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1. Introduction

In the procedings of the 1978 antwerp conference, M.Harada studied those rings whose
non-small left modules contains non-zero injective submodules. K.Oshiro called perfect
rings with this condition \left Harada rings". These rings are two sided artinian, right QF-
2, and right and left QF-3 rings containing QF rings and Nakayama rings, and moreover,
these rings have left and also right ideal theoretic characterizations.

The purpose of this paper is to study the following well known theorems (see Anderson-
Fuller [1]) :

Theorem I. Right or left artinian QF-2 rings are QF-3.
Theorem II. For a right or left artinian ring R, R is QF-3 if and only if its injective
hull E(RR) is projective.
Theorem III. Every Nakayama ring R with a simple projective right ideal is
expressed as a factor ring of an upper triangular matrix ring over a division ring.

In Theorems I, II, we are little anxious whether the assumption \right or left artinian"
is natural or not. This assumption also appears in the following well known theorem due
to Fuller [6] :

Let R be a right or left artinian ring and let e be a primitive idempotent in R.
Then eRR is injective if and only if there exists a primitive idempotent f in R such
that S(eR) »= fR=fJ and S(Rf) »= Re=Je, where S(X) and J mean the socle of
X and the Jacobson radical of R, respectively.

In Baba-Oshiro [2], this theorem is improved for a semiprimary ring with \ACC
or DCC" for right annihilator ideals, where ACC and DCC mean the ascending chain
condition and the descending chain condition, respectively. As the condition ACC or
DCC for right annihilator ideals is equivalent to the condition ACC or DCC for left
annihilator ideals, the replacement of \right or left artinian" with \semiprimary ring with
ACC or DCC for annihilator right ideals" is quite natural.

In this paper, from this view point, we improve Theorem I as follows: Semiprimary
QF-2 rings with ACC or DCC for right annihilator ideals are QF-3. For Theorem II,
we show that, for a left perfect ring R with ACC or DCC for right annihilator ideals,
R is QF-3 if its injective hull E(RR) is projective. For Theorem III, using the structure
theorem of left Harada rings, we improve the theorem as follows: Left Harada rings with
a simple projective right ideal is expressed as a factor ring of an upper triangular matrix
ring over a division ring.

The detailed version of this paper will be submitted for publication elsewhere.



2. Improve versions of Theorem I and Theorem II

Recall that a right R-module M is called uniform if every non-zero submodule of M is
essential. We note that, if R is left perfect, MR is uniform if and only if MR is colocal.

The uniform dimensionof a module M is the in¯mum of those cardinal numbers c such
that #I · c for every independent set fNigi2I of non-zero submodules of M . We denote
the uniform dimension of M by unif:dimM , where #I means the number of elements of
I.

PROPOSITION 1. (c:f:[3; Proposition:3:1:2]) Let R be a ring. We consider the
following four conditions.

(a) R is right QF-3.
(b) R contains a faithful injective right ideal.
(c) For any projective right R module PR, E(PR) is projective.
(d) E(RR) is projective.

Then the following hold.

(1) (a) ) (b) holds. Further, if R is a left perfect ring, then (b) ) (a) also holds.
(2) If R is left perfect, then (b) , (c) holds.
(3) If ACC or DCC holds on right annihilator ideals, then (d) ) (b) does.
(4) (c) ) (d) holds in general.

Remark : By Proposition 1, when R is a left perfect ring, we have (a) , (b) , (c)
and (a) ) (d), but in general (d) ) (a) is not true.

For example, for the set Q of rational numbers and the set Z of integers, we consider

R =

µ
Q Q
0 Z

¶

. Then RR is noetherian and has a faithful injective right ideal, so that

E(RR) is projective, but R does not have minimal faithful right R module. (c.f. [18,
Theorem 6.2 (Vinsinhaler)])

The following Theorem is due to K.R.Fuller.

THEOREM A. ([1; Theorem 31:3]) Let R be a right or left artinian ring and let
f 2 Pi(R). Then RRf is injective if and only if there is a primitive idempotent e in R
such that S(RRf) »= T (RRe) and S(eRR) »= T (fRR).

Using this Theorem A, he showed that every right or left artinian QF-2 ring is QF-3.

Y. Baba and K. Oshiro improved Theorem A in [2] as follows:

THEOREM B. ([2]) Let R be a semiprimary ring which satis¯es ACC or DCC for right
annihilator ideais and let e; f 2 Pi(R). Then the following conditions are equivalent:

(1) RRf is injective with S(RRf) »= T (RRe).
(2) eRR is injective with S(eRR) »= T (fRR).

