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Abstract. We introduce invariants of a finite-dimensional semisimple and cosemisimple
Hopf algebra A over a field k by using the braiding structures of A. The invariants
are given in the form of polynomials. The polynomials have integral coefficients under
some condition, and become stable by taking some suitable extension of the base field.
Furthermore, the polynomials give invariants of the representation category of a finite-
dimensional semisimple and cosemisimple Hopf algebra under k-linear tensor equivalence.
By using the polynomials, we can find some pairs of Hopf algebras, whose representation
rings are same, but representation categories are different.

1. Introduction

Given a quantum group, namely, a Hopf algebra with a braiding structure, we have

a topological invariant of low-dimensional manifolds, for example, (framed) knots and
links. Such an invariant is so-called a quantum invariant. It is well-known that quantum

invariants are not only powerful tool for investigating topologies of low-dimensional mani-
folds, but also closely related to mathematical physics as well as other areas, for example,

number theory, gauge theory, and so on.
Although in many investigations on quantum invariants, topological problems of low-

dimensional manifolds are studied under a fixed Hopf algebra, in this research, we fix
a framed knot or link, and study on representation categories of Hopf algebras. In

this article, by using quantum invariants of the unknot with (+1)-framing, for a finite-
dimensional semisimple and cosemisimple Hopf algebra A over a field k, polynomials

P
(d)
A (x) (d = 1, 2, · · · ) are introduced as invariants of A, and properties of them are stud-

ied. That polynomials are defined as in the following form thanks to some results of

Etingof and Gelaki[5] (for detail see Section 2):

P
(d)
A (x) =

t∏
i=1

∏
R : braidings of A

(
x − dimRMi

dim Mi

)
∈ k[x],

where {M1, · · · , Mt} is a full set of non-isomorphic absolutely simple left A-modules

with dimension d (so, dimMi = d for all i), and dimRMi is the quantum invariant of
unknot with (+1)-framing and colored by Mi. In algebraic language, dimRMi is the

category-theoretic rank of Mi in the left rigid braided monoidal category (AMf.d., cR)
[10], where AMf.d. is the monoidal category of finite-dimensional left A-modules and A-

homomorphisms, and cR is the braiding of AMf.d. determined by R.
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Each polynomial P
(d)
A (x) has the following properties. All coefficients of the polynomial

are integers if k is a finite Galois extension of the rational number field Q, and A coincides
with the scalar extension of some finite-dimensional semisimple Hopf algebra over Q. The

polynomial becomes also stable by taking some suitable extension of the base field, more

precisely, there is a finite separable field extension L/k so that P
(d)

AE(x) = P
(d)

AL (x) for any

field extension E/L.
It is more interesting to note that our polynomial invariants give an invariant of rep-

resentation categories of Hopf algebras, that is, if representation categories of finite-
dimensional semisimple and cosemisimple Hopf algebras A and B are equivalent as k-

linear tensor categories, then P
(d)
A (x) = P

(d)
B (x). In general, if representation categories of

two finite-dimensional semisimple Hopf algebras A and B over an algebraically field k of

characteristic 0 are equivalent as k-linear tensor categories, then their representation rings
are isomorphic as rings (with ∗-structure)[13, 15]. However, the converse is not true. For

example, by Tambara and Yamagami[18], it was proved that three non-commutative and
semisimple Hopf algebras C[D8], C[Q8], K8 of dimension 8 over the complex number field

C have the same representation ring, but their representation categories are not mutually
equivalent, where D8 is the dihedral group of order 8, Q8 is the quaternion group, and K8

is the Kac-Paljutkin algebra[6, 11]. This result is generalized by Masuoka[12] in the case
where the base field of Hopf algebras is an algebraically closed field of characteristic 0 or

p > 2. In this article, we give an another proof of Tambara and Yamagami’s result by
using our polynomial invariants, and furthermore, give other examples of pairs of Hopf

algebras, whose representation rings are same, but representation categories are mutually

different (see the final section).
Throughout this article, we use the notation ⊗ instead of ⊗�, and denote by ch(k) the

characteristic of the field k.

Acknowledgement. The author would like to thank Professor Akira Masuoka and Professor
Ikuo Satake for helpful advice.

