
SOME CONGRUENCES CONCERNING FINITE GROUPS
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Abstract. In this paper, we present a lemma about orders of normal subgroups in a
transitive group of prime degree. This lemma has an application to prove simplicity of the
alternative group A5 of degree 5, and 4-transitive Mathieu groups M11;M12;M23;M24:
Please use this lemma for your lecture to your students about group theory or Galois
theory. I present some comments to Feit-Thompson conjecture. I think also it is not so
popular, to mathematician, even to ¯nite group theorists and number theorists.
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Sylow theorem states that the number of distinct p-Sylow subgroups is congruent
to 1 modulo p. In this paper, we call it Sylow congruence and using this, we shall
present a lemma to prove the simplicity of the alternative group A5 and Mathieu groups
M11; M12; M23; M24: Moreover, we shall give some comments to Feit-Thompson Conjec-
ture. The part up to Theorem 9 was written in considering for education to students.

Congruences in ¯nite groups are important between group theory and number theory.
It is the most important congruence in group theory that the order jHj of subgroup H of
a group G is a divisor of jGj: For the proof of this, we use all conditions in the de¯nition
of the group. Apply this to the unit group of the residue ring Z=nZ; we have Fermat little
theorem and Euler theorem.

Let ¡n be the set of complex numbers of order n and we de¯ne cyclotomic polynomial
©n(x) =

Q
´2¡n

(x ¡ ´): Then formula xn ¡ 1 =
Q

djn ©d(x) yields form classifying orders
in the group of roots of xn¡ 1 = 0; which is equivalent to the de¯nition of the cyclotomic
polynomial ©m(x): It follows from this formula that the group F¤q is cyclic, where Fq is
a ¯nite ¯eld of order q and F¤q = Fq n f0g. Usually, we prove this using orders of two
elements in the abelian group F¤q.

From Sylow congruence, non cyclic groups of order pq with primes p < q have a normal
q-Sylow subgroup and q distinct p-Sylow subgroups. Groups of this kind are there in¯nite
many for a ¯xed prime p by the Dirichlet theorem which can be proved by cyclotomic
polynomials in case q ´ 1 mod p: These groups suggest Burnside's psqt theorem.

1. Some notations and elementary results

In this section we shall give some notations and elementary well known results. Let G
be a ¯nite group and let ¢ be a ¯nite set. We say ¢ is a G-set if satisfying the following
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conditions
®h 2 ¢; (®g)h = ®gh and ®1 = ® for ® 2 ¢ and g; h 2 G:

We set G¡ = fg 2 G j ®g = ® for all ® 2 ¡g for a subset ¡ of ¢: In case G¢ = f1g;
we say ¢ is a faithful G-set or G is a permutation group on ¢: We can classify elements
in G-set ¢ by orbits ®G = f®g j g 2 Gg for ® 2 ¢ and we obtain

¢ =
[

k

®Gk ; and j¢j =
X

k

j®Gk j:

We set G® = fg 2 G j ®g = ®g for ® 2 ¢: Then G® is a subgroup of G: Since ®g = ®h is
equivalent to G®g = G®h; we have

jGj = j®GjjG®j:

Let G be a permutation group on ¢: G is transitive if there exists g 2 G with ®g = ¯
for arbitrary ®; ¯ 2 ¢: G is k-transitive (k ¸ 2) if G® is (k ¡ 1)-transitive on ¢ n f®g:

Lemma 1. Let G be 2-transitive on a ¯nite set ¢ and let f1g 6= N be a normal subgroup
of G: Then we have

(1) G = G® [G®xG® for x 62 G®:
(2) G = G®N and N is transitive on ¢:

Proof. (1) Let g 2 G nG® then ® 6= ®g and ® 6= ®x: Since G is 2-transitive, there exists
h 2 G® such that ®g = ®xh: Thus g(xh)¡1 2 G® and so g 2 G®xh ½ G®xG®:

(2) If N ½ G®; then we have a contradiction

N ½
\

g2G

g¡1G®g =
\

g2G

G®g = G¢ = f1g:

Hence we have N 6½ G® and there exists n 2 N nG®: Since G is 2-transitive,

G = G®

[
G®nG® ½ G®NG® = G®N and ¢ = ®G = ®G®N = ®N :

A transitive group G is regular on ¢ if G® = 1 for some ® 2 ¢: Moreover, for
subset T of G; we set normalizer NG(T ) = fg 2 G j g¡1Tg = Tg of T and centralizer
CG(T ) = fg 2 G j gt = tg for all t 2 Tg of T:

Lemma 2. Let G be 2-transitive on a ¯nite set ¢ and let N 6= f1g be a regular normal
subgroup of G:

(1) N is elementary abelian and j¢j = jN j is a power of a prime.
(2) If G® is simple, then G® is a subgroup of Aut(N) = GL(s;Fp) where Aut(N) is

a automorphism group of N; j¢j = jN j = ps; and GL(s;Fp) is the general linear
group over a prime ¯eld Fp:

Proof. (1) We prove that G® is transitive on N n f1g by the action ng = g¡1ng for
n 2 N nf1g and g 2 G®: Let s 6= t be arbitrary elements of N nf1g: Then ®s; ®t 2 ¢nf®g
and there exists g 2 G® such that ®sg = ®t because G® is transitive on ¢ n f®g: Hence
we have gtg¡1 = s from ®sg = ®t = ®gt and gtg¡1s¡1 2 N® = f1g:
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Thus xp = 1 for all x 2 N since N contains an element of a prime order p and G® is
transitive on N n f1g by the action ag = gag¡1 for a 2 N and g 2 G®:

Thus N is a p-group and the center Z 6= 1 of N is normal in G (see the paragraph
before Lemma 8). Hence it follow from the next that N = Z, namely, N is elementary.

G®Z = G = G®N; G® \ Z = f1g = G® \N

On the other hand,
pe = jN j = jN®jj®

N j = j®N j = j¢j:

(2) If G®\CG(N) 6= f1g, then G® = G®\CG(N) since G® is simple and CG(N) is normal.
Thus G® ½ CG(N) which is a contradiction to that G® is transitive on N n f1g: Thus it
follows from the above that

jCG(N)j = j®CG(N)j = j¢j = j®N j = jN j

Thus this implies N = CG(N) from N ½ CG(N): Hence we have

G®
»= G®N=N = G=N = NG(N)=CG(N)

is a subgroup of the automorphism Aut(N) of N by considering map n ! g¡1ng for
n 2 N and g 2 G:

In the next well known theorem concerning the simplicity of groups, (1) is useful for
multiply transitive groups. (2) is useful for linear groups. As the corollary of (2), (3)
is useful for A5 and PSL(2; K); where K is a ¯eld with jKj ¸ 4: In this theorem, it is
unnecessary to assume ¢ is ¯nite and G is ¯nite.

Theorem 3. Let G be 2-transitive on a set ¢: Then we have

(1) (see [7, p.22] and [8, p. 263]) If G® is simple and G has no regular normal subgroups
6= f1g, then G is simple.

(2) (Iwasawa, 1941, see [8, p. 263]) If G = G0 and G® has a normal solvable subgroup
H such that G = hx¡1Hx j x 2 Gi; then G is simple.

(3) (Corollary of (2)) If G = G0 and G® 6= f1g is solvable, then G is simple.

Proof. Let N 6= f1g be a normal subgroup of G:
(1) We have G = G®N from Lemma 1 (2) and G®

T
N 6= f1g since G has no regular

normal subgroups. G®

T
N 6= f1g is normal in G® and so G® = G®

T
N ½ N from the

assumption. Hence we have G = G®N = N because G is 2-transitive.
(2) HN is normal in G by G = G®N: Hence we have

G = hx¡1Hx j x 2 Gi ½ HN and G = HN

Thus we have a contradiction such that a non solvable group (G=N)0 = G=N = HN=N
and a solvable group H=H \N are isomorphic.

(3) We set L = hG® j ® 2 ¢i: If L = G¯ for some ¯ 2 ¢; then L = G® for all
® 2 ¢ because these are conjugate and L is normal. Hence we have a contradiction
L =

T
®2¢G® = f1g: Since G® is maximal from Lemma 1 (2), we have

L = hx¡1G®x j x 2 Gi = G

Thus G is simple from (2).
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Another proof. We have G = G®N from Lemma 1 (2). G® has a normal subgroup H
such that G®=H is abelian. Noting HN is normal in G; Hence G=HN = G®N=HN is
abelian because this is a homomorphic image of abelian group G®=H: Thus G = G0 ½ HN
and G = HN: H has a normal subgroup K such that H=K is abelian and G=KN =
HN=KN is abelian. Thus G = G0 ½ KN and G = KN: We continue this process and
we have G = N:

The next (1) is trivial and is needless to prove. However it is very important to obtain
all conjugate classes of the symmetric group Sn: If students don't know (1), then it needs
much calculations to prove (2).