Now we show the following.
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THEOREM 2. If R is a semiprimary QF-2 ring with ACC or DCC for right annihilator
ideals, then R is QF-3.

3. An improve version of Theorem III

For our purpose, we need the following structure theorem due to Oshiro ([15]-[17]):

THEOREM C. Let R be a basic left Harada ring. Then R can be constructed as an
upper staircase factor ring of a block extension of its frame QF-subring F (R).

In order to understand this structure theorem, we must review the sketch of the proof
of Theorem C (for details, see Baba-Oshiro's Lecture Note).

Let F be a basic QF-ring with Pi(F ) = fe1; : : : ; eyg. We put Aij := eiFej for any i; j,
and, in particular, put Qi := Aii for any i. Then we may represent F as

F =

0

B
B
@

A11 A12 ¢ ¢ ¢ A1y

A21 A22 ¢ ¢ ¢ A2y

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
Ay1 Ay2 ¢ ¢ ¢ Ayy

1

C
C
A =

0

B
B
@

Q1 A12 ¢ ¢ ¢ A1y

A21 Q2 ¢ ¢ ¢ A2y

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
Ay1 ¢ ¢ ¢ Ay;y¡1 Qy

1

C
C
A :

For k(1); : : : ; k(y) 2 N, the block extension F (k(1); : : : ; k(y)) of F is de¯ned as follows:
For each i; s 2 f1; : : : ; yg; j 2 f1; : : : ; k(i)g; t 2 f1; : : : ; k(s)g, let

Pij;st =

8
<

:

Qi if i = s, j · t,
J(Qi) if i = s, j > t,
Ais if i 6= s,

and

P (i; s) =

0

B
B
@

Pi1;s1 Pi1;s2 ¢ ¢ ¢ Pi1;sk(s)
Pi2;s1 Pi2;s2 ¢ ¢ ¢ Pi2;sk(s)

...
...

. . .
...

Pik(i);s1 Pik(i);s2 ¢ ¢ ¢ Pik(i);sk(s)

1

C
C
A :

Consequently, when i = s, we have the k(i)£ k(i) matrix

P (i; i) =

0

B
B
B
@

Qi ¢ ¢ ¢ ¢ ¢ ¢ Qi

J(Qi)
. . .

...
...

. . . . . .
...

J(Qi) ¢ ¢ ¢ J(Qi) Qi

1

C
C
C
A

which we denote by Q(i), and, when i 6= s, we have the k(i)£ k(s) matrix

P (i; s) =

0

@
Ais ¢ ¢ ¢ Ais

¢ ¢ ¢
Ais ¢ ¢ ¢ Ais

1

A
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Furthermore, we set

P = F (k(1); : : : ; k(y)) =

0

B
B
@

P (1; 1) P (1; 2) ¢ ¢ ¢ P (1; y)
P (2; 1) P (2; 2) ¢ ¢ ¢ P (2; y)
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

P (y; 1) P (y; 2) ¢ ¢ ¢ P (y; y)

1

C
C
A

=

0

B
B
@

Q(1) P (1; 2) ¢ ¢ ¢ P (1; y)
P (2; 1) Q(2) ¢ ¢ ¢ P (2; y)
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

P (y; 1) P (y; 2) ¢ ¢ ¢ Q(y)

1

C
C
A :

Since F is a basic QF-ring, we see that P is a basic left Harada ring with matrix size k(1)+
¢ ¢ ¢ + k(y). We say that F (k(1); : : : ; k(y)) is a block extension of F for fk(1); : : : ; k(y)g.
In more detail, this matrix representation is given by

P = F (k(1); : : : ; k(y)) =

0

B
B
B
B
B
B
B
B
B
B
@

P11;11 ¢ ¢ ¢ P11;1k(1) ¢ ¢ ¢ P11;y1 ¢ ¢ ¢ P11;yk(y)
...

...
...

...
P1k(1);11 ¢ ¢ ¢ P1k(1);1k(1) ¢ ¢ ¢ P1k(1);y1 ¢ ¢ ¢ P1k(1);yk(y)

...
...

...
...

Py1;11 ¢ ¢ ¢ Py1;1k(1) ¢ ¢ ¢ Py1;y1 ¢ ¢ ¢ Py1;yk(y)
...

...
...