2. Definition of polynomial invariants

In this section, we introduce invariants of a semisimple and cosemisimple Hopf algebra

of finite dimension over an arbitrary field. They are given by polynomials derived from
the quasitriangular structures of the Hopf algebra, and become invariants under tensor

equivalence of representation categories of Hopf algebras.
Let us recall the definition of a quasitriangular Hopf algebra [3]. Let A be a Hopf algebra

and R ∈ A⊗A an invertible element. The pair (A, R) is said to be a quasitriangular Hopf
algebra, and R is said to be a universal R-matrix of A, if the following three conditions

are satisfied:

(i) Δcop(a) = R · Δ(a) · R−1 for all a ∈ A,

(ii) (Δ ⊗ id)(R) = R13R23,
(iii) (id ⊗ Δ)(R) = R13R12.
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Here Δcop = T ◦Δ, T : A⊗A −→ A⊗A, T (a⊗ b) = b⊗ a, and Rij ∈ A⊗A⊗A is given

by R12 = R ⊗ 1, R23 = 1 ⊗ R, R13 = (T ⊗ id)(R23) = (id ⊗ T )(R12).
If R =

∑
i αi ⊗ βi is a universal R-matrix of A, then the element u =

∑
i S(βi)αi of A

is invertible, and has the following properties:

(i) S2(a) = uau−1 for all a ∈ A,
(ii) S(u) =

∑
i αiS(βi).

The above element u is called the Drinfel’d element associated to R. If the characteristic
of k is 0, and A is semisimple or cosemisimple of finite dimension, then the Drinfel’d

element u belongs to the center of A by the property (i) and S2 = idA [8].
Let (A, R) be a quasitriangular Hopf algebra over a field k and u the Drinfel’d element

associated to R. For a finite-dimensional left A-module M , we denote by dimR M the

trace of the left action of u on M , and call it the R-dimension of M .
To define polynomial invariants, we use the following result on a semisimple and

cosemisimple Hopf algebra of finite dimension due to Etingof and Gelaki [5, Corollary
3.2(ii), Corollary 1.5].

Theorem 1 (Etingof-Gelaki). Let A be a semisimple and cosemisimple Hopf algebra
of finite dimension over a field k. Then

(1) (dim M)1� �= 0 for any absolutely simple left A-module M ,
(2) the set of universal R-matrices Braid(A) is finite.

Let A = (A, Δ, ε, S) be a semisimple and cosemisimple Hopf algebra of finite dimension
over a field k. For a finite-dimensional left A-module M with (dim M)1� �= 0, we set

PA,M(x) :=
∏

R∈Braid(A)

(
x − dimRM

dim M

)
.

This is a polynomial in k[x]. Furthermore, for each positive integer d we define a polyno-

mial P
(d)
A (x) in k[x] by

P
(d)
A (x) :=

t∏
i=1

PA,Mi
(x),

where {M1, · · · , Mt} is a full set of non-isomorphic absolutely simple left A-modules with

dimension d. If there is no absolutely simple left A-module, then we set P
(d)
A (x) := 1.

Example 2. Let G be the cyclic group of order m, and k a field of ch(k) � m which

contains a primitive m-th root of unity. Then, the polynomial invariant P
(1)
�[G](x) of the

group Hopf algebra k[G] is given by the formula

P
(1)
�[G](x) =

m−1∏
d,j=0

(x − ωdj2

) =

m−1∏
j=0

(x
m

gcd (j2,m) − 1)gcd(j2,m).

For a k-bialgebra A we write AM for the k-linear monoidal category whose objects
are left A-modules and morphisms are left A-homomorphisms. Two bialgebras A and B
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over k are called monoidally Morita equivalent if monoidal categories AM and BM are

equivalent as k-linear monoidal categories.

Lemma 3. Let A and B two Hopf algebras of finite dimension over k. If a k-linear
monoidal functor F : AM −→ BM gives an equivalence between monoidal categories, then

dim M = dimF (M) for a finite-dimensional left A-module M , and there is a bijection
Φ : Braid(A) −→ Braid(B) such that dimRM = dimΦ(R)F (M) for a finite-dimensional

left A-module M and a universal R-matrix R ∈ Braid(A).

From the above lemma we have the following theorem immediately.

