QF-3' MODULES RELATIVE TO TORSION THEORIES AND OTHERS

YASUHIKO TAKEHANA

Let R be a ring with identity, and let Mod-R be the category of right R-modules. Let M be a right R-module. We denote by E(M) the injective hull of M. M is called QF-3' module, if E(M) is M-torsionless, that is, E(M) is isomorphic to a submodule of a direct product ΠM of some copies of M.

A subfunctor of the identity functor of Mod-R is called a *preradical*. For a preradical σ , $\mathcal{T}_{\sigma} := \{M \in \text{Mod-}R ; \sigma(M) = M\}$ is the class of σ -torsion right R-modules, and $\mathcal{F}_{\sigma} := \{M \in \text{Mod-}R ; \sigma(M) = 0\}$ is the class of σ -torsionfree right R-modules. A right R-module M is called σ -injective (resp. σ -projective) if the functor $\text{Hom}_R(\ , M)$ (resp. $\text{Hom}_R(M, \)$) preserves the exactness for any exact sequence $0 \to A \to B \to C \to 0$ with $C \in \mathcal{T}_{\sigma}$ (resp. $A \in \mathcal{F}_{\sigma}$). A right R-module M is called σ -QF- β module if $E_{\sigma}(M)$ is M-torsionless, where $E_{\sigma}(M)$ is defined by $E_{\sigma}(M)/M := \sigma(E(M)/M)$.

In this note, we characterize σ -QF-3' modules and give some related facts.

1. QF-3' modules relative to hereditary torsion theories

In [1], Y.Kurata and H.Katayama characterized QF-3' modules by using torsion theories. In this section we generarize QF-3' modules by using an idempotent radical. A preradical σ is *idempotent* (resp. *radical*) if $\sigma(\sigma(M)) = \sigma(M)$ (resp. $\sigma(M/\sigma(M)) = 0$) for any module M. For modules M and N, $k_N(M)$ denotes $\cap \{\ker f ; f \in \operatorname{Hom}_R(M, N)\}$. It is well known that k_A is a radical for any module A and that $\mathcal{T}_{k_A} = \{M \in \operatorname{Mod-}R; \operatorname{Hom}_R(M, A) = 0\}$ and $\mathcal{F}_{k_A} = \{M \in \operatorname{Mod-}R; M \subseteq \Pi A\}$.

Theorem 1. Let A be a module and σ a preradical. Then the following conditions (1), (2) and (3) are equivalent. If σ is an idempotent radical, then (1), (2), (3) and (4) are equivalent. Moreover if σ is a left exact radical and A is σ -torsion, then all conditions are equivalent.

(1) A is a σ -QF-3' module.

(2) $k_A(E_\sigma(A)) = 0$

(3) $k_A(-) = k_{E_{\sigma}(A)}(-)$

(4) $k_A(N) = N \cap k_A(M)$ holds for any module M and any submodule N such that M/N is σ -torsion.

(5) Let M be a module and N a submodule of M such that M/N is σ -torsion. Then for any nonzero $f \in \operatorname{Hom}_R(N, A)$, there exists $p \in \operatorname{Hom}_R(A, A)$ and $\overline{f} \in \operatorname{Hom}_R(M, A)$ such that $p \cdot f = \overline{f} \cdot i \neq 0$.

(6) Let $0 \to N \xrightarrow{f} M \to L \to 0$ be an exact sequence such that L is σ -torsion. If $\operatorname{Hom}_R(f, A) = 0$, then $\operatorname{Hom}_R(N, A) = 0$.

(7) For any module M and a submodule N of M,

The detailed version of this paper will be submitted for publication elsewhere.

(i) If $M \in \mathcal{T}_{k_A}$ and $M/N \in \mathcal{T}_{\sigma}$, then $N \in \mathcal{T}_{k_A}$.

(ii) If $N \in \mathcal{F}_{k_A}$ and $M/N \in \mathcal{F}_{k_A} \cap \mathcal{T}_{\sigma}$, then $M \in \mathcal{F}_{k_A}$.

(8) If $M \in \mathcal{F}_{k_A}$, then $E_{\sigma}(M) \in \mathcal{F}_{k_A}$.

