IWASAWA ALGEBRAS, CROSSED PRODUCTS AND FILTERED RINGS

KENJI NISHIDA

ABSTRACT. We apply the theory of crossed product to Iwasawa algebra $\Lambda(G) = \Lambda(H) * (G/H)$. A J-adic filtration of $\Lambda(H)$ can be extended to that of $\Lambda(G)$. We study Gorenstein dimension of a graded module over $\Lambda(G)$.

1. INTRODUCTION: IWASAWA ALGEBRAS

Let p be a prime integer and \mathbb{Z}_p denote the ring of p-adic integers. A topological group G is a compact p-adic analytic group if and only if G has an open normal uniform pro-p subgroup H of finite index [6]. The *Iwasawa algebra* of G is defined by

$$\Lambda(G) := \underline{\lim} \mathbb{Z}_p[G/N],$$

where N ranges over the open normal subgroups of G.

The ring theoretical survey of Iwasawa algebras is given by K. Ardakov and K.A. Brown [1]. In this paper, we address crossed products and filtered rings arising from Iwasawa algebras. Therefore, we direct our attension to the fact that a ring $\Lambda(G)$ is a crossed product of a finite group G/H over a ring $\Lambda(H)$ (Iwasawa algebra of H): $\Lambda(G) \cong \Lambda(H) * (G/H)$. Since the topological group H has good conditions, a ring $\Lambda(H)$ has good properties among them, we need:

(1) local with the radical $J := \operatorname{rad} \Lambda(H)$ and $\Lambda(H)/J \cong \mathbb{F}_p$, a field of *p*-elements,

(2) a filtered ring with the *J*-adic filtration whose associated graded ring is isomorphic to a polynomial ring $\mathbb{F}_p[x_0, \dots, x_d]$, where $d = \dim G$ is a minimal number of generators of *G* as a topological group.

- (3) a left and right Noetherian domain,
- (4) Auslander regular with $\operatorname{gldim}\Lambda(H) = d + 1$.
- (cf. [1], [4], [5], [6], [12])

2. A CROSSED PRODUCT AND A FILTERED RING

2.1. Let R be a ring and A a finite group. A crossed product S ([8], [11]) of a group A over a ring R, denoted by S := R * A, is a ring such that:

1) R is a subring of R * A

2) $\overline{A} = \{\overline{a} : a \in A\}$ is a subset of R * A consisting of units of R * A

3) R * A is a free right *R*-module with basis \overline{A}

The detailed version of this paper will be submitted for publication elsewhere.

4) For all $a, b \in A$, the equalities $\bar{a}R = R\bar{a}$ and $\bar{a}\bar{b}R = \bar{a}\bar{b}R$ hold.

Remarks. (see [11]) (1) We may assume $\bar{1}_A = 1_S$. A left *R*-module R * A is also free with basis \bar{A} . Usually, we write

$$R * A = \bigoplus_{a \in A} \bar{a}R.$$

(2) There exists a map $\sigma : A \to \operatorname{Aut} R$ such that $r\bar{a} = \bar{a}r^{\sigma(a)}$, $r \in R$, $a \in A$. In what follows, we shortly write $r\bar{a} = \bar{a}r^a$. There exists a map $\tau : A \times A \to U(R)$ such that $\bar{a}\bar{b} = \bar{a}b\tau(a,b)$. In order to assure the associativity of R * A, maps σ , τ satisfy some conditions (see [11]).

We start with the theorem which implies that the Iwasawa algebra is Auslander Gorenstein.

A ring R is said to satisfy Auslander condition, if, for all finitely generated left Rmodule M, for all $i \ge 0$ and for all right R-submodules N of $\operatorname{Ext}_R^i(M, R)$, grade of N is greater than or equal to i, where grade of an R-module X is $\inf\{j \ge 0 : \operatorname{Ext}_R^j(X, R) \neq 0\}$.

Theorem 1. Let S = R * A be a crossed product. Then idR = idS holds, where id stands for injective dimension. Moreover, if R satisfies Auslander condition, then S satisfies it, too.

Proof. It follows from [2] that, for all finitely generated left S-modules M and for all $i \ge 0$,

$$\operatorname{Ext}_{S}^{i}(M, S) \cong \operatorname{Ext}_{R}^{i}(M, R).$$

The statement is an easy consequence of this formula. \Box

Since $\operatorname{gldim} \Lambda(H) = d + 1$, we see $\operatorname{id} \Lambda(H) = d + 1$. Hence $\Lambda(G)$ is Auslander Gorenstein of $\operatorname{id} \Lambda(G) = d + 1$.