Remark 4. (1) (k¿ )¿
¡1¾¿ = k¾¿ for k 2 ¢; namely, we have

¿¡1(i1i2 ¢ ¢ ¢ ir)(j1j2 ¢ ¢ ¢ js) ¢ ¢ ¢ (k1k2 ¢ ¢ ¢ kt)¿ = (i¿1i
¿
2 ¢ ¢ ¢ i

¿
r )(j

¿
1 j

¿
2 ¢ ¢ ¢ j

¿
s ) ¢ ¢ ¢ (k

¿
1k

¿
2 ¢ ¢ ¢ k

¿
t )

and

¿¡1¾¿ =

µ
1¿ 2¿ ¢ ¢ ¢ n¿

1¾¿ 2¾¿ ¢ ¢ ¢ n¾¿

¶

:

(2) Using the above, we have ¿¡1(12)(34)¿ = (1¿2¿ )(3¿4¿ ) for ¾ = (12)(34):
Thus subgroup V = f(1); (12)(34); (13)(24); (14)(23)g is normal in the symmetric group
S4 of degree 4:

The next are well known and appears in many text books for students. Note that
product of permutation should be left hand in this paper because actions on ¢ is right
hand.

Remark 5. We may write here 1; 2; 3; 4; 5 instead of arbitrary k1; k2; k3; k4; k5 2 ¢; re-
spectively, in (2) and (3).

(1) An(n ¸ 3) is (n-2)-transitive on ¢ = f1; 2; : : : ; ng = fa1; a2; : : : ; ang since either ¾
or ¿ = ¾(an¡1an) is an even permutation for k¾ = ak for all k:

(2) An(n ¸ 3) is generated by 3-cycles in virtue of (12)(23) = (132) and (12)(34) =
(12)(23)(23)(34) = (132)(243):

(3) An(n ¸ 5) is perfect, namely An = A0n by (2) and

(123) = (23)(45)(123)f(23)(45)g¡1(123)¡1

2. Some proofs of simplicity of A5

The simplicity of the alternative group A5 is important for history of mathematics and
education on students studying group theory and Galois theory. There are many proofs
about this.

Method 1: A5 is 3-transitive and generated by 3-cycles. Non trivial normal subgroup
contains a 3-cycles.

Method 2: The numbers of elements in ¯ve conjugate classes are 1; 12; 12;
20; 15 and any partial sums of these containing 1 is not a divisor of 60:

We shall give another two proofs using the above lemmas and theorem.
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Theorem 6. A5 is simple.

Proof 1. Stabilizer A4 of 5 is solvable because A4 has a normal subgroup
V = f(1); (12)(34); (13)(24); (14)(23)g such that A4=V and V are abelian (see Remark 1
(2)). A5 is perfect by Remark 2 (3) and 3-transitive by Remark 2 (1). Thus A5 is simple
by Theorem 1 (3).

Proof 2. Let f1g 6= N be a normal subgroup of A5:
If 5 j jN j then N contains all 5-cycles from Sylow theorem and so jN j ¸ 4! = 24: If N

is regular then jN j = 5 and so we have a contradiction from the above.
Thus N is not regular, namely, M = A4 \N 6= f1g: Since A5 and A4 are 2-transitive,

A5 = A4N and A4 = A3M; and so A5 = A4N = A3MN = A3N: In case A3\N = f1g; we
have jN j = 20 contradicts to the ¯rst statement in this proof. Hence A3 = A3 \N 6= f1g
from jA3j = 3 and A5 = N:

Theorem 7. An(n ¸ 5) is simple.

Proof. We may assume n ¸ 6: Let f1g 6= N be a normal subgroup of An: In case N is
regular, n = ps from Lemma 2 (1) where p is prime, and An¡1 is a subgroup of GL(s; p)
from Lemma 2 (2). Thus we have the next contradiction from ps = n > 4:

(ps¡1)!
2

= jAn¡1j · jGL(s; p)j =
Qs¡1

k=0(p
s ¡ pk) < (ps¡1)!

2

Thus N is not regular, namely, N \ An¡1 6= f1g: We may assume inductively An¡1 is
simple. Hence An¡1 = An¡1 \N ½ N and so An = An¡1N = N
(see also Theorem 1 (1) ).

3. Transitive groups of prime degrees

We set ¢T = f® 2 ¢ j ®t = ® for all t 2 Tg for a subset T of G. Considering G-set G
for p-group G by conjugation, (1) in the next shows that the center GG of p-group G is
non trivial. (2) is also proved by elementary number theory or as the special case to cyclic
group of order per in the following proof of Sylow theorem. However, the next proof is
very simple.