(9) If N is an essential submodule of a module M such that $M/N \in \mathcal{T}_{\sigma}$ and $N \in \mathcal{F}_{k_A}$, then $M \in \mathcal{F}_{k_A}$.

As an application of Theorem 1, we give a characterization of the ring having the property that a right maximal quotient ring Q is torsionless.

Corollary 2. Let Q be a maximal right quotient ring of R. Then the following conditions are equivalent.

(1) Q is torsionless (i.e., $Q \subset \Pi R$).

 $(2) \quad k_R(Q) = 0$

(3) $k_R(_) = k_Q(_)$

(4) $k_R(N) = N \cap k_R(M)$ holds for a module M and any submodule N of M such that $\operatorname{Hom}_R(M/N, E(R)) = 0.$

Proposition 3. If σ is a left exact radical, (7) of (i) is equivalent to the condition (10) $\mathcal{T}_{k_A} = \mathcal{T}_{k_{E_{\sigma}(A)}}$.

For a module M, Z(M) denote the singular submodule of M, that is $Z(M) := \{m \in M ; (0:m) \text{ is essential in } R\}$, where $(0:m) = \{r \in R ; mr = 0\}$.

Proposition 4. If σ is a left exact radical and $A \in \mathcal{T}_{\sigma} \cap \mathcal{F}_Z$, then (7) of (*i*) is equivalent to the condition (1), that is, $E_{\sigma}(A) \subseteq \Pi A$ is equivalent to the condition that \mathcal{T}_{k_A} is closed under taking σ -dense submodules.

A module N is called a σ -essential extension of M if N is an essential submodule of M such that M/N is σ -torsion.

Lemma 5. Let σ be an idempotent radical and M a σ -essential extension of a module N. Then $E_{\sigma}(M) = E_{\sigma}(N)$ holds.

Proposition 6. Let σ be an idempotent radical. Then the class of σ -QF-3' modules is closed under taking σ -essential extensions.

2. σ -left exact preradicals and σ -hereditary torsion theories

A precadical t is left exact if $t(N) = N \cap t(M)$ holds for any module M and any submodule N of M. In this section we generalize left exact precadicals by using torsion theories.

Let σ be a precadical. We call a precadical $t \sigma$ -left exact if $t(N) = N \cap t(M)$ holds for any module M and any submodule N of M with $M/N \in \mathcal{T}_{\sigma}$. If a module A is σ -QF-3' and $t = k_A$, then t is a σ -left exact radical. Now we characterize σ -left exact precadicals.

Lemma 7. For a preradical t and σ , let $t_{\sigma}(M)$ denote $M \cap t(E_{\sigma}(M))$ for any module M. Then $t_{\sigma}(M)$ is uniquely determined for any choice of E(M).

Lemma 8. Let t be a preradical and σ an idempotent radical. Then t_{σ} is a σ -left exact preradical.

Theorem 9. Let σ be an idempotent radical. We consider the following conditions on a preradical t. Then the implications $(5) \leftarrow (1) \Leftrightarrow (2) \rightarrow (3) \Leftrightarrow (4)$ hold. If t is a radical, then $(4) \rightarrow (1)$ holds. If t is an idempotent preradical and σ is left exact, then $(5)(i) \rightarrow (1)$ holds. Thus if t is an idempotent radical and σ is a left exact radical, then all conditions are equivalent.

(1) t is a σ -left exact preradical.

(2) $t(M) = M \cap t(E_{\sigma}(M))$ holds for any module M.

(3) \mathcal{F}_t is closed under taking σ -essential extension, that is, if M is an essential extension of a module $N \in \mathcal{F}_t$ with $M/N \in \mathcal{T}_{\sigma}$, then $M \in \mathcal{F}_t$.

(4) \mathcal{F}_t is closed under taking σ -injective hulls, that is, if $M \in \mathcal{F}_t$, then $E_{\sigma}(M) \in \mathcal{F}_t$.

(5) For any module M and a submodule N of M,

(i) \mathcal{T}_t is closed under taking σ -dense submodules, that is, if $M \in \mathcal{T}_t$ and $M/N \in \mathcal{T}_{\sigma}$, then $N \in \mathcal{T}_t$.

