R is semilocal if and only if the dual Goldie dimension of the
right R-module RR is finite, if and only if the dual Goldie dimension of the left R-module

RR is finite. Moreover, if these equivalent conditions hold, then

codim(RR) = codim(RR) = dim(R/J(R)).

In this proposition, note that R is semilocal exactly when R/J(R) is semisimple ar-
tinian, that is, when R/J(R) is a direct sum of simple modules, and in this case the
Goldie dimension dim(R/J(R)) of R/J(R) is simply the number of direct summands in
a direct-sum decomposition of R/J(R) into simple submodules, that is, into simple right
ideals of R/J(R). The next theorem is related to Theorem 4 and Proposition 5.

Theorem 6. [6] If R → S is a local morphism between two rings R and S, then codim(R)
≤ codim(S).

3.3. Modules with semilocal endomorphism rings. The reason why we are inter-
ested in semilocal rings is that we want to study modules whose endomorphism ring is
semilocal. Having a semilocal endomorphism ring is a finiteness condition on modules.
For instance, a module with semilocal endomorphism ring is always a direct sum of finitely
many indecomposable modules, it is not a direct sum of infinitely many non-zero modules,
and it is directly finite. The class of the modules with semilocal endomorphism rings is
closed under direct summands and finite direct sums. We will see in §4.2 that direct-sum
decompositions of modules with semilocal endomorphism rings are described by reduced
Krull monoids, and this implies a regularity in the behavior of direct-sum decompositions.
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We begin with a proposition that shows how the property of having a semilocal endo-
morphism ring is related to restriction of scalars.

Proposition 7. [15] Let R → S be a ring morphism, and let MS be an S-module with
End(MR) semilocal. Then End(MS) is semilocal.

The proof is incredibly easy. The embedding

End(MS) → End(MR)

is a local morphism, because an S-endomorphism is an S-automorphism if and only if it
is an R-automorphism. Hence Theorem 4 applies.

4. Examples. Krull monoids.

This Section 4 is devoted to analyzing some examples of modules with semilocal endo-
morphism rings.

4.1. Noetherian modules, artinian modules. Our first example of class of modules
with semilocal endomorphism rings is the class of all artinian right modules over a fixed
ring R. Recall that the Krull-Schmidt Theorem (Theorem 1) holds for modules of finite
composition lenght. Now a module has finite composition length if and only if it is both
noetherian and artinian. A very natural question is therefore whether “noetherian” or
“artinian” are sufficient conditions for the Krull-Schmidt Theorem to hold.

It is very easy to construct examples of noetherian modules for which the Krull-Schmidt
Theorem does not hold. For instance, take a non-local noetherian commutative integral
domain of Krull dimension ≥ 2, for example R = k[x, y] (the ring of polynomials in two
indeterminates x and y with coefficients in a field k). Then R has two distinct maximal
ideals M1,M2, necessarily non-principal. Thus RR = M1 + M2. The exact sequence
0 → M1 ∩M2 →M1 ⊕M2 → RR → 0 splits, so that

M1 ⊕M2
∼= RR ⊕ (M1 ∩M2).(4.1)

But M1 and M2 are non-cyclic modules, and RR is a cyclic module, so that the two
direct-sum decompositions (4.1) are not isomorphic.

It was Krull who first asked in 1932 whether “the Krull-Schmidt Theorem holds for
artinian modules” [22]. That is, any artinian module is a direct sum of indecomposables,
but is such a direct-sum decomposition unique up to isomorphism? The first examples
showing that there exist artinian modules with non-isomorphic direct-sum decomposi-
tions were given by Facchini, Herbera, Levy and Vámos in [16]. Nevertheless, direct-sum
decompositions of artinian modules, and more generally of any class of modules with
semilocal endomorphism rings are regular, because their behavior is described by a Krull
monoids.

