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Let R be a discrete valuation ring with a unique maximal ideal πR and a quotient
field K, and let F = R/πR be the residue class field. Let n ≥ 2 be an integer and
{λij | 1 ≤ i, j ≤ n} a set of n2 integers satisfying

λii = 0, λik + λkj ≥ λij , λij + λji > 0 (if i �= j)

for all 1 ≤ i, j, k ≤ n. Then Λ = (πλijR) is a basic semiperfect Noetherian R-subalgebra
of the full n × n matrix algebra Mn(K). We call such Λ a tiled R-order in Mn(K).

Let S be a semiperfect Noetherian ring and e a primitive idempotent of S. Following
Ágoston, Dlab and Wakamatsu [1], we call e a neat primitive idempotent if Exti

S(V, V ) = 0
for all i ≥ 1, where V is a simple right S-module with V e �= 0 (see [5], too).

It was proved by Jategaonkar [7] that for a fixed integer n ≥ 2, there are, up to
isomorphism, only finitely many tiled R-orders of finite global dimension in Mn(K). The
literature contains a number of papers concerned with determining tiled R-orders of finite
global dimension. Tiled R-orders of global dimension two were studied by Roggenkamp
and Wiedemann in connection with the interest of orders of finite lattice type (see [2],
[11], [12], [20]). As for the problem to determine the maximum finite global dimension
among tiled R-orders in Mn(K) for a fixed n, some authors studied tiled R-orders having
large global dimension, but it is not known what is the maximum (see [4], [5], [6], [7],
[8], [9], [14], [17], [18]). In such examples, neat primitive idempotents play an essential
role when we compute global dimension inductively. Then in [5], we posed a question
“Does any tiled R-order of finite global dimension have a neat primitive idempotent?”,
which can be considered as an improved version of Jategaonkar’s conjecture disproved by
Kirkman and Kuzmanovich [9] and [4] for all n ≥ 6.

We notice that in those studies, almost all known results hold if R is an arbitrary discrete
valuation ring. However, among other things, Rump [14] proved that global dimension
gl.dim Λ of a tiled R-order Λ = (πλijR) is determined by the set {λij | 1 ≤ i, j ≤ n} and
char F (characteristic of F ), and that if gl.dim Λ ≤ 2 then gl.dim Λ does not depend on
char F , by using matroid theory (see Tutte [19]). Moreover, he provided an example of
a tiled R-order Λ in Mn(K) such that gl.dim Λ = 3 if char F �= 2, and gl.dim Λ = 4 if
char F = 2, where n = 14. In accordance with matroid theory, Rump calls a tiled R-order
regular if its global dimension does not depend on char F , and he added the following
sentence: “For the present, at least, we have demonstrated that the problem to determine
the tiled orders of finite global dimension can hardly be solved without a careful inspection
of regularity.”

In this report, we announce a new example of non-regular tiled R-orders. Namely, for
an arbitrary prime p, we construct a tiled R-order Λ in Mn(K) such that gl.dim Λ = 5
if char F �= p and gl.dim Λ = ∞ if char F = p, where n = 4p + 5. Moreover, in the
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computation of gl.dim Λ, we see that Λ has no neat primitive idempotent. Thus, if
char F �= p, Λ is a counterexample to the question mentioned above.

1. Example

Let (P,≤) be a finite poset. We can consider P a finite quiver P = (P0,P1) as follows.
P0 is the set of vertices in P, that is, the set P itself. P1 is the set of arrows of P defined
by a → b ∈ P1 provided a < b and there is no x ∈ P0 with a < x < b. Note that the
order of P is generated by P1. That is, for a, b ∈ Ω, a < b if and only if there is a path
from a to b in the quiver P.

From a given finite poset P with n vertices, we can construct a tiled R-order Λ =
(πλxyR) in Mn(K) by defining λxy = 0 if x ≤ y, and λxy = 1 otherwise.

The following is the example of our tiled R-order.

Example. Let p be an arbitrary prime, and put l := p + 1. Then we define a finite
quiver P = (P0,P1) as follows. The set P0 has the following 4l + 1 (= 4p + 5) vertices.

P0 := {ai, bi, ci, di | 1 ≤ i ≤ l} ∪ {d}
The set P1 has the following 5l + l2 (= p2 + 7p + 6) arrows.⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

bi → ai (1 ≤ i ≤ l) bi → ai+1 (1 ≤ i ≤ l)

ci → ai (1 ≤ i ≤ l) ci → ai+1 (1 ≤ i ≤ l)

di → ci (1 ≤ i ≤ l) di → bi+k (1 ≤ i ≤ l, 1 ≤ k ≤ p)

d → ci (1 ≤ i ≤ l)

where we consider the indices i of ai, bi modulo l. Let Λ be the tiled R-order in Mn(K)
corresponding to P, where n = 4p + 5. Then

gl.dim Λ =

{
5 if char F �= p
∞ if char F = p.

Moreover, all primitive idempotents ei (1 ≤ i ≤ n) of Λ are not neat.

In the case of p = 2, the quiver P and its tiled R-order Λ in M13(K) are as follows.

a1 a2 a3

b1 c1 b3 c3 b2 c2

d3 d1 d2 d

P :
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Λ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R π π π π π π π π π π π π
π R π π π π π π π π π π π
π π R π π π π π π π π π π
R R π R π π π π π π π π π
R R π π R π π π π π π π π
π R R π π R π π π π π π π
π R R π π π R π π π π π π
R π R π π π π R π π π π π
R π R π π π π π R π π π π
R R R R π R π π R R π π π
R R R π R R π R π π R π π
R R R R π π R R π π π R π
R R R π R π R π R π π π R

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where π = πR.

Let J(Λ) be the Jacobson radical of Λ. We compute minimal projective resolutions of
J(Λ)ei (1 ≤ i ≤ n) by using Rump’s theory [14], which is slightly modified in the detailed
version of this paper.

The exponent matrix (λij) of a tiled R-order Λ = (πλijR) defines an infinite poset ΩΛ

(called σ-poset in [14] with an automorphism σ of ΩΛ). If R is the formal power series ring
F [[t]] in the indeterminate t, then there is a correspondence between left Λ-lattices and
bounded finite dimensional ΩΛ-representations over F (see Zavadskij and Kirichenko [21],
[22], Roggenkamp and Wiedemann [13], de la Peña and Raggi-Cárdenas [3], and Simson
[15]). Using this correspondence, in [14], Rump develops an axiomatic theory to compute
global dimension of arbitrary tiled R-orders.

Remark. In [14], Rump provided an example of a non-regular tiled R-order in M14(K)
with char F = 2, which is constructed from a finite poset. A similar finite poset can be
found in [16]. Oshima [10] extended Rump’s example to the case of an arbitrary prime p,
that is, he constructed a tiled R-order Λ in Mn(K) such that gl.dim Λ = 3 if char F �= p,
and gl.dim Λ = 4 if char F = p, where n = 8p − 2.

As suggested in [14], it may be an interesting problem to find smaller size n which
admits non-regular tiled R-orders. When p = 2, our example provides a non-regular tiled
R-order in Mn(K) such that n = 13 < 14, at present, that is the minimum among known
examples.
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