(ii) \mathcal{F}_t is closed under taking σ -extensions, that is, if $N \in \mathcal{F}_t$ and $M/N \in \mathcal{F}_t \cap \mathcal{T}_{\sigma}$, then $M \in \mathcal{F}_t$.

A torsion theory for Mod-R is a pair $(\mathcal{T}, \mathcal{F})$ of classes of objects of Mod-R satisfying the following three conditions.

(i) $\operatorname{Hom}_R(T, F) = 0$ for all $T \in \mathcal{T}$ and $F \in \mathcal{F}$.

- (*ii*) If $\operatorname{Hom}_R(M, F) = 0$ for all $F \in \mathcal{F}$, then $M \in \mathcal{T}$.
- (*iii*) If $\operatorname{Hom}_R(T, N) = 0$ for all $T \in \mathcal{T}$, then $N \in \mathcal{F}$.

We put $t(M) = \sum_{\mathcal{T} \ni N \subset M} N (= \bigcap_{M/N \in \mathcal{F}})$, then $\mathcal{T} = \mathcal{T}_t$ and $\mathcal{F} = \mathcal{F}_t$ hold.

For a torsion theory $(\mathcal{T}, \mathcal{F})$, if \mathcal{T} is closed under taking submodules, then $(\mathcal{T}, \mathcal{F})$ is called a *hereditary torsion theory*. \mathcal{T} is closed under taking submodules if and only if \mathcal{F} is closed under taking injective hulls.

Now we call $(\mathcal{T}, \mathcal{F})$ a σ -hereditary torsion theory if \mathcal{T} is closed under taking σ -dense submodules. If σ is a left exact radical, \mathcal{T} is closed under taking σ -dense submodules if and only if \mathcal{F} is closed under taking σ -injective hulls by Theorem 9.

Proposition 10. Let t be an idempotent preradical and σ a radical such that \mathcal{F}_{σ} is included \mathcal{F}_t . If \mathcal{F}_t is closed under taking σ -injective hulls, then \mathcal{F}_t is closed under taking injective hulls.

Thus if σ is a left exact radical, $\mathcal{T}_{\sigma} \supseteq \mathcal{T}_{t}$ and $(\mathcal{T}_{t}, \mathcal{F}_{t})$ is a σ -hereditary torsion theory, then $(\mathcal{T}_{t}, \mathcal{F}_{t})$ is a hereditary torsion theory.

Proposition 11. If $\sigma(M)$ contains the singlar submodule Z(M) for any module M, then a σ -left exact preradical is a left exact preradical.

Theorem 12. Let σ be a left exact radical. Then $(\mathcal{T}, \mathcal{F})$ is σ -hereditary if and only if there exists a σ -injective (σ -QF-3') module Q such that $\mathcal{T} = \{M \in \text{Mod-}R ; \text{Hom}_R(M, Q) = 0\}$.

Proposition 13. Let σ be an idempotent radical and $(\mathcal{T}, \mathcal{F})$ a σ -hereditary torsion theory, where $\mathcal{T} = \{M \in \text{Mod-}R ; \text{Hom}_R(M, Q) = 0\}$ for some σ QF-3' module Q in \mathcal{F} . Let M be a σ -torsion module. Then M is in \mathcal{F} if and only if M is contained in a direct product of some copies of Q.

3. CQF-3' modules relative to torsion theories

A preradical t is called *epi-preserving* if t(M/N) = (t(M) + N)/N for any module M and any submodule N of M. A short exact sequence $0 \to K(M) \to P(M) \to M \to 0$ is a *projective cover* of a module M if P(M) is projective and K(M) is small in P(M).

In [2], F.F. Mbuntum and K. Varadarajan dualized QF-3' modules and characterized them. Let M be a module with a projective cover. M is called a CQF-3' module if P(M)is M-generated, that is, P(M) is isomorphic to a homomorphic image of a direct sum $\oplus M$ of some copies of M. In this section we generalize CQF-3' modules and characterize them.