2.2. A ring R is called a *filtered ring* with a filtration $\mathcal{F} = \{\mathcal{F}_i R\}_{i \in \mathbb{Z}}$ if

- i) $\mathcal{F}_i R$ is an additive subgroup of R for all $i \in \mathbb{Z}$ and $1 \in \mathcal{F}_0 R$,
- ii) $\mathcal{F}_i R \subset \mathcal{F}_{i+1} R \ (i \in \mathbb{Z}),$
- iii) $(\mathcal{F}_i R)(\mathcal{F}_j R) \subset \mathcal{F}_{i+j} R \ (i, j \in \mathbb{Z}),$
- iv) $\cup_{i\in\mathbb{Z}}\mathcal{F}_iR = R.$
- ([7])

Let S = R * A be a crossed product and further, assume that R is a filtered ring. Then a filtration \mathcal{F} is called A-stable, if

v) $(\mathcal{F}_i R)^a \subset \mathcal{F}_i R$ for all $a \in A$ and $i \in \mathbb{Z}$.

Let $\operatorname{gr} R = \bigoplus_{p \in \mathbb{Z}} \mathcal{F}_p R / \mathcal{F}_{p-1} R$ an associated graded ring of R. Then forming a crossed product '*' and an associated graded ring 'gr' commutes each other.

Theorem 2. Let R, A, S be as above. Assume that R is a filtered ring with an A-stable filtration such that every unit of R sits in $\mathcal{F}_0 R \setminus \mathcal{F}_{-1} R$. Then $\mathcal{F}' := \{\mathcal{F}'_i S\}_{i \in \mathbb{Z}}, \mathcal{F}'_i S = \bigoplus_{a \in A} \bar{a}(\mathcal{F}_i R) \ (i \in \mathbb{Z})$, is a filtration of S and there is a ring isomorphism

$$\operatorname{gr}_{\mathcal{F}'} S \cong (\operatorname{gr}_{\mathcal{F}} R) * A.$$

We put the *J*-adic filtration $\mathcal{F} = \{\mathcal{F}_i \Lambda(H)\}_{i \in \mathbb{Z}}$ of $\Lambda(H)$ by

$$\mathcal{F}_i \Lambda(H) = \begin{cases} J^{-i} \ (i < 0) \\ \Lambda(H) \ (i \ge 0) \end{cases}$$

It follows from [1], [4], [6], [12] that the associated graded ring satisfies $\operatorname{gr}_{\mathcal{F}}\Lambda(H) \cong \mathbb{F}_p[x_0, \cdots, x_d]$.

Since $J^{\alpha} \subset J$ for all $\alpha \in \operatorname{Aut}\Lambda(H)$, the *J*-adic filtration \mathcal{F} of $\Lambda(H)$ is G/H-stable. Since $\Lambda(H)$ is a local ring, all units of $\Lambda(H)$ sit in $\Lambda(H) \setminus J$, i.e., in $\mathcal{F}_0\Lambda(H) \setminus \mathcal{F}_{-1}\Lambda(H)$. Therefore, we see $\operatorname{gr}\Lambda(G) \cong \operatorname{gr}\Lambda(H) * (G/H)$.

3. Graded modules over a crossed product

Let S = R * A be a crossed product of a finite group A over a ring R. We assume that R is Noetherian, so that S is , too. A left S-module with a decomposition $M = \bigoplus_{a \in A} M_a$ as an abelian group is called a (*strongly*) A-graded module, if $\bar{a}RM_b \subset M_{ab}$ ($\bar{a}RM_b = M_{ab}$) for all $a, b \in A$. By the decomposition $S = \bigoplus_{a \in A} \bar{a}R$, S itself is an A-graded module with $S_a = \bar{a}R$, so S is an A-graded ring ([9], [10]). Since $\bar{a}R\bar{b}R = \bar{a}bR$, S is a strongly graded ring, therefore, every graded module over S is strongly graded ([9]).

Let $f \in \text{Hom}_S(M, N)$ for M, N graded S-modules. We call f a graded homomorphism of degree $a \in A$, whenever $f(M_b) \subset N_{ba}$ for all $b \in A$. We put, for $a \in A$, $\text{Hom}_a(M, N) :=$ $\{f \in \text{Hom}_R(M, N) : f \text{ is graded of degree } a\}$. Then $\text{Hom}_R(M, N) = \bigoplus_{a \in A} \text{Hom}_a(M, N)$ holds.