...
Pyk(y);11 ¢ ¢ ¢ Pyk(y);1k(1) ¢ ¢ ¢ Pyk(y);y1 ¢ ¢ ¢ Pyk(y);yk(y)

1

C
C
C
C
C
C
C
C
C
C
A

:

If we set

pij = h1iij;ij ;

where this means an element of P which the (ij; ij)-position = 1, and another positions
are 0.
For each i = 1; : : : ; y, j = 1; : : : ; k(i), then fpijg

y k(i)
i=1;j=1 is a well-indexed set of a complete

set of orthogonal primitive idempotents of P = F (k(1); : : : ; k(y)).
For Pi(P ), we note that

pijPP »= pi1J(P )j¡1
P

for any i = 1; : : : ; y and j = 1; : : : ; k(i).
Given the situation above, the following are equivalent:

(1) F is a QF ring with a Nakayama permutation:
µ
e1 ¢ ¢ ¢ ey
e¾(1) ¢ ¢ ¢ e¾(y)

¶

:

(2) P = F (k(1); : : : ; k(y)) is a basic left Harada ring of type (¤) with a well-indexed

set Pi(P ) = fpijg
y k(i)
i=1;j=1.

Let R be a basic Harada ring. We call R a basic Harada ring of type (¤) if there
is a permutation ¾ of f1; 2; : : : ;mg such that (ej1R;Re¾(j)n(¾(j)) is an i-pair for every
j 2 f1; 2; : : : ;mg.
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From now on, we assume that the Nakayama permutation of F is
µ
e1 ¢ ¢ ¢ ey
e¾(1) ¢ ¢ ¢ e¾(y)

¶

;

and
we take the block extension P = F (k(1); : : : ; k(y)) of F . Let i 2 f1; : : : ; yg and consider

the i-pair (eiF ;Fe¾(i)). Put S(Aij) := S(QiAij) = S(AijQj
). Then we de¯ne an upper

staircase left Q(i)- right Q(¾(i))-subbimodule S(i; ¾(i)) of P (i; ¾(i)) with tiles S(Aij) as
follows:

(I) Suppose that i = ¾(i): Then we see from above argument that S(Aij) is simple
as both a left and a right ideal of Qi = Aii. Put Q := Qi, J := J(Qi) and S := S(Qi).
Then, in the k(i)£ k(i) matrix ring,

Q(i) = P (i; i) =

0

B
B
B
@

Q ¢ ¢ ¢ ¢ ¢ ¢ Q

J
. . .

...
...

. . . . . .
...

J ¢ ¢ ¢ J Q

1

C
C
C
A
;

we de¯ne an upper staircase left Q(i)- right Q(i)-subbimodule S(i; i) = S(i; ¾(i)) of Q(i)
as follows:

S(i; i) =

0

B
B
B
B
@

0 ¢ ¢ ¢ 0 S

0

1

C
C
C
C
A
: ( the (1; 1)-position = 0 );

where, for the form of S(i; i), we assume that
(1) the (1; 1)-position = 0,
(2) when Q is a division ring, that is, Q = S,

S(i; i) =

0

B
B
B
B
B
B
@

0 ¢ ¢ ¢ 0 S
. . .

. . .
. . .

0 0

1

C
C
C
C
C
C
A

Then, since S is an ideal of Q, we see that S(i; i) = S(i; ¾(i)) is an ideal of Q(i).

We let Q(i) = P (i; ¾) = P (i; ¾)=S(i; ¾(i)) for the subbimodule S(i; ¾(i)). In Q(i), we
replace Q or J of the (p; q)-position by Q = Q=S or J = J=S, respectively, when the

(p; q)-position of S(i; i) is S. Then we may represent Q(i) with the matrix ring which is
made by these replacements.

For example,
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Q(i) =

0

B
B
B
B
B
B
@

Q Q Q Q Q Q
J Q Q Q Q Q
J J Q Q Q Q
J J J Q Q Q
J J J J Q Q
J J J J J Q

1

C
C
C
C
C
C
A

=

0

B
B
B
B
B
@

Q Q Q Q Q Q
J Q Q Q Q Q
J J Q Q Q Q
J J J Q Q Q
J J J J Q Q
J J J J J Q

1

C
C
C
C
C
A

=

0

B
B
B
B
B
@

0 S S S S S
0 S S S S S
0 S S S S S
0 0 0 0 S S
0 0 0 0 S S
0 0 0 0 S S

1

C
C
C
C
C
A

.
(II) Now suppose that i 6= ¾(i): Put S := Si¾(i) = S(QiAi¾(i)) = S(Ai¾(i)Q¾(i)