A short exact sequence $0 \to K_{\sigma}(M) \to P_{\sigma}(M) \to M \to 0$ is called σ -projective cover of a module M if $P_{\sigma}(M)$ is σ -projective and $K_{\sigma}(M)$ is σ -torsion and small in $P_{\sigma}(M)$. If σ is an idempotent radical and a module M has a projective cover, then M has a σ -projective cover and it is given $K_{\sigma}(M) = k(M)/\sigma(K(M)), P_{\sigma}(M) = P(M)/\sigma(K(M))$. Now we call a module M with a projective cover a σ -CQF-3'module if $P_{\sigma}(M)$ is M-generated. Let $t_M(N)$ denote the sums of images of all homomorphisms from M to N for a module Mand a module N. It is well known that t_A is an idempotent preradical for any module Aand $\mathcal{T}_{t_A} = \{M \in \text{Mod-}R ; \oplus A \to M \to 0\}$ and $\mathcal{F}_{t_A} = \{M \in Mod$ - $R ; \text{Hom}(A, M) = 0\}$.

Theorem 14. Let σ be a preradical, and suppose that a module A has a σ -projective cover $0 \to K_{\sigma}(A) \to P_{\sigma}(A) \to A \to 0$. Consider the following conditions.

- (1) $P_{\sigma}(A)$ is a σ -CQF-3' module.
- (2) $t_A(P_\sigma(A)) = P_\sigma(A)$
- (3) $t_A(_) = t_{P_{\sigma}(A)}(_)$

(4) $t_A(_)$ is a σ -epi-preserving preradical, that is, $t_A(M/N) = (t_A(M) + N)/N$ holds for any module M and any submodule $N \in \mathcal{F}_{\sigma}$.

(5) (i) \mathcal{T}_{t_A} is closed under taking \mathcal{F}_{σ} -extensions, that is, $t_A(M) = M$ holds for any module M and any submodule N of M such that $M/N \in \mathcal{T}_{t_A}$ and $N \in \mathcal{F}_{\sigma} \cap \mathcal{T}_{t_A}$.

(ii) \mathcal{F}_{t_A} is closed under taking \mathcal{F}_{σ} -factor modules, that is, $M/N \in \mathcal{F}_{t_A}$ holds for any module $M \in \mathcal{F}_{t_A}$ and any submodule $N \in \mathcal{F}_{\sigma}$ of M.

(6) \mathcal{T}_{t_A} is closed under taking σ -projective covers, that is, $P_{\sigma}(M) \in \mathcal{T}_{t_A}$ holds for any module $M \in \mathcal{T}_{t_A}$.

(7) \mathcal{T}_{t_A} is closed under taking σ -coessential extensions, that is, for any module M if there exists a small submodule N in \mathcal{F}_{σ} such that $M/N \in \mathcal{T}_{t_A}$ then M is in \mathcal{T}_{t_A} .

(8) If $\operatorname{Hom}_R(A, f) = 0$, then $\operatorname{Hom}_R(A, M/N) = 0$ holds for any module M and any submodule $N \in \mathcal{F}_{\sigma}$.

Then $(1) \rightarrow (2) \rightarrow (3) \rightarrow (1)$ and $(4) \rightarrow (1)$ hold. If σ is idempotent, then $(3) \rightarrow (4)$, $(1) \rightarrow (8)$ and $(6) \rightarrow (5)$, (7) hold. If σ is a radical, then $(7) \rightarrow (6)$, $(4) \rightarrow (2)$, (6) hold. If σ is an epi-preserving radical and A is in \mathcal{F}_{σ} , then $(8) \rightarrow (5)$ holds, moreover if σ is idempotent then $(5) \rightarrow (2)$ holds.

Thus if σ is an epi-preserving idempotent radical and A is in \mathcal{F}_{σ} , all conditions are equivalent.

Proposition 15. Let σ be an epi-preserving idempotent radical. Then the following conditions on a module A are equivalent.

- (1) \mathcal{F}_{t_A} is closed under taking \mathcal{F}_{σ} -factor modules.
- (2) $\mathcal{F}_{t_A} = \mathcal{F}_{t_{P_{\sigma}(A)}}$

Lemma 16. Let σ be an idempotent radical. If N is in \mathcal{F}_{σ} and is a small submodule of M, then $P_{\sigma}(M/N) \cong P_{\sigma}(M)$ holds.

