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Abstract. A complete exceptional sequence is very useful to investigate the category
of finitely generated modules over a finite dimensional algebra. The aim of this note is to
show how to find the all complete exceptional sequences over the path algebra of Dynkin
quiver of type (An).

1. Introduction

Let Λ be the path algebra of Dynkin quiver of type (An) over a field k. We denote
by mod Λ the category of finitely generated left Λ-modules. The concept of exceptional
sequences was introduced by Gorodentsev and Rudakov [1]. It is very useful to investigate
mod Λ. A finitely generated left Λ-module E is called exceptional if HomΛ(E,E) ∼= k and
Ext1

Λ(E,E) = 0. We remark that E is exceptinal if and only if it is indecomposable.
Indeed Λ is the path algebra of (An). A pair (E,F ) of exceptional modules is called an
exceptional pair if HomΛ(F,E) = Ext1

Λ(F,E) = 0. A sequence ε = (E1, E2, · · · , Er) of
exceptional modules is called an exceptional sequence of length r if (Ei, Ej) is an excep-
tional pair for each i < j. An exceptinal sequence ε is called complete if the length of ε
is equal to n. (Here, n is the number of simple modules in mod Λ). We put E the set of
complete exceptional sequences. Siedel [2, Proposition 1.1] proved that the cardinarity of
E is equal to (n + 1)n−1. There are a number of complete exceptional sequences. But it
is not easy to find all complete exceptional sequence. The main purpose is to get how to
find the complete exceptinal sequences completely by using the conbinatorics.

2. Main result

First of all, we give a remark that E is independent of the orientation of (An). Indeed,
let Λ′ be a path algebra of Dynkin quiver of type (An) whose orientation is not equal to
Λ, and let E′ be the set of complete exceptional sequences in mod Λ′. In this case, Λ and
Λ′ are derived equivalent and there exists a equivalence ϕ : Db(mod Λ) → Db(mod Λ′).
Therefore we can get the one to one correspondence ψ : mod Λ → mod Λ′ by ϕ and
the suspention functor in Db(mod Λ′). One can easily check that ψ gives the one to one
correspondence between E and E′. Thus we may assume the orientation of (An) as follows;

e1• → e2• → · · · → en•
Let Γ be the Auslander-Reiten quiver of mod Λ. We identify the set Γ0 of vertices in Γ

with the class {Xij| 0 ≤ i < j ≤ n} of indecomposable Λ-modules. Then Γ is as follows;

The detailed version of this paper will be submitted for publication elsewhere.
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We consider a circle with n+1 points labelled 0, 1, 2, · · · , n counter clockwise on it. We
put c(i, j) the chord between the points i and j. We denote by Cn+1 the set of chords in
the circle. Since Cn+1 = {c(i, j)| 0 ≤ i < j ≤ n}, there exists a one to one correspondence
Φ : Γ0 → Cn+1 defined by Φ(Xij) = c(i, j).

For ε = (E1, E2, · · · , En), ε′ = (E ′
1, E

′
2, · · · , E ′

n) ∈ E, we define ε ∼ ε′ by
⊕n

i=0Ei
∼=⊕n

i=0E
′
i. Then ∼ is an equivalent relation on E. We shall prove the following theorem.

Theorem 1. Φ gives a one to one correspondence between E/ ∼ and the set of non cross-
ing spanning trees by Φ(ε) := {Φ(E1),Φ(E2), · · · ,Φ(En)} for each ε = (E1, E2, · · · , En).

Here, we call a graph T a non crossing spanning tree if the following conditions are
satisfied;

(i) the chords in T form a tree,
(ii) the chords in T meet only at endpoints.

It is known the number of noncrossing spanning trees. We get the following corollary.

Corollary 2. The cardinarity of E/ ∼ is equal to
1

2n+ 1

(
3n

n

)
.

Proof of Theorem 1. For X ∈ Γ0, we consider the following four classes.