4.2. Krull monoids and regular decompositions. Krull monoids are the analogue
for commutative monoids of what Krull domains are in Commutative Algebra. They
were introduced by Chouinard in [7]. In Commutative Algebra we can fix a field F ,
take a family of valuations on F , consider the corresponding valutation subrings, and
their intersection, when it is of finite character, is called a Krull domain. Then we can
consider the fractional ideals, construct the divisor class semigroup, and so on. We have
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a perfectly similar case when we deal with commutative monoids instead of commutative
integral domains. We can fix an abelian group G, take a family of valuations on G,
consider the corresponding valutation submonoids, and their intersection, when it is of
finite character, is called a Krull monoid. Then we can consider the fractional ideals,
construct the divisor class semigroup of the Krull monoid, and so on. For the details, see
[7]. For us, now, it is sufficient to know that the finitely generated reduced Krull monoids
are the monoids isomorphic to monoids of the form G∩N

t
0, where t ≥ 0 is an integer and

G is a subgroup of the free abelian group Z
t.

Theorem 8. [14, 26] For every artinian module AR, the monoid V (AR) is a finitely gen-
erated reduced Krull monoid with order-unit 〈AR〉. Conversely, for every finitely generated
reduced Krull monoid V with an order-unit u there exists an artinian module AR with

(V (AR), 〈AR〉) ∼= (V, u).

More generally, for any class C of modules with semilocal endomorphism rings with
C closed under isomorphism, direct summands and finite direct sums, the monoid V (C)
turns out to be a reduced Krull monoid [11]. Notice the geometric regularity implied by
Krull monoids. In the language of Minkowski’s Geometry of Numbers, a subgroup G of
Z

t is represented by a “lattice”, that is, a structure with a very regular geometric pattern
(Here we are using the word lattice with a meaning completely different from the meaning
employed until now in this paper.) If V is a reduced Krull monoid, then V ∼= N

t
0 ∩ G

is the intersection of the lattice G ⊆ Z
t with the positive cone N

t
0. The failure of the

Krull-Schmidt Theorem is minimal in this case, due only to the presence of the border of
N

t
0 ∩G. Hence, when V (AR) is a Krull monoid that is not free, Krull-Schmidt uniqueness

fails, but direct-sum decompositions still have a very regular geometric pattern.

4.3. Further examples. Let us pass to present other examples of modules with semilocal
endomorphism rings. The following result is well known. For a proof, see [15, Proposi-
tion 3.1].

Proposition 9. Every finitely generated module over a commutative semilocal ring has
a semilocal endomorphism ring.

Here is an extension of the previous proposition.

Proposition 10. [15, Theorem 3.3] Every finitely presented module over a semilocal ring
has a semilocal endomorphism ring.

Notice that we have extended the class of rings (from commutative semilocal rings
to arbitrary semilocal rings), but we have to restrict the class of modules (from finitely
generated modules to finitely presented modules). Proposition 10 cannot be extended
to finitely generated modules over non-commutative rings: there exist finitely generated
modules over non-commutative semilocal rings whose endomorphism rings are not semilo-
cal [15, Example 3.5].

Here are further examples of modules with semilocal endomorphism rings. We say that
a module M is quotient finite dimensional if every homomorphic image of M has finite
Goldie dimension.
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Corollary 11. [15, Corollary 5.8] Every submodule of a quotient finite dimensional in-
jective module has a semilocal endomorphism ring.

Recall that a module M is uniserial if, for any submodules A and B of M , either
A ⊆ B or B ⊆ A. Thus a module M is uniserial if and only if the lattice L(M) of its
submodules is linearly ordered under set inclusion. Clearly, uniserial modules are quotient
finite dimensional. A module is serial if it is a direct sum of uniserial submodules. Hence
a module is serial and has finite Goldie dimension if and only if it is a direct sum of finitely
many uniserial submodules.

Corollary 12. [15, Corollary 5.10] Let E be an injective serial right module of finite
Goldie dimension. Then the endomorphism ring of every submodule of E is semilocal.

For further examples of modules with semilocal endomorphism rings, see [15] and [21].

5. Monogeny class, epigeny class

5.1. Biuniform modules. We say that two right R-modules AR and BR belong to the
same monogeny class , and write [AR]m = [BR]m, if there exist a monomorphism AR → BR

and a monomorphism BR → AR. Similarly, we say that AR and BR belong to the same
epigeny class , and write [AR]e = [BR]e, if there exist an epimorphism AR → BR and an
epimorphism BR → AR.