Proposition 17. Let σ be an idempotent radical. The class of σ CQF-3' modules is closed under taking σ -coessntial extensions, that is, if a module M has a small submodule $N \in \mathcal{F}_{\sigma}$ such that M/N is a σ -CQF-3' module, then M is also a σ -CQF-3' module.

4. σ -epi-preserving preradicals and σ -cohereditary torsion theories

In this section we characterize σ -epi-preserving preradicals when R is a right perfect ring.

Theorem 18. Let R be a right perfect ring and σ an idempotent radical. Consider the following conditions on a preradical t.

(1) t is an σ -epi-preserving preradical, that is, t(M/N) = (t(M) + N)/N holds for a module M and any submodule $N \in \mathcal{F}_{\sigma}$ of M.

(2) \mathcal{T}_t is closed under taking σ -coessential extensions, that is, for any module M if there exists a small submodule N in \mathcal{F}_{σ} such that $M/N \in \mathcal{T}_t$ then M is in \mathcal{T}_t .

(3) \mathcal{T}_t is closed under taking σ -projective covers, that is, $P_{\sigma}(M) \in \mathcal{T}_t$ holds for any module $M \in \mathcal{T}_t$.

(4) (i) \mathcal{F}_t is closed under taking \mathcal{F}_{σ} -factor modules, that is, $M/N \in \mathcal{F}_t$ holds for any module $M \in \mathcal{F}_t$ and any submodule $N \in \mathcal{F}_{\sigma}$ of M.

(ii) \mathcal{T}_t is closed under taking \mathcal{F}_{σ} -extensions, that is, t(M) = M holds for any module M and any submodule N of M such that $M/N \in \mathcal{T}_t$ and $N \in \mathcal{F}_{\sigma} \cap \mathcal{T}_t$.

Then $(4) \leftarrow (1) \rightarrow (2) \Leftrightarrow (3)$ hold. If t is an idempotent preradical, then $(3) \rightarrow (1)$ holds. If σ is an epi-preserving preradical and t is a radical, then $(4) \rightarrow (1)$ holds. Thus if σ is an epi-preserving idempotent radical and t is an idempotent radical, then all conditions are equivalent.

We call a torsion theory $(\mathcal{T}, \mathcal{F})$ σ -cohereditary torsion theory if \mathcal{F} is cosed under taking \mathcal{F}_{σ} -factor modules for an idempotent radical σ .

Theorem 19. Let R be a right perfect ring and σ an epi-preserving idempotent radical. Then a torsion theory $(\mathcal{T}, \mathcal{F})$ is σ -cohereditary if and only if there exists an σ -projective $(\sigma$ -CQF-3') module Q such that $\mathcal{F} = \{M \in \text{Mod-}R ; \text{Hom}_R(Q, M) = 0\}.$

Proposition 20. Let R be a right perfect ring, σ be an idempotent radical and $(\mathcal{T}, \mathcal{F})$ be a σ -cohereditary torsion theory, where $\mathcal{F} = \{M \in \text{Mod-}R ; \text{Hom}_R(Q, M) = 0\}$ for some σ -CQF-3' module $Q \in \mathcal{T}$. Let M be a σ -torsionfree module. Then $M \in \mathcal{T}$ if and only if M is generated by Q.

5. σ -stable torsion theory and σ -costable torsion theory

A torsion theory $(\mathcal{T}_t, \mathcal{F}_t)$ is called *stable* if \mathcal{T}_t is closed under taking injective hulls. In this section we generalize stable torsion theory by using torsion theories.

Proposition 21. Let σ be an idempotent radical and L a submodule of a module M. Then the implications $(1) \rightarrow (2) \rightarrow (3)$ hold. Moreover, if σ is a left exact radical, then $(3) \rightarrow (1)$ holds.

(1) L is σ -complemented in M, that is, there exists a submodule K of M such that L is maximal in $\Gamma_K = \{L_i ; L_i \subseteq M, L_i \cap K = 0, M/(L_i + K) \in \mathcal{T}_{\sigma}\}$

(2) $L = E_{\sigma}(L) \cap M$.