H+(X) = {Y ∈ Γ0| HomΛ(X, Y ) �= 0},
H−(X) = {Y ∈ Γ0| HomΛ(Y,X) �= 0},
E+(X) = {Y ∈ Γ0| Ext1Λ(X, Y ) �= 0},
E−(X) = {Y ∈ Γ0| Ext1Λ(Y,X) �= 0}.

Then one can check the followings by using Auslander-Reiten sequence;

H+(Xi,j) = {Xs,t| i ≤ s ≤ j − 1, j ≤ t ≤ n},
H−(Xi,j) = {Xs,t| 0 ≤ s ≤ i, i+ 1 ≤ t ≤ j},
E+(Xi,j) = {Xs,t| 0 ≤ s ≤ i− 1, i ≤ t ≤ j − 1},
E−(Xi,j) = {Xs,t| i+ 1 ≤ s ≤ j, j + 1 ≤ t ≤ n}.
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Furthermore, we consider the following four classes for each X ∈ Γ0;

P(X) = {Y | Both (X, Y ) and (Y,X) are exceptional pair.},
P+(X) =

{
Y

(X, Y ) is an exceptinal pair,
(Y,X) is not an exceptinal pair.

}
,

P−(X) =

{
Y

(Y,X) is an exceptinal pair,
(X, Y ) is not an exceptinal pair.

}
,

P(X) = {Y | Both (X, Y ) and (Y,X) are not exceptional pair.}.
Note that

P(X) = Γ0 \ (H+(X) ∪ E+(X) ∪H−(X) ∪ E−(X)),

P+(X) = (H+(X) ∪ E+(X)) \ (H−(X) ∪ E−(X)),

P−(X) = (H−(X) ∪ E−(X)) \ (H+(X) ∪ E+(X)),

P(X) = (H+(X) ∪ E+(X)) ∩ (H−(X) ∪ E−(X)),

we get the followings for each Xi,j ∈ Γ0;

P(Xi,j) = {Xs,t| 0 ≤ s < t ≤ i} ∪ {Xs,t| i+ 1 ≤ s < t ≤ j − 1}
∪{Xs,t| j ≤ s < t ≤ n} ∪ {Xs,t| 0 ≤ s ≤ i− 1, j + 1 ≤ t ≤ n},

P+(Xi,j) = {Xs,i| 0 ≤ s ≤ i− 1} ∪ {Xi,t| j + 1 ≤ t ≤ n} ∪ {Xs,j| i+ 1 ≤ s ≤ j − 1},
P−(Xi,j) = {Xi,t| i+ 1 ≤ s ≤ j − 1} ∪ {Xs,j| 0 ≤ s ≤ j − 1} ∪ {Xj,t| j + 1 ≤ s ≤ n},
P(Xi,j) = {Xs,t| 0 ≤ s ≤ i− 1, i+ 1 ≤ t ≤ j − 1}

∪{Xs,t| i+ 1 ≤ s ≤ j − 1, j + 1 ≤ t ≤ n}.
We apply Φ for each above classes, we get followings;

Φ(P(Xi,j)) = {c(s, t)| 0 ≤ s < t ≤ i} ∪ {c(s, t)| i+ 1 ≤ s < t ≤ j − 1}
∪{c(s, t)| j ≤ s < t ≤ n} ∪ {c(s, t)| 0 ≤ s ≤ i− 1, j + 1 ≤ t ≤ n},

Φ(P+(Xi,j)) = {c(s, i)| 0 ≤ s ≤ i− 1} ∪ {c(i, t)| j + 1 ≤ t ≤ n}
∪{c(s, j)| i+ 1 ≤ s ≤ j − 1},

Φ(P−(Xi,j)) = {c(i, t)| i+ 1 ≤ s ≤ j − 1} ∪ {c(s, j)| 0 ≤ s ≤ j − 1}
∪{c(j, t)| j + 1 ≤ s ≤ n},

Φ(P(Xi,j)) = {c(s, t)| 0 ≤ s ≤ i− 1, i+ 1 ≤ t ≤ j − 1}
∪{c(s, t)| i+ 1 ≤ s ≤ j − 1, j + 1 ≤ t ≤ n}.