Theorem 4. Let A and B be semisimple and cosemisimple Hopf algebras of finite di-

mension over k. If A and B are monoidally Morita equivalent, then P
(d)
A (x) = P

(d)
B (x)

for any positive integer d.

3. Properties of polynomial invariants

In this section, we describe properties of polynomial invariants P
(d)
A (x) defined in Section

2.

Lemma 5. Let (A, R) be a quasitriangular Hopf algebra over a field k and u the Drinfel’d
element associated to R. If A is semisimple and cosemisimple, then u(dimA)3 = 1.

Proof. Let us consider the following sub-Hopf algebras B and H of A :

B := { (α ⊗ id)(R) | α ∈ A∗ },
H := { (id ⊗ α)(R) | α ∈ A∗ }.

By [14, Proposition 2], the Hopf algebra B is isomorphic to the Hopf algebra H∗cop. Let
(D(H),R) be the Drinfel’d double of H . By [14, Theorem 2], there is a homomorphism

F : (D(H),R) −→ (A, R) of quasitriangular Hopf algebras. It follows that the Drinfel’d
element ũ associated to (D(H),R) satisfies F (ũ) = u. Since A is semisimple, sub-Hopf

algebras H and H∗cop ∼= B are also semisimple [9, Corollary 2.5]. Thus H is semisimple

and cosemisimple. So, we have ũ(dim H)3 = 1 by [4, Theorem 2.5 & Theorem 4.3], and

whence u(dim H)3 = 1. Since dimA is divided by dim H [14, Proposition 2], we have

u(dimA)3 = 1.

For a field K, let ZK denote the integral closure the prime ring of K, that is, if the char-

acteristic of K is 0, then ZK is the ring of algebraic integers in K, and if the characteristic
of K is p > 0, then ZK is the algebraic closure of the prime field Fp in K.

From the above lemma, we have:

Proposition 6. Let H be a semisimple and cosemisimple Hopf algebra of finite dimension

over a field K. Then, for any absolutely simple left H-module M , the coefficients of the

polynomial PH,M(x) are in ZK. Therefore, P
(d)
H (x) ∈ ZK [x] for any positive integer d.
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Next, we examine relationship between polynomial invariants and Galois extensions of

fields. Let K/k be a field extension, and H a Hopf algebra over K. By a k-form of H we
mean a Hopf algebra A over k such that H ∼= AK = A⊗K as K-Hopf algebras[1, p.181].

Theorem 7. Let K/k be a finite Galois extension of fields, and H a semisimple and
cosemisimple Hopf algebra of finite dimension over K. If H possesses a k-form, then

P
(d)
H (x) ∈ (k ∩ ZK)[x] for each positive integer d.

We have two corollaries as applications of the above theorem.

Corollary 8. Let K be a finite Galois extension field of Q, and H a semisimple Hopf

algebra of finite dimension over K. If H possesses a Q-form, then P
(d)
H (x) ∈ Z[x] for a

positive integer d, where Z is the rational integral ring.

Proof. By [7] a semisimple Hopf algebra over a field of characteristic 0 of finite dimension is
cosemisimple. So, the semisimple Hopf algebra H is also cosemisimple. Since Q∩ZK = Z,

applying Theorem 7 to H , we have P
(d)
H (x) ∈ Z[x].

Corollary 9. Let Γ be a finite group, and K a finite Galois extension field of Q. Then,

P
(d)
K[Γ ](x) ∈ Z[x] for a positive integer d.

Next, we discuss on stability of polynomial invariants under extension of fields.

Let A be a Hopf algebra over a field k, and L a commutative algebra over k. Then,
AL = A⊗L becomes a Hopf algebra over L. Furthermore, if R =

∑
i αi⊗βi is a universal

R-matrix of A, then

RL =
∑

i

(αi ⊗ 1K) ⊗L (βi ⊗ 1K) ∈ AL ⊗L AL

is a universal R-matrix of AL.
Let alg

�
denote the k-additive category whose objects are commutative algebras over

k and morphisms are algebra maps between them. Let A and B be two Hopf algebras
over k. For a commutative algebra L ∈ alg

�
, we set

HopfL(A ⊗ L,B ⊗ L) := { the L-Hopf algebra maps A ⊗ L −→ B ⊗ L },
and for an algebra map f : L1 −→ L2 between commutative algebras L1, L2 ∈ alg