(3) L is σ -essentially closed in M, that is, there is no σ -essential extension of L in M.

We call a preradical $t \ \sigma$ -stable if \mathcal{T}_t is closed under taking σ -injective hulls. We put $\mathcal{X}_t(M) := \{X \ ; \ M/X \in \mathcal{T}_t\}$ and $N \cap \mathcal{X}_t(M) := \{N \cap X \ ; \ X \in \mathcal{X}_t(M)\}.$

Theorem 22. Let t be an idempotent preradical and σ an idempotent radical. Then the following conditions (1), (2) and (3) are equivalent. Moreover, if σ is left exact and T_t is closed under taking σ -dense submodules, then all the following conditions are equivalent.

(1) t is σ -stable, that is, \mathcal{T}_t is closed under taking σ -injective hulls.

(2) The class of σ -injective modules are closed under taking the unique maximal ttorsion submodules, that is, t(M) is σ -injective for any σ -injective module M.

(3) $E_{\sigma}(t(M)) \subset t(E_{\sigma}(M))$ holds for any module M.

(4) \mathcal{T}_t is closed under taking σ -essential extensions.

(5) If M/N is σ -torsion, then $N \cap \mathcal{X}_t(M) = \mathcal{X}_t(N)$ holds.

(6) For any module M, t(M) is σ -complemented in M.

(7) For any module M, $t(M) = E_{\sigma}(t(M)) \cap M$ holds.

(8) For any module M, t(M) is σ -essentially closed in M.

(9) For any σ -injective module E with $E/t(E) \in \mathcal{T}_{\sigma}$, t(E) is a direct summand of E.

(10) $E_{\sigma}(t(M)) = t(E_{\sigma}(M))$ holds for any module M.

If \mathcal{T}_t is closed under taking σ -dense submodules, then $(1) \to (4) \to (5)$ hold. Moreover, if σ is left exact, then $(1) \to (6)$ and $(3) \to (10)$ hold.

It is well known that if R is right noetherian, t is stable if and only if every indecomposable injective module is t-torsion or t-torsionfree. By using Theorem 1 in [3], we generalized this as follows.

Theorem 23. Let t be an idempotent radical and σ a left exact radical. Then

(1) If t is σ -stable, then (*) every indecomposable σ -injective module E with $E/T(E) \in \mathcal{T}_{\sigma}$ is either t-torsion or t-torsionfree.

(2) If the ring R satisfies the condition (*) and the ascending chain conditions on σ -dense ideals of R, then $\mathcal{T}_t \cap \mathcal{T}_{\sigma}$ is closed under taking σ -injective hulls.

We now dualize σ -stable torsion theory. Let R be a right perfect ring. We call a preradical $t \sigma$ -costable if \mathcal{F}_t is closed under taking σ -projective covers.

Theorem 24. Let σ be an idempotent radical. Then a radical t is σ -costable if and only if the class of σ -projective modules is closed under taking the unique maximal t-torsionfree factor modules, that is, P/t(P) is σ -projective for any σ -projective module P.

6. σ -SINGULAR SUBMODULES

Let σ be a left exact radical. For a module M we put $Z_{\sigma}(M) := \{m \in M ; (0 : m) \text{ is } \sigma$ -essential in $R\}$ and call it σ -singular submodule of M. Since $R/(0 : m) \in \mathcal{T}_Z \cap \mathcal{T}_\sigma$, then

 $Z_{\sigma}(M) \subseteq Z(M) \cap \sigma(M) = Z(\sigma(M)) = \sigma(Z(M))$, and so $Z_{\sigma}(M) = \{m \in M ; mR \in T_Z \cap T_{\sigma}\}$. Since Z and σ is left exact, Z_{σ} is also left exact. We will call $M \sigma$ -singular (resp. σ -nonsingular) if $Z_{\sigma}(M) = M$ (resp. $Z_{\sigma}(M) = 0$).

Proposition 25. Let σ be an idempotent radical and E a σ -nonsingular module and $\mathcal{T} = \{M \in \text{Mod-}R ; \text{Hom}_R(M, E) = 0\}$. Then \mathcal{T} is closed under taking σ -essential extensions. Therefore a torsion theory $(\mathcal{T}, \mathcal{F})$ is σ -stable, where $\mathcal{F} = \{M \in \text{Mod-}R ; \text{Hom}_R(X, M) = 0 \text{ for any } X \in \mathcal{T}\}$.