Thus we have followings;

• Y ∈ P(X) ⇔ Φ(Y ) does not meet to Φ(X).

• Y ∈ P+(X) ⇔ Φ(Y ) meets Φ(X) for some vertex i and Φ(Y ) is the chord moved
Φ(X) around a vertex i counterclockwise across the interior of the
circle.

• Y ∈ P−(X) ⇔ Φ(Y ) meets Φ(X) for some vertex i and Φ(Y ) is the chord moved
Φ(X) around a vertex i clockwise across the interior of the circle.
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• Y ∈ P(X) ⇔ Φ(Y ) meets to Φ(X) at interior of the circle.

Therefore for any ε ∈ E, each chords in Φ(ε) do not meet each other at interior of the
circle.

For X1, X2, · · · , Xr ∈ Γ0, suppose {Φ(X1),Φ(X2), · · · , φ(Xr)} makes a cycle. We may
assume Φ(X�) meets Φ(X�+1) at a vertex i� for each � = 1, 2, · · · , r (where Xr+1 =
X1) and i1 > i2 > · · · > ir. Then, (X1, X2), (X2, X3), · · · , (Xr−1, Xr) and (Xr, X1) are
exceptional pairs but (X2, X1), (X3, X2), · · · , (Xr, Xr−1) and (X1, Xr) are not exceptional
pairs. Therefore any permutatin of (X1, X2, · · · , Xr) is not an exceptional sequence.

Thus we get Φ(ε) is a non crossing spanning tree for any ε ∈ E.
For ε = (E1, E2, · · · , En), ε′ = (E ′

1, E
′
2, · · · , E ′

n) ∈ E suppose Φ(ε) = Φ(ε′). Then
{Φ(E1),Φ(E2), · · · , φ(Er)} = {Φ(E1),Φ(E2), · · · , φ(Er)}. Since Φ : Γ0 → Cn+1 is one to
one, we get ε ∼ ε′.

Conversely, suppose T = {c1, c2, · · · , cn} ⊂ Cn+1 is a non crossing spanning tree. We
put Xi := Φ−1(ci) for each i. If there exists a pair (Xi, Xj) (i �= j) such that both (Xi, Xj)
and (Xj , Xi) are not exceptional pair, then ci crosses cj at interior. Thus, there does not
exist a such pair.

If there exists a subsequence {Xa1 , Xa2 , · · ·Xar} such that (Xa1 , Xa2), (Xa2 , Xa3),
· · · , (Xar−1 , Xar), and (Xar , Xa1) are exceptional pairs but (Xa2 , Xa1), (Xa3 , Xa2), · · · ,
(Xar , Xar−1), and (Xa1 , Xar) are not exceptional pairs, then {ca1 , ca2 , · · · , car} makes a cy-
cle. Therefore there exists a parmutation σ such that (Xσ(1), Xσ(2), · · ·Xσ(n)) is a complete
exceptional sequence.

Example 3. If n = 3, the following quiver is the Auslander-Reiten quiver of mod Λ.
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In this case, there are 16 complete exceptional sequences and 12 non crossing spanning
trees. The followings are the complete exceptional sequences and corresponding non
crossing spanning trees.
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(X01, X02, X03) (X12, X13, X01) (X23, X02, X12) (X03, X13, X23)
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(X03, X23, X12) (X01, X03, X23) (X12, X01, X03) (X23, X12, X01)
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(X03, X12, X13) (X23, X01, X02) (X13, X23, X01) (X02, X03, X12)

(X12, X03, X13) (X01, X23, X02) (X13, X01, X23) (X02, X12, X03)
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