�
and

ϕ ∈ HopfL1(A ⊗ L1, B ⊗ L1) we define a map f∗ϕ ∈ HopfL2(A ⊗ L2, B ⊗ L2) by the

composition:

A ⊗ L2
id⊗η−−−→ A ⊗ (L1 ⊗ L2) ∼= (A ⊗ L1) ⊗ L2

ϕ⊗id−−−−→ (B ⊗ L1) ⊗ L2

idB⊗f−−−−→ (B ⊗ L2) ⊗ L2
∼= B ⊗ (L2 ⊗ L2)

id⊗μL2−−−−−→ B ⊗ L2,

where μL2 is the multiplication of L2, and η : L2 −→ L1⊗L2 is the k-algebra map defined

by η(y) = 1L1 ⊗ y (y ∈ L2). This k-linear map f∗ϕ is directly defined by

(f∗ϕ)(a ⊗ y) =
∑

i

bi ⊗ f(xi)y,
(
ϕ(a ⊗ 1L1) =

∑
i

bi ⊗ xi

)
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for all a ∈ A, y ∈ L2. Let Set denote the category whose objects are sets and morphisms

are maps. Then we have a covariant functor Hopf(A, B) : alg
�
−→ Set such as

for an object : L 
−→ HopfL(A ⊗ L,B ⊗ L),

for a morphism : f 
−→
(
Hopf(A, B)(f) : ϕ 
−→ f∗ϕ

)
.

If A and B are of finite dimension over k, then the functor Hopf(A, B) can be rep-

resented by some finitely generated commutative algebra Z ∈ alg
�

[20, p.4–5 & p.58].
Furthermore, if A is semisimple, and B is cosemisimple, then the representing object Z

is separable and of finite dimension[5, Corollary 1.3]. This fact leads to the following
theorem.

Theorem 10. Let A be a cosemisimple Hopf algebra over a field k of finite dimension.

Then, there is a separable finite extension field L of k such that

(i) there are only finitely many universal R matrices of AL, and
(ii) for any field extension E/L, the map Braid(AL) −→ Braid(AE), R 
−→ RE is

bijective.

Corollary 11. Let A be a semisimple and cosemisimple Hopf algebra over a field k of
finite dimension. Then, there is a separable finite extension field L of k such that for any

field extension E of L and any positive integer d, P
(d)

AE(x) = P
(d)

AL (x) in E[x].

4. Examples

In this section, we give computational results of polynomial invariants for several Hopf
algebras. By comparing polynomial invariants one has new examples of pairs of Hopf

algebras such that their representation rings are isomorphic, but they are not monoidally
Morita equivalent.

Let N ≥ 1 be an odd integer and n ≥ 2, and consider the finite group

GNn = 〈h, t, w | t2 = h2N = 1, wn = hN , tw = w−1t, ht = th, hw = wh〉.
The group GNn is non-commutative, and the order of it is 4Nn. We remark that if N = 1,

then GNn
∼= D4n, the dihedral group of order 4n. Let k be a field of ch(k) � 2Nn which

contains a primitive 4Nn-th root of unity. The group algebra k[GNn] has a Hopf algebra

structure in a usual way. At the same time, one can define another Hopf algebra structure
on k[GNn] as follows.

Δ(h) = h ⊗ h, Δ(t) = hNwt ⊗ e1t + t ⊗ e0t, Δ(w) = w ⊗ e0w + w−1 ⊗ e1w,

ε(h) = 1, , ε(t) = 1, ε(w) = 1,

S(h) = h−1, S(t) = (−e1w + e0)t, S(w) = e1w
−1 + e1w,
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where e0 = 1+hN

2
, e1 = 1−hN

2
. We denote this Hopf algebra by ANn. If we set

λ =

{
−1 (n is even),

+1 (n is odd),

then the Hopf algebra ANn is isomorphic to the Hopf algebra A+λ
Nn which is introduced by

Satoshi Suzuki[16]. Properties of the Hopf algebras A1n are studied in detail in [2], and
A12 especially coincides with the Kac-Paljutkin algebra K8 [6, 11], which is the unique

non-commutative and non-cocommutative semisimple Hopf algebra of dimension 8 up to
isomorphism.