). Then S

is a left Qi- right Q¾(i)-subbimodule of A = Ai¾(i). In the left Q(i)- right Q(¾(i))-bimodule

P (i; ¾(i)) =

0

@
A ¢ ¢ ¢ A

¢ ¢ ¢
A ¢ ¢ ¢ A

1

A ( k(i)£ k(¾(i))-matrix );

we de¯ne an upper staircase subbimodule S(i; ¾(i)) of P (i; ¾(i)) with tiles S of P (i; ¾(i))
as follows:

S(i; ¾(i)) =

0

B
B
B
B
@

0 ¢ ¢ ¢ 0 S

0

1

C
C
C
C
A

( the (1; 1)-position = 0 )

and put P (i; ¾) := P (i; ¾(i))=S(i; ¾(i)). We may represent P (i; ¾) as

P (i; ¾) =

0

B
B
B
B
@

A ¢ ¢ ¢A A

A

1

C
C
C
C
A
:

Next we de¯ne a subset X of P = F (k(1); : : : ; k(y)) by

X =

0

B
B
@

X(1; 1) X(1; 2) ¢ ¢ ¢ X(1; y)
X(2; 1) X(2; 2) ¢ ¢ ¢ X(2; y)
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

X(y; 1) X(y; 2) ¢ ¢ ¢ X(y; y)

1

C
C
A ;

where X(i; j) (µ Qi) and X(i; j) (µ P (i; j)) are de¯ned by

X(i; i) =

(
0 if i 6= ¾(i),

S(i; i) if i = ¾(i),

X(i; j) =

(
0 if j 6= ¾(i),

S(i; j) if j = ¾(i).
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Then we see thatX is an ideal of P = F (k(1); : : : ; k(y)). The factor ring F (k(1); : : : ; k(y))=X
is then called an upper staircase factor ring of P = F (k(1); : : : ; k(y)). If, in the represen-
tation

P = F (k(1); : : : ; k(y)) =

0

B
B
@

P (1; 1) P (1; 2) ¢ ¢ ¢ P (1; y)
P (2; 1) P (2; 2) ¢ ¢ ¢ P (2; y)
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

P (y; 1) P (y; 2) ¢ ¢ ¢ P (y; y)

1

C
C
A ;

we replace P (i; ¾(i)) with P (i; ¾(i)) and put P := F (k(1); : : : ; k(y))=X, then it is conve-
nient to represent P as follows:

P =

0

B
B
B
B
B
B
B
B
B
B
@

P (1; 1) ¢ ¢ ¢ P (1; ¾(1)) ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ P (1; y)
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

P (i; 1) ¢ ¢ ¢ ¢ ¢ ¢ P (i; ¾(i)) ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

P (y; 1) ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ P (y; ¾(y)) ¢ ¢ ¢ P (y; y)

1

C
C
C
C
C
C
C
C
C
C
A

:

From the form of P together with k ¸ 1, where the k appears in the matrices above
(I), (II), we can see that P = F (k(1); : : : ; k(y))=X is a basic left Harada ring. More-
over, by the upper staircase form of S(i; ¾(i)), we have left Harada rings P = P1 =
F (k(1); : : : ; k(y)); P2; P3; : : : ; Pl¡1; Pl = P and canonical surjective ring homomorphisms
'i : Pi ! Pi+1 with ker'i a simple ideal of Pi as follows:

P1
'1
¡! P2

'2
¡! P3

'3
¡! ¢ ¢ ¢

'l¡2
¡! Pl¡1

'l¡1
¡! Pl = P = F (k(1); : : : ; k(y))=X:

The following is the fundamental structure theorem (see Oshiro [17]).

THEOREM D. For a given basic QF-ring F , every upper staircase factor ring P=X of
a block extension P = F (k(1); : : : ; k(y)) is a basic left Harada ring, and, for any basic left
Harada ring R, there is a basic QF-subring F (R) which is called the frame QF-subring,
R is represented in this form by F (R).

Using this theorem, we show the following

THEOREM 3. Let R be a basic indecomposable left Harada ring. If R has a simple
projective right R-module, then R can be represented as an upper triangular matrix ring
over a division ring as follows:

R »=

0

B
B
B
B
B
B
B
B
@

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

D

D

D 0

0

1

C
C
C
C
C
C
C
C
A
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By THEOREM 3 we have the following corollary.

COROLLARY 4. (c:f:[1; Theorem 32:8]) Let R be a basic indecomposable Nakayama
ring. If R has a simple projective right R-module, then R can be represented as a factor
ring of an upper triangular matrix ring over a division ring.
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