Lemma 8. (1) j¢j ´ j¢Gj mod p for a p-group G and G-set ¢:

(2)

µ
per

pe

¶

´ r mod p for a prime p:

Proof. (1) It follows from jGj = jG®k jj®
G
k j that

j¢j = j¢Gj+
X

j®Gk j>1

j®Gk j ´ j¢Gj mod p:

(2) Compare coe±cients of xp
e

in both sides of the next equation.

(x+ 1)p
er = (xp

e

+ 1)r in Fp[x]:

The following is the proof of Sylow theorem by H. Wielandt. This is useful to the order
of non trivial normal subgroup of a transitive group of a prime degree.
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Theorem 9 (Sylow). We set jGj = per with (p; r) = 1; and np ¸ 0 is the number of
distinct p-Sylow subgroups. Then np ´ 1 mod p; in particular, there exists a p-Sylow
subgroup, and a p-subgroup is contained in t¡1St for t 2 G and a p-Sylow subgroup S: In
particular, p-Sylow subgroups are mutually conjugate.

Proof. We set ¢ = fS ½ G j jSj = peg: Then ¢ is G-set by Sg = Sg for g 2 G: We
also consider S 2 ¢ is GfSg-set by sh = sh for s 2 S and h 2 GfSg: We can see that GfSg
is a p-subgroup because jsGfSgj = jsGfSgj = jGfSgj for all s 2 S and so jGfSgj is a divisor
of jSj: Using jGj = jG : GfSgjjGfSgj; we can see GfSg is a p-Sylow subgroup if and only if
p 6 j jG : GfSgj: Hence we have

0 6´ r ´

µ
per

pe

¶

= j¢j =
X

S2¢

jG : GfSgj ´ npr mod p:

From this congruence, we have np ´ 1 mod p:
Let H be a p-subgroup and let G=S be the set of right cosets of a p-Sylow subgroup

S: G=S is H-set by (Sg)h = Sgh:

0 6´ r = jG=Sj ´ j(G=S)H j mod p:

Hence j(G=S)H j 6= 0 implies there exists St with StH = St and so tH ½ StH = St:

In the next lemma, jNG(P )j = pr is the foundation on the proof of simplicity of
multiply transitive groups A5;M11;M12;M23;M24:

Lemma 10. Let p be a prime and let G be a transitive group on a set ¢; where j¢j = p+s
with s < p: We set jGj=p ´ r mod p; where 0 < r < p: Then for a p-Sylow subgroup P of
G; we have

CG(P ) = P; r j p¡ 1 and jNG(P )j = pr:

The following lemma gives structure of normal subgroups in a transitive group of prime
degree. The assertion jG=G0j j r follows from Lemma 10.

Lemma 11 (5, p. 607). Let G be a transitive group of odd prime degree p on a set ¢ and
let G0 6= f1g be the commutator group of G: We set jGj=p ´ r mod p; where 0 < r < p:
Then we have

(1) G0 is contained in all non trivial normal subgroups.
(2) G=G0 is cyclic, jG=G0j j r and r j p¡ 1:

Corollary 12. (1) Let G be transitive on a set ¢ of a prime degree p > 3 and jGj=p ´
r mod p; where 0 < r < p: Then r j p¡ 1:

If N is a non trivial normal subgroup of G; then jGj=r j jN j:

If G be 3-transitive and (r; jGj
p¡1

) = 1; then G is simple.

(2) Let G be 2-transitive on a set ¢ of a degree p + 1; where p > 3 is prime but not a
Mersenne prime and jGj=p ´ r mod p; where 0 < r < p: Then r j p¡ 1:

If N is a non trivial normal subgroup of G; then jGj=r j jN j:

If G is 4-transitive and (r; jGj
p¡1

) = 1; then G is simple.
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Example 13. (1) Simplicity of groups A5;M11;M12;M23;M24 follows from Corollary
12, founded on Lemma 10, because A5;M11;M23 are 3-transitive and these orders
are 60; 11 ¢ 10 ¢ 9 ¢ 8; 23 ¢ 22 ¢ 21 ¢ 20 ¢ 48; respectively and because M12;M24 are
4-transitive and these orders are 12 ¢ jM11j; 24 ¢ jM23j; respectively (see [6, p.303],
[7, p. 298] and [8, p. 292]).

(2) If M12 has a transitive extension G = M13; then we set p = 13 and
jGj

13
= 12 ¢ 11 ¢

10 ¢ 9 ¢ 8 ´ (¡1)55! ´ 10 mod 13: Thus r = 10 is not a divisor of 12 = p¡ 1: Hence
there does not exists M13 (see [6, p. 302] and [8, p. 298]).

The next is well known and shows that transitive groups of odd prime degrees are closed
to simple groups.