Let ω ∈ k be a primitive 4Nn-th root of unity. Then, a full set of non-isomorphic
(absolutely) simple left k[GNn]-modules is given by

{ Vijk | i, j = 0, 1, k = 0, 2, · · · , 2N − 2 }
∪{ Vjk | k = 0, 1, · · · , 2N − 1, j = 1, 2, · · · , n − 1, j ≡ k (mod 2) },

where the action χijk of k[GNn] on Vijk = k is given by

χijk(t) = (−1)i, χijk(w) = (−1)j, χijk(h) =

{
ω2kn (n is even),

ω2(k+j)n (n is odd),

and the left action ρjk of k[GNn] on Vjk = k ⊕ k is given by

ρjk(t) =

(
0 1
1 0

)
, ρjk(w) =

(
ω2jN 0

0 ω−2jN

)
, ρjk(h) =

(
ω2kn 0

0 ω2kn

)
.

Since ANn is isomorphic to the dual Hopf algebra, we can compute P
(d)
ANn

(x) (d = 1, 2)

by using the data of the braidings of A+λ
Nn determined by S. Suzuki[16]. We set

ε(n) =

{
0 (n is even),

1 (n is odd).

Proposition 12. (1) In case of n ≥ 3,

P
(1)
ANn

(x) =

⎧⎪⎪⎨
⎪⎪⎩

N−1∏
s=0

N−1∏
i=0

(x − ω−8nis2
)4n(x − ω−8ins2

(−1)
n
2 )4n if n is even,

N−1∏
s=0

N−1∏
i=0

(x − ω−8nis2
)4n(x2 − ω−4in(2s+1)2)2n if n is odd,

P
(2)
ANn

(x) =

N−1∏
s=0

n−ε(n)
2∏

t=1

N−1∏
i=0

n−1∏
j=0

(x2 − ω−4in(2s+1)2−2N(2t−1)2(2j+1−ε(n)))

×
N−1∏
s=0

n−2+ε(n)
2∏

t=1

N−1∏
i=0

n−1∏
j=0

(x − ω−8ins2−4Nt2(2j+1−ε(n)))2.
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(2) In case of n = 2,

P
(1)
AN2

(x) =
N−1∏
s=0

N−1∏
i=0

(x − ω−16is2

)16(x + ω−8is2

)8(x + ω−16is2

)8,

P
(2)
AN2

(x) =

N−1∏
s=0

N−1∏
i=0

(x4 + ω−16i(2s+1)2)(x2 − ω−8i(2s+1)2)2.

On the other hand, we can determine the universal R-matrices of the group Hopf algebra
k[GNn] by using the method developed in [19], and compute the polynomial invariants

P
(d)
�[GNn](x) (d = 1, 2) .

Proposition 13. (1) In case of n ≥ 3,

P
(1)
�[GNn](x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N−1∏
s=0

N−1∏
i=0

(x − ω−8nis2
)8n if n is even,

N−1∏
s=0

N−1∏
i=0

(x − ω−8nis2
)4n(x2 − ω−4in(2s+1)2)2n if n is odd,

P
(2)
�[GNn](x) =

N−1∏
s=0

n−ε(n)
2∏

t=1

N−1∏
i=0

n−1∏
j=0

(x2 − ω−4in(2s+1)2−4Nj(2t−1)2)

×
N−1∏
s=0

n−2+ε(n)
2∏

t=1

N−1∏
i=0

n−1∏
j=0

(x − ω−8ins2−8Njt2)2.

(2) In case of n = 2,

P
(1)
�[GNn](x) =

N−1∏
s=0

N−1∏
i=0

(x − ω−16is2

)32,

P
(2)
�[GNn](x) =

N−1∏
s=0

N−1∏
i=0

(x4 − ω−16i(2s+1)2)(x2 − ω−8i(2s+1)2)2.

By comparing polynomial invariants of two Hopf algebras ANn and k[GNn], we see

immediately that if n is odd, then P
(d)
ANn

(x) = P
(d)
�[GNn](x) for d = 1, 2. So, our polynomial

invariants do not detect the representation categories of ANn and k[GNn] for an odd
integer n. However, for an even integer n our polynomial invariants are useful.

Theorem 14. Let N ≥ 1 be an odd integer and n ≥ 2, and let k be a field of ch(k) � 2Nn

which contains a primitive 4Nn-th root of unity. If n is even, then two Hopf algebras ANn

and k[GNn] are not monoidally Morita equivalent.