Proposition 26. Let σ a left exact radical. Then the following facts hold.

(1) If N is σ -essential in M, then $Z_{\sigma}(M/N) = M/N$.

(2) A right ideal of R is σ -essential in R if and only if $Z_{\sigma}(R/I) = R/I$.

(3) Let M be a σ -nonsingular module and N a submodule of M. Then N is σ -essential in M if and only if $Z_{\sigma}(M/N) = M/N$.

(4) For a module M, $Z_{\sigma}(M/Z_{\sigma}(M)) = M/Z_{\sigma}(M)$ holds if and only if $Z_{\sigma}(M)$ is σ -essential in M.

(5) For a simple right R-module S, S is σ -nonsingular if and only if S is σ -torsionfree or projective.

(6) If R is σ -nonsingular, then Z_{σ} is left exact radical.

(7) If M/N is σ -nonsingular for a module M and a submodule N of M, then N is σ -complemented in M. If M is σ -nonsingular, then the converse holds.

7. σ -SMALL AND σ -RADICAL

Let σ be a left exact radical. A submodule N of a module M is called σ -dense in M if M/N is σ -torsion. A module M is called σ -cocritical if M is σ -torsionfree and L is σ -dense in M for any nonzero submodule L of M. It is well known that nonzero submodule of σ -cocritical module M is essential in M. A module M is called σ -noetherian if for every ascending chain $I_1 \subseteq I_2 \subseteq I_3 \subseteq I_4 \subseteq \cdots \subseteq M$, (where $\cup I_j$ is σ -dense in M), there exists a positive integer k such that I_k is σ -dense in M. Let $J_{\sigma}(M)$ denote $\cap N_i(M/N_i$ is σ -cocritical).

Now we define σ -small submodule as follows. A submodule N of a module M is called σ -small in M if $M/(N+X) \in \mathcal{T}_{\sigma}$ implies $M/X \in \mathcal{T}_{\sigma}$ for any submodule X of M.

Theorem 27. $J_{\sigma}(M)$ contains $\sum N(N \text{ is } \sigma \text{-small in } M)$. Conversely if M be a σ -noetherian module, then $J_{\sigma}(M)$ coincides with $\sum N(N \text{ is } \sigma \text{-small in } M)$.

Remark 28. We can see in [4] that the definition of σ -small is different from ours.

(B.A.Benander's definition). N is σ -small in M if $M/(N' + X) \in \mathcal{T}_{\sigma}$ and $M/X \in \mathcal{F}_{\sigma}$, then M = X for any X of M, where $\sigma(M/N) = N'/N$.

Benander's definition of σ -small is a stronger condition than ours.

In fact, if $M/(N + X) \in \mathcal{T}_{\sigma}$, then $M/(N' + X) \in \mathcal{T}_{\sigma}$. We put $X'/X := \sigma(M/X)$. Then $M/X' \in \mathcal{F}_{\sigma}$. Since $M/(N' + X) \in \mathcal{T}_{\sigma}$, $M/(N' + X') \in \mathcal{T}_{\sigma}$. Thus M = X', and so $M/X \in \mathcal{T}_{\sigma}$, as desired.

References

[1] Y.Kurata and H.Katayama, On a generalizations of QF-3'rings, Osaka J. Math., 13(1976), 407-418.

[2] F.F.Mbuntum and K.Varadarajan, Half exact preradicals, Comm. in Algebra, 5 (1977), 555-590.

- [3] K.Masaike and T.Horigome, Direct sums of σ -injective modules, Tsukuba J. Math., Vol 4(1980) 77-81.
- [4] B.A.Benander, Torsion theory and modules of finite length, PhD.thesis, Kent State University, 1980.

GENERAL EDUCATION HAKODATE NATIONAL COLLEGE OF TECHNOLOGY, 14-1 TOKURA-CHO HAKODATE HOKKAIDO, 042-8501 JAPAN *E-mail address*: takehana@hakodate-ct.ac.jp