Theorem 14. Let G be a transitive group of odd prime degree p on a set ¢ and let G0

be the commutator group of G: Then we have

(1) If G0 = 1; then jGj = p:
(2) (Galois) If G0 6= 1 and G00 = 1; then G is an a±ne group over a prime ¯eld Fp:
(3) If G00 6= 1; then G0 is simple. In particular, G = G0 implies G is simple.

Proof. (1) We have G = CG(P ) = P from Lemma 10 (1).
(2) G0 is transitive, abelian and of degree p. Hence G0 = P from (1) and P can be

identi¯ed to the additive group (Fp;+) of Fp. A subgroup G®P has the order pjG®j = jGj
since G® \ P = P® = 1: Hence G = G®P Since G0 = P = CG(P ); G = NG(P ); we have
G®

»= G=P is a cyclic subgroup of

Aut((Fp;+)) = fx! sx j s 2 F¤pg

and the action of G® to P by conjugation is the same with the multiplication in Fp:
(3) We have G0 = G00 from G G00 6= f1g and Lemma 11 (1). Let H 6= f1g be normal

in G0: Then H ¾ G00 = G0 from Lemma 11 (1) since G0 is transitive and of degree p:

4. Some comments to Feit-Thompson Conjecture

In this paper we shall give some comments to Feit-Thompson Conjecture (see below
Conjectures 1 [2] and 2 [9]). For distinct primes p and q; we set

A = ©p(q) = (qp ¡ 1)=(q ¡ 1) and B = ©q(p) = (pq ¡ 1)=(q ¡ 1):

Conjecture 1. A does not divide B for A < B (see [2]).

In the paper [1, p.1] and the book [4, p.125], it was mentioned that if it could be proved,
it would greatly simplify the very long proof of the Feit-Thompson theorem that every
group of odd order is solvable (see [3]).

(1) in the next is fundamental to consider Conjecture 1 because of B > A for q > p ¸ 2:
(2) is very easy but it is slightly useful for using computer and a starting point for

Conjecture 1. As a special case of (2), we may assume p and q are odd for Conjecture 1.
In case p = 3; it seems to be very important from [2]. In this case, we may consider

q ´ ¡1 mod 6 noting (2) and q is odd. Moreover we may assume A is prime from (3).
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Comment 1. (1)
mn ¡ 1

m¡ 1
>
nm ¡ 1

n¡ 1
for integers n > m ¸ 2:

(2) In case q ´ 1 mod p; then A does not divide B:
(3) In case p = 3 < q and A is composite, then A does not divide B:
(4) In case p = 3; 7 < q and q ´ 2 or 4 mod 7; then A does not divide B:

Conjecture 2. A and B are relatively prime (see [9]).

If a prime number r divides both A and B then r = 2¸pq + 1 for some integer ¸ (see
Comment 3 (3)). Using computer, Stephens found a counterexample p = 17; q = 3313
and r = 112643 = 2pq + 1 and con¯rmed that r is the greatest common divisor of A and
B by computer, so this example leaves conjecture 1 unresolved (see [9]).

At the present, it is known by computer that no other such pairs exist for p < q < 107

and p = 3 < q < 1014 (see [4]).

We don't know that Conjectures have some relations with (2) and (3).

Comment 2. If p = 17 and q = 3313; then we have

(1) (Stephens [9]) (©p(q);©q(p)) = 2pq + 1:

(2) p
q¡1
2 ´ 1 mod q:

(3) q
p¡1
2 ´ 1 mod p2:

In general, there are few prime numbers p satisfying congruence

a
p¡1
2 ´ 1 mod p2 for a ¯xed natural number a > 1 with (a; p) = 1: For example,

a 2 3 17 3313
3 < p < 131077 3511 11 46021; 48947 7; 17

(p < 6£ 109) (p < 107)

(1) and (2) in the next are not useful to the computer but may be useful to consider
Conjectures. Here the notation jcjd means the order of c mod d for natural numbers c and
d with (c; d) = 1:

The conjecture 1 is now open in case p ´ 3 mod 4 and q ´ 3 mod 4 though there are
another unsolved cases.

Comment 3. Let p; q are distinct primes. We set pj + qk = 1; ` = pj2 + qk2; a =
(pq)`; and 1 < d is a common divisor of ©p(q) and ©q(p): Then the following hold.

(1) p = jqjd and q = jpjd:
(2) ap ´ p; aq ´ q mod d and pq = jajd namely, ©pq(a) ´ 0 mod d:
(3) 2pq j '(d):
(4) If p ´ 3 mod 4; then d ´ 1 mod 4:
(5) If p ´ 3 and q ´ 1 mod 4; then A does not divide B:
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