Proposition 3. Let N be a left R-module and M a left graded S-module. Then there exists an isomorphism $\operatorname{Hom}_R(M_1, N) \cong \operatorname{Hom}_1(M, \operatorname{Hom}_R(S, N))$.

Proof. Note that $\operatorname{Hom}_R(S, N)$ is graded by the grading $\operatorname{Hom}_R(S, N)_a = \operatorname{Hom}_R(\overline{a^{-1}}R, N)$, $a \in A \square$

Lemma 4. [2] Define α : Hom_R $(S, R) \to S$, by $\alpha(f) = \sum_{a \in A} (\bar{a})^{-1} f(\bar{a})$ for $f \in \text{Hom}_R(S, R)$. Then α is an S-R-bimodule isomorphism.

Combining Proposition 3 and Lemma 4, we get

Corollary 5. Let M be a graded S-module. Then there is an isomorphism of right R-module: Hom_R $(M_1, R) \cong$ Hom₁(M, S).

We study Gorenstein dimension(cf. [3]), one of the important homological invariants of a Noetherian ring. An *R*-module *M* is said to have *Gorenstein dimension zero*, denoted by $\operatorname{G-dim}_R M = 0$, if $M^{**} \cong M$ and $\operatorname{Ext}_R^k(M, R) = \operatorname{Ext}_{R^{\operatorname{op}}}^k(M^*, R) = 0$ for k > 0, where $M^* = \operatorname{Hom}_R(M, R)$. For a positive integer *k*, *M* is said to have *Gorenstein dimension less than or equal to k*, denoted by G-dim $M \leq k$, if there exists an exact sequence $0 \to G_k \to \cdots \to G_0 \to M \to 0$ with G-dim $G_i = 0$ for $0 \leq i \leq k$. We have that G-dim $M \leq k$ if and only if G-dim $\Omega^k M = 0$. It is also proved that if G-dim $M < \infty$ then G-dim $M = \sup\{k : \operatorname{Ext}_R^k(M, R) \neq 0\}.$

For a graded S-module, G-dimension is controlled by an R-module.

Theorem 6. Let M be a graded S-module, then $G\operatorname{-dim}_S M = G\operatorname{-dim}_R M_1$

We will prove this theorem in the following.

Let $M = \bigoplus_{a \in A} M_a = \bigoplus_{a \in A} \bar{a} M_1$ be a graded S-module. Note that $M \cong S \otimes_R M_1$. Then a right S-module $M^* = \operatorname{Hom}_S(M, S) = \bigoplus_{a \in A} \operatorname{Hom}_a(M, S)$. We see $\operatorname{Hom}_a(M, S) = \operatorname{Hom}_1(M, S)\bar{a}$ and M^* is a graded right S-module of grading $\operatorname{Hom}_S(M, S)_a = \operatorname{Hom}_1(M, S)\bar{a}$. By Corollary 6, it holds that $\operatorname{Hom}_1(M, S) \cong \operatorname{Hom}_R(M_1, R)$, hence $M^* \cong \bigoplus_a M_1^* \bar{a}$, where $M_1^* = \operatorname{Hom}_R(M_1, R)$. Similarly, there is an isomorphism $M^{**} \cong \bigoplus_a \bar{a} M_1^{**}$.

Let $\theta: M \to M^{**}$ be a canonical evaluation map. Then θ is a graded homomorphism of degree 1. Therefore, the following holds.

Lemma 7. M is reflexive as an S-module if and only if M_1 is reflexive as an R-module.

Concerning extension groups, the following holds.

Lemma 8. $\operatorname{Ext}_{S}^{i}(M, S) = 0$ if and only if $\operatorname{Ext}_{R}^{i}(M_{1}, R) = 0$ for all $i \geq 0$.

Proof. The combination of isomorphisms:

$$\operatorname{Ext}^{i}_{S}(M,S) \cong \operatorname{Ext}^{i}_{R}(M,R)$$
 ([2])

 $\operatorname{Ext}_{R}^{i}(S \otimes_{R} M_{1}, R) \cong \operatorname{Ext}_{R}^{i}(M_{1}, \operatorname{Hom}_{R}(S, R))$

 $\operatorname{Hom}_R(S, R) \cong S$ (Lemma 4)

induces an isomorphism

 $\operatorname{Ext}_{S}^{i}(M,S) \cong \bigoplus_{a \in A} \operatorname{Ext}_{R}^{i}(M_{1}, \bar{a}R).$

Consequently, the assertion holds. \Box

We deal with the case of G-dimension zero. Note that $(M^*)_1 = M_1^*$ for a graded S-module M.