Example 15. For a non-negative integer h, Φh denotes the h-th cyclotomic polynomial.
Then, by using Maple12 software, we see that the polynomial invariants of Hopf algebras

k[GNn] and ANn for N = 1, 3, 5 and n = 2, 3, 4 are given as in the following list.

–103–



Hopf algebra A P
(1)
A (x) P

(2)
A (x)

k[G12] Φ32
1 Φ4Φ

3
2Φ

3
1

A12 Φ16
2 Φ16

1 Φ8Φ
2
2Φ

2
1

k[G32] Φ64
3 Φ160

1 Φ2
12Φ

5
4Φ

6
6Φ

6
3Φ

15
2 Φ15

1

A32 Φ32
6 Φ32

3 Φ80
2 Φ80

1 Φ2
24Φ

5
8Φ

4
6Φ

4
3Φ

10
2 Φ10

1

k[G52] Φ128
5 Φ288

1 Φ4
20Φ

12
10Φ

12
5 Φ9

4Φ
27
2 Φ27

1

A52 Φ64
10Φ

64
5 Φ144

2 Φ144
1 Φ4

40Φ
8
10Φ

8
5Φ

9
8Φ

18
2 Φ18

1

k[G13]

A13

Φ6
2Φ

18
1 Φ6Φ

3
3Φ2Φ

3
1

k[G33]

A33

Φ12
6 Φ36

3 Φ30
2 Φ90

1 Φ9
6Φ

27
3 Φ9

2Φ
27
1

k[G53]

A53

Φ24
10Φ

72
5 Φ54

2 Φ162
1 Φ4

30Φ
12
15Φ

4
10Φ

12
5 Φ9

6Φ
27
3 Φ9

2Φ
27
1

k[G14]

A14

Φ32
1

Φ2
8Φ

2
4Φ

6
2Φ

6
1

Φ2
16Φ

4
4

k[G34]

A34

Φ64
3 Φ160

1

Φ4
24Φ

4
12Φ

10
8 Φ12

6 Φ12
3 Φ10

4 Φ30
2 Φ30

1

Φ4
48Φ

10
16Φ

8
12Φ

20
4

k[G54]

A54

Φ128
5 Φ288

1

Φ8
40Φ

8
20Φ

24
10Φ

24
5 Φ18

8 Φ18
4 Φ54

2 Φ54
1

Φ8
80Φ

16
20Φ

18
16Φ

36
4

Remark 16. For an odd integer N ≥ 1 and an integer n ≥ 2, the representation rings
of two Hopf algebras ANn and k[GNn] are isomorphic as rings with ∗-structure. In the

case of N = 1, this result is obtained by Masuoka[12]. By the above theorem, hence,
for an even integer n, ANn and k[GNn] give an example of a pair of Hopf algebras such

that their representation rings are isomorphic, but their representation categories are not.
Such an example was first found by Tambara and Yamagami[18]. They showed that 8-

dimensional non-commutative semisimple Hopf algebras C[D8], C[Q8], K8 over C are not
mutually monoidally Morita equivalent. From the viewpoint of extension of Hopf algebras

Masuoka[12] showed that their result holds in the case where the base field are algebraically
closed, and its characteristic does not divide 2. By using our polynomial invariants we

can also prove the Tambara and Yamagami’s result mentioned above. The polynomial
invariants of 8-dimensional non-commutative semisimple Hopf algebras k[D8], k[Q8], K8

are given by

P
(1)
�[D8](x) = P

(1)
�[Q8]

(x) =(x − 1)32, P
(1)
K8

(x) = (x − 1)16(x + 1)16,
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P
(2)
�[D8](x) = x8 − 2x6 + 2x2 − 1,

P
(2)
�[Q8]

(x) = x8 + 2x6 − 2x2 − 1,

P
(2)
K8

(x) = x8 − 2x6 + 2x4 − 2x2 + 1.

Since polynomials P
(2)
�[D8]

(x), P
(2)
�[Q8]

(x), P
(2)
K8

(x) are all different, we conclude that by The-

orem 4 the Hopf algebras k[D8], k[Q8], K8 are not mutually monoidally Morita equivalent.
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