Recall that a module AR is said to be: uniform if it has Goldie dimension 1, that is, it
is non-zero and the intersection of any two non-zero submodules is a non-zero submodule;
couniform if it has dual Goldie dimension 1, that is, it is non-zero and the sum of any two
proper submodules is a proper submodule; biuniform if it uniform and couniform. For
instance, uniserial non-zero modules are biuniform modules.

Theorem 13. [10, Theorem 9.1] Let AR be a biuniform module over an arbitrary ring R
and let E = End(AR) be its endomorphism ring. Let I = { f ∈ E | f is not injective }
and K = { f ∈ E | f is not surjective }. Then I and K are two-sided completely prime
ideals of E, and every proper right ideal of E and every proper left ideal of E is contained
either in I or in K. Moreover, exactly one of the following two conditions hold:

(a) Either E is a local ring, or
(b) E/J(E) ∼= E/I × E/K, where E/I and E/K are division rings.

From Theorem 13 we get the following weak form of the Krull-Schmidt Theorem, proved
by the author in [9, Theorem 1.9].

Theorem 14. Let U1, . . . , Un, V1, . . . , Vt be biuniform right modules over an arbitrary
ring R. Then the direct sums U1 ⊕· · ·⊕Un and V1 ⊕· · ·⊕Vt are isomorphic if and only if
n = t and there are two permutations σ, τ of {1, 2, . . . , n} such that [Ui]m = [Vσ(i)]m and
[Ui]e = [Vτ(i)]e for every i = 1, 2, . . . , n.

This theorem allowed us to solve a problem posed by Warfield in [25].

5.2. Cyclically presented modules over local rings. We will now present some re-
sults proved in [1]. Recall that a right module over a ring R is said to be cyclically
presented if it is isomorphic to R/aR for some a ∈ R. For any ring R with identity, U(R)
will denote the group of all invertible elements of R.
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If R/aR and R/bR are cyclically presented modules over a local ring R, we say that
R/aR and R/bR have the same lower part , and write [R/aR]l = [R/bR]l, if there exist
u, v ∈ U(R) and r, s ∈ R with au = rb and bv = sa. (The reason why we give this
definition is that in this way two cyclically presented modules over a local ring turn out
to have the same lower part exacly when their Auslander-Bridger transposes have the
same epigeny class; cf. [1].)

We will now describe the endomorphism ring of a cyclically presented module. Clearly,
the endomorphism ring EndR(R/aR) of a non-zero cyclically presented module R/aR is
isomorphic to E/aR, where E := { r ∈ R | ra ∈ aR } is the idealizer of aR.

Theorem 15. Let a be a non-zero non-invertible element of a local ring R, let E be the
idealizer of aR, and let E/aR be the endomorphism ring of the cyclically presented right
R-module R/aR. Set I := { r ∈ R | ra ∈ aJ(R) } and K := J(R) ∩ E. Then I and K
are completely prime two-sided ideals of E containing aR, the union (I/aR) ∪ (K/aR)
is the set of all non-invertible elements of E/aR, and every proper right ideal of E/aR
and every proper left ideal of E/aR is contained either in I/aR or in K/aR. Moreover,
exactly one of the following two conditions hold:

(a) Either E/aR is a local ring, or
(b) I and K are not comparable, J(E/aR) = (I ∩ K)/aR, and (E/aR)/J(E/aR) is

canonically isomorphic to the direct product of the two division rings E/I and E/K.

Theorem 16. (Weak Krull-Schmidt Theorem) Let a1, . . . , an, b1, . . . , bt be non-invertible
elements of a local ring R. Then

R/a1R ⊕ · · · ⊕R/anR and R/b1R⊕ · · · ⊕ R/btR

are isomorphic right R-modules if and only if n = t and there are two permutations σ, τ
of {1, 2, . . . , n} such that [R/aiR]l = [R/bσ(i)R]l and [R/aiR]e = [R/bτ(i)R]e for every
i = 1, 2, . . . , n.

This has an immediate consequence as far as equivalence of matrices is concerned.
Recall that two m × n matrices A,B with entries in a ring R are equivalent, denoted
A ∼ B, if there exist an m×m invertible matrix P and an n×n invertible matrix Q with
B = PAQ. We denote by diag(a1, . . . , an) the n× n diagonal matrix whose (i, i) entry is
ai and whose other entries are zero.