Theorem 9. Let M be a graded S-module. Then $G\operatorname{-dim}_S M = 0$ if and only if $G\operatorname{-dim}_R M_1 = 0$.

Let $\cdots \to P_1 \to P_0 \to M_1 \to 0$ be a projective resolution of an *R*-module M_1 , for a graded *S*-module. Then $\cdots \to S \otimes_R P_1 \to S \otimes_R P_0 \to S \otimes_R M_1 \to 0$ is a projective resolution of an *S*-module $S \otimes_R M_1 = M$. Hence $\Omega^i M \cong S \otimes_R \Omega^i M_1$, and then $(\Omega^i M)_1 \cong \Omega^i(M_1)$. Hence $\operatorname{G-dim}_S \Omega^i M = 0$ if and only if $\operatorname{G-dim}_R \Omega^i M_1 = 0$ by Theorem 9. This proves Theorem 6.

3.1. Concluding Remarks. Let M be a graded $\Lambda(G)$ -module and take a good filtration of M_1 ([7]). Then the following (in)equalities hold:

$$\operatorname{G-dim}_{\Lambda(G)}M + \mathfrak{m}\operatorname{-depth}(\operatorname{gr} M_1) \leq d+1$$

 $\operatorname{grade}_{\Lambda(G)} M + \dim_{\operatorname{gr}\Lambda(H)}(\operatorname{gr} M_1) = d + 1,$

where \mathfrak{m} is the *maximal ideal of $\operatorname{gr}\Lambda(H) = \mathbb{F}[x_0, \cdots, x_d]$.

These formulae will be able to apply to homological theory of modules over the Iwasawa algebra. For example:

Suppose that $\operatorname{gr} M_1$ is Cohen-Macaulay, then M is perfect, i.e., $\operatorname{grade}_{\Lambda(G)} M = \operatorname{G-dim}_{\Lambda(G)} M$.

References

- K. Ardakov and K.A. Brown, *Ring-theoretic properties of Iwasawa algebras: A survey*, Documenta Mathematica, Extra volume Coates (2006) 7–33.
- K. Ardakov and K.A. Brown, Primeness, semiprimeness and localisation in Iwasawa algebras, Trans. AMS. 359, no.4, (2007) 1499–1515.
- [3] M. Auslander and M. Bridger, *Stable module theory*, Mem. of the AMS 94, Amer. Math. Soc., Providence 1969.
- [4] J. Coates, P. Schneider and R, Sujatha, Modules over Iwasawa algebras, J. Inst. Math. Jussieu 2, (2003) 73–108.
- [5] J. Coates, T. Fukaya, K. Kato, R. Sujatha, O. Venjakob, The GL₂ main conjecture for elliptic curves without complex multiplication, Publ. Math. IHES 101 (2005) 163–208.
- [6] J.D. Dixon, M.P.F. Du Sautoy, A. Mann, D. Segal, Analytic pro-p groups, 2nd edition, CUP 1999.
- [7] L. Huishi and F. Van Oystaeyen, Zariskian Filtrations, K-Monographs in Mathematics, 2, 1996.
- [8] J.C. McConnell and J.C. Robson, Noncommutative Noetherian rings, Wiley-Interscience, 1987.
- [9] C. Năstăsescu and F. Van Oystaeyen, Graded Ring Theory, North-Holland Math. Library, Amsterdam, 1982.
- [10] C. Năstăsescu and F. Van Oystaeyen, Methods of Graded Rings, LNM 1836, Springer, 2004.
- [11] D. Passman, *Infinite crossed products*, Pure and Applied Mathematics, vol.135, Academic Press, 1989.
- [12] O. Venjakob, On the structure theory of the Iwasawa algebra of a compact p-adic Lie group, J. Eur. Math. Soc. (JEMS) 4, no.3 (2002) 271–311

DEPARTMENT OF MATHEMATICAL SCIENCES SHINSHU UNIVERSITY MATSUMOTO, NAGANO 390-8621 JAPAN

E-mail address: kenisida@math.shinshu-u.ac.jp