Corollary 17. Let a1, . . . , an, b1, . . . , bn be elements of a local ring R. Then diag(a1, . . . , an)
∼ diag(b1, . . . , bn) if and only if there exist two permutations σ, τ of {1, 2, . . . , n} with

[R/aiR]l = [R/bσ(i)R]l and [R/aiR]e = [R/bτ(i)R]e

for every i = 1, 2, . . . , n.

6. Kernels of morphisms, couniformly presented modules

6.1. Kernels of morphisms between indecomposable injective modules. The
next results are taken from [17]. We say that two modules AR and BR have the same
upper part, and write [AR]u = [BR]u, if there exist a homomorphism ϕ : E(AR) → E(BR)
and a homomorphism ψ : E(BR) → E(AR) such that ϕ−1(BR) = AR and ψ−1(AR) = BR.
Here E(−) denotes the injective envelope.
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We need some further notation for the statement of the next theorem. Let E1, E2, E
′
1, E

′
2

be indecomposable injective right modules over an arbitrary ring R, and let ϕ : E1 →
E2, ϕ

′ : E ′
1 → E ′

2 be two non-injective morphisms. Any morphism f : kerϕ → kerϕ′

extends to a morphism f1 : E1 → E ′
1. Hence f1 induces a morphism ˜f1 : E1/ kerϕ →

E ′
1/ kerϕ′, which extends to a morphism f2 : E2 → E ′

2. Thus we have a commutative
diagram with exact rows

0 → kerϕ → E1
ϕ−→ E2

↓ f ↓ f1 ↓ f2

0 → kerϕ′ → E ′
1

ϕ′
−→ E ′

2.

Notice that f1 and f2 are not uniquely determined by f .

Theorem 18. Let E1 and E2 be two indecomposable injective right modules over an ar-
bitrary ring R, and let ϕ : E1 → E2 be a non-zero non-injective morphism. Set S :=
EndR(kerϕ), I : = { f ∈ S | f is not injective } = { f ∈ S | f1 is not injective } and
K : = { f ∈ S | f2 is not injective } = { f ∈ S | f−1

1 (kerϕ) properly contains kerϕ }.
Then I and K are two completely prime two-sided ideals of S, and one of the following
two conditions hold:

(a) Either S is a local ring, or
(b) S/J(S)) ∼= S/I × S/K, where S/I and S/K are division rings.

Theorem 19. (Weak Krull-Schmidt Theorem) Let ϕi : Ei,1 → Ei,2 (i = 1, 2, . . . , n) and
ϕ′

j : E ′
j,1 → E ′

j,2 (i = 1, 2, . . . , t) be n+ t non-injective morphisms between indecomposable
injective modules Ei,1, Ei,2, E

′
j,1, E

′
j,2

over an arbitrary ring R. Then ⊕n
i=1 kerϕi

∼= ⊕t
j=1 kerϕ′

j if and only if n = t and
there exist two permutations σ, τ of {1, 2, . . . , n} such that [kerϕi]m = [kerϕ′

σ(i)]m and

[kerϕi]u = [kerϕ′
τ(i)]u for every i = 1, 2, . . . , n.

Hence, also in this case we find the same behavior: at most two maximal ideals and
the same weak form of the Krull-Schmidt Theorem. Now we will present a further class
of modules over arbitrary rings with exactly the same behavior. It extends the class of
cyclically presented modules over local rings we have met with in §5.2.

6.2. Couniformly presented modules. These modules have been introduced and stud-
ied in [13].

It is easily seen that a projective right module PR is couniform, that is, has dual Goldie
dimension one (cf. §5.1) if and only if PR is the projective cover of a simple module, if
and only if End(PR) is a local ring, if and only if there exists an idempotent e ∈ R with
PR

∼= eR and eRe a local ring, if and only if PR is a finitely generated module with a
unique maximal submodule [1, Lemma 8.7].

We say that a module MR is couniformly presented if it is non-zero and there exists an
exact sequence

0 → CR
ι−→ PR →MR → 0(6.1)

with PR projective and both CR and PR couniform modules. Under these hypotheses,
(6.1) will be called a couniform presentation of the couniformly presented module MR.
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For such a module MR, every endomorphism f of MR lifts to an endomorphism f0 of
the projective cover PR of MR, and we will denote by f1 the restriction of f0 to CR. Hence
we have a commutative diagram

0 → CR
ι−→ PR → MR → 0

f1 ↓ ↓ f0 ↓ f

0 → CR
ι−→ PR → MR → 0.

Theorem 20. Let 0 → CR → PR → MR → 0 be a couniform presentation of a couni-
formly presented module MR. Let K := { f ∈ End(MR) | f is not surjective } and
I := { f ∈ End(MR) | f1 : CR → CR is not surjective }. Then K and I are completely
prime two-sided ideals of End(MR), and the union K ∪ I is the set of all non-invertible
elements of End(MR). Moreover, exactly one of the following two conditions hold:

(a) Either End(MR) is a local ring, or
(b) J(End(MR)) = K ∩ I, and End(MR)/J(End(MR)) is canonically isomorphic to the

direct product of the two division rings End(MR)/K and End(MR)/I.

IfMR andM ′
R are two couniformly presented modules with couniform presentations 0 →

CR → PR → MR → 0 and 0 → C ′
R → P ′

R → M ′
R → 0 respectively, we say that MR and

M ′
R have the same lower part, and write [MR]� = [M ′

R]�, if there are two homomorphisms
f0 : PR → P ′

R and f ′
0 : P ′

R → PR such that f0(CR) = C ′
R and f ′

0(C
′
R) = CR. (The definition

of “having the same lower part” had been given in §5.2 only for cyclically presented
modules over local rings. Here we are giving it for arbitrary couniformly presented modules
over arbitrary rings.)

Theorem 21. (Weak Krull-Schmidt Theorem for couniformly presented modules) Let
M1, . . . ,Mn, N1, . . . , Nt be couniformly presented right R-modules. Then the modules M1⊕
· · · ⊕ Mn and N1 ⊕ · · · ⊕ Nt are isomorphic if and only if n = t and there are two
permutations σ, τ of {1, 2, . . . , n} with [Mi]� = [Nσ(i)]� and [Mi]e = [Nτ(i)]e for every
i = 1, . . . , n.

6.3. Relation between upper part and lower part. We have seen that kernels of
morphisms between indecomposable injective modules are described by their monogeny
class and their upper part. Couniformly presented modules are described by their epigeny
class and their lower part. Let us explain the reason of this symmetry.

Let R be a fixed ring. Let {Eλ | λ ∈ Λ } be a set of representatives up to isomorphism of
all indecomposable injective right R-modules. Set ER := E(⊕λ∈ΛEλ) and S := End(ER),
so that SER turns out to be an S-R-bimodule and H := Hom(−, SER) : Mod-R → S-Mod
is an additive contravariant exact functor.

If K is the full subcategory of Mod-R whose objects are finite direct sums of kernels
of morphisms between uniform (equivalently, indecomposable) injective right R-modules,
and C is the full subcategory of S-Mod whose objects are finite direct sums of cokernels
of morphisms between couniform projective left S-modules, then the restriction H =
Hom(−, SER) : K → S is a duality. It exchanges monogeny and epigeny (and upper part
and lower part) as stated in the next proposition.

Proposition 22. Let KR and K ′
R be the kernels of two non-zero non-injective morphisms

between uniform injective right R-modules. Then:
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(a) [KR]m = [K ′
R]m if and only if [H(KR)]e = [H(K ′

R)]e.
(b) [KR]u = [K ′

R]u if and only if [H(KR)]� = [H(K ′
R)]�.

7. Seeking a general theory

We have seen three pair-wise incomparable classes of modules with the same behavior:
(1) The class of biuniform modules. It contains the class of uniserial modules. These
modules are described by their monogeny classes and their epigeny classes. (2) The class
of all couniformly presented modules. It contains the class of all cokernels of morphisms
between projective couniform modules, which in turn contains the class of all cyclically
presented modules when the base ring R is local. These modules are described by their
lower parts and their epigeny classes. (3) The class of all kernels of morphisms between
uniform injective right R-modules. They are described by the monogeny classes and the
upper parts, and there is a duality between this class and the class of all cokernels of
morphisms between projective couniform modules. It would be easy to construct further
examples of classes of modules with exactly the same behavior. For instance, fix two
simple non-isomorphic right R-modules S1 and S2. Then the class of all artinian right
R-modules with socle isomorphic to S1 ⊕ S2 has this kind of behavior.

P. Př́ıhoda and the author have found a general theory, a general setting able to describe
all these particular classes [18]. We say that a ring S has type n if the factor ring S/J(S)
is a direct product of n division rings, and we say that a right module MR over a ring R
has type n if its endomorphism ring End(MR) is a ring of type n. A ring R has type 1 if
and only if it is a local ring, if and only if there is a local morphism of R into a division
ring.

Lemma 23. The following conditions are equivalent for a ring S with Jacobson radi-
cal J(S) and a positive integer n.

(i) n is the smallest of the integers m such that there exists a local morphism of the
ring S into a direct product of m division rings.

(ii) S has exactly n distinct maximal right ideals, and they are all two-sided ideals in
S.

(iii) The ring S has type n.

The natural question is: if T is the full subcategory of Mod-R whose class of objects
consists of all indecomposable right R-modules of type 2, does a weak Krull-Schmidt
Theorem hold for T ?

Let C be a full subcategory of Mod-R whose objects are indecomposable modules. A
completely prime ideal P of C consists of a subgroup P(A,B) of HomR(A,B) for every pair
of objects A,B ∈ Ob C such that for every A,B,C ∈ Ob C, every f : A → B and every
g : B → C one has that gf ∈ P(A,C) if and only if either f ∈ P(A,B) or g ∈ P(B,C).
In all the previous situations, we have a pair of completely prime ideals P,Q of C with
the property that, for every object A ∈ Ob C, and endomorphism f ∈ End(A) of A is an
automorphism of A if and only if f /∈ P(A,A) ∪Q(A,A).

If C is a full subcategory of T , M is an object of I, and I is a fixed ideal of EndR(M),
let I be the ideal of the category C defined as follows: a morphism f : X → Y is in
I(X, Y ) if and only if βfα ∈ I for every α : M → X and every β : Y → M . We call I the
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ideal of C associated to I. It is the greatest among the ideals I ′ of C with I ′(M,M) ⊆ I,
and in this case, as it is easily seen, I(M,M) = I.

We can associate to the category C a graph G(C). The edges of G(C) are the isomor-
phisms classes 〈M〉 := { Y ∈ Ob(C) | Y ∼= M in Mod-R }, where M ranges in Ob(C);
the vertices of G(C) are the ideals I in the category C associated to a maximal ideal I of
End(MR) for some M ∈ Ob(C); for every M ∈ Ob(C), the endomorphism ring End(MR)
has exactly two maximal ideals I1, I2, and the edge 〈M〉 connects the vertices I1 and I2.

Theorem 24. Let C be a full subcategory of T . A weak Krull-Schmidt Theorem holds for
C if and only if the graph G(C) does not contain a subgraph isomorphic to the complete
graph K4.

For suitable rings R, the graph G(T ) contains a copy of the complete graph K4, so that
a weak Krull-Schmidt Theorem does not hold for T .
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[19] G. Frobenius and L. Stickelberger, Über Gruppen von vertauschbaren Elementen, J. reine angew.

Math. 86 (1879), 217–262.
[20] M. Harada, “Factor Categories with Applications to Direct Decomposition of Modules,” Lect. Notes

Pure Appl. Math. 88, Dekker, New York, 1983.

–21–



[21] D. Herbera and A. Shamsuddin, Modules with semi-local endomorphism ring, Proc. Amer. Math.
Soc. 123 (1995), 3593–3600.

[22] W. Krull, Matrizen, Moduln und verallgemeinerte Abelsche Gruppen im Bereich der ganzen alge-
braischen Zahlen, Heidelberger Akademie der Wissenschaften 2 (1932), 13–38.

[23] E. L. Lady, Summands of finite rank torsion-free Abelian groups, J. Algebra 32 (1974),51–52.
[24] K. Oshiro, Theories of Harada in Artinian rings and applications to classical Artinian rings, in

“International Symposium on Ring Theory (Kyongju, 1999)”, G. F. Birkenmeier, Jae Keol Park and
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