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Abstract. This paper studies contravariantly ¯nite resolving subcategories of the cat-
egory of ¯nitely generated modules over a commutative ring. The main theorem of this
paper implies that there exist only three contravariantly ¯nite resolving subcategories
over a henselian Gorenstein local ring. It also implies the theorem of Christensen, Piep-
meyer, Striuli and Takahashi.
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Introduction

The notion of a contravariantly ¯nite subcategory (of the category of ¯nitely generated
modules) was ¯rst introduced over artin algebras by Auslander and Smal¿ [6] in connection
with studying the problem of which subcategories admit almost split sequences. The
notion of a resolving subcategory was introduced by Auslander and Bridger [3] in the
study of modules of Gorenstein dimension zero, which are now also called totally re°exive
modules. There is an application of contravariantly ¯nite resolving subcategories to the
study of the ¯nitistic dimension conjecture [5].

This paper deals with contravariantly ¯nite resolving subcategories over commutative
rings. Let R be a commutative noetherian henselian local ring. We denote by modR
the category of ¯nitely generated R-modules, by F(R) the full subcategory of free R-
modules, and by C(R) the full subcategory of maximal Cohen-Macaulay R-modules. The
subcategory F(R) is always contravariantly ¯nite, and so is C(R) provided that R is
Cohen-Macaulay. The latter fact is known as the Cohen-Macaulay approximation theo-
rem, which was shown by Auslander and Buchweitz [4].

In this paper, we shall prove the following amazing theorem; the category of ¯nitely gen-
erated modules over a henselian Gorenstein local ring possesses only three contravariantly
¯nite resolving subcategories.

Theorem A. If R is Gorenstein, then all the contravariantly ¯nite resolving subcategories
of modR are F(R), C(R) and modR.

This theorem especially says that if R is a commutative sel¯njective local ring, then
there are no contravariantly ¯nite resolving subcategories other than F(R) and modR.

The main theorem of this paper asserts the following: let X be a resolving subcategory
of modR such that the residue ¯eld of R has a right X -approximation. Assume that
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there exists an R-module G 2 X of in¯nite projective dimension with ExtiR(G;R) = 0 for
iÀ 0. Let M be an R-module such that each X 2 X satis¯es ExtiR(X;M) = 0 for iÀ 0.
Then M has ¯nite injective dimension. From this result, we will prove the following two
theorems. Theorem A will be obtained from Theorem B. The assertion of Theorem C is
a main result of [10], which has been a motivation for this paper. (Our way of obtaining
Theorem C is quite di®erent from the original proof given in [10].)

Theorem B. Let X 6= modR be a contravariantly ¯nite resolving subcategory of modR.
Suppose that there is an R-module G 2 X of in¯nite projective dimension such that
ExtiR(G;R) = 0 for iÀ 0. Then R is Cohen-Macaulay and X = C(R).

Theorem C (Christensen-Piepmeyer-Striuli-Takahashi). Suppose that there is a nonfree
R-module in G(R). If G(R) is contravariantly ¯nite in modR, then R is Gorenstein.

Here, G(R) denotes the full subcategory of totally re°exive R-modules. A totally re°ex-
ive module, which is also called a module of Gorenstein dimension (G-dimension) zero,
was de¯ned by Auslander [2] as a common generalization of a free module and a maximal
Cohen-Macaulay module over a Gorenstein local ring. Auslander and Bridger [3] proved
that the full subcategory of totally re°exive modules over a left and right noetherian ring
is resolving. The other details of totally re°exive modules are stated in [3] and [9].

If R is Gorenstein, then G(R) coincides with C(R), and so G(R) is contravariantly ¯nite
by virtue of the Cohen-Macaulay approximation theorem. Thus, Theorem C can be viewed
as the converse of this fact. Theorem C implies the following: let R be a homomorphic
image of a regular local ring. Suppose that there is a nonfree totally re°exive R-module
and are only ¯nitely many nonisomorphic indecomposable totally re°exive R-modules.
Then R is an isolated simple hypersurface singularity. For the details, see [10].

Conventions

In the rest of this paper, we assume that all rings are commutative and noetherian, and
that all modules are ¯nitely generated. Unless otherwise speci¯ed, let R be a henselian
local ring. The unique maximal ideal of R and the residue ¯eld of R are denoted by m and
k, respectively. We denote by modR the category of ¯nitely generated R-modules. By a
subcategory of modR, we always mean a full subcategory of modR which is closed under
isomorphisms. Namely, in this paper, a subcategory X of modR means a full subcategory
such that every R-module which is isomorphic to some R-module in X is also in X .

1. Contravariant finiteness of totally reflexive modules

In this section, we will state background materials which motivate the main results of
this paper. We start by recalling the de¯nition of a totally re°exive module.

De¯nition 1. We denote by (¡)¤ the R-dual functor HomR(¡; R). An R-module M is
called totally re°exive (or of Gorenstein dimension zero) if

(1) the natural homomorphism M !M¤¤ is an isomorphism, and
(2) ExtiR(M;R) = ExtiR(M¤; R) = 0 for any i > 0.
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We introduce three subcategories of modR which will often appear throughout this
paper.

We denote by F(R) the subcategory of modR consisting of all free R-modules, by
G(R) the subcategory of modR consisting of all totally re°exive R-modules, and by C(R)
the subcategory of modR consisting of all maximal Cohen-Macaulay R-modules. By
de¯nition, F(R) is contained in G(R). If R is Cohen-Macaulay, then G(R) is contained
in C(R). If R is Gorenstein, then G(R) coincides with C(R).

Next, we recall the notion of a right approximation over a subcategory of modR.

De¯nition 2. Let X be a subcategory of modR.

(1) Let Á : X ! M be a homomorphism of R-modules with X 2 X . We say that Á
is a right X -approximation (of M) if the induced homomorphism HomR(X 0; Á) :
HomR(X 0; X) ! HomR(X 0;M) is surjective for any X 0 2 X .

(2) We say that X is contravariantly ¯nite (in modR) if every R-module has a right
X -approximation.

The following result is well-known.

Theorem 3 (Auslander-Buchweitz). Let R be a Cohen-Macaulay local ring. Then C(R)
is contravariantly ¯nite.

Corollary 4. If R is Gorenstein, then G(R) is contravariantly ¯nite.

The converse of this corollary essentially holds:

Theorem 5. [10] Suppose that there is a nonfree totally re°exive R-module. If G(R) is
contravariantly ¯nite in modR, then R is Gorenstein.

This theorem yields the following corollary, which is a generalization of [12, Theorem
1.3].

Corollary 6. Let R be a non-Gorenstein local ring. If there is a nonfree totally re°exive
R-module, then there are in¯nitely many nonisomorphic indecomposable totally re°exive
R-modules.

Combining this with [13, Theorems (8.15) and (8.10)] (cf. [11, Satz 1.2] and [8, Theorem
B]), we obtain the following result.

Corollary 7. Let R be a homomorphic image of a regular local ring. Suppose that there
is a nonfree totally re°exive R-module but there are only ¯nitely many nonisomorphic
indecomposable totally re°exive R-modules. Then R is a simple hypersurface singularity.

2. Contravariantly finite resolving subcategories

In this section, we will give the main theorem of this paper and several results it yields.
One of them implies Theorem 5, which is the motive fact of this paper.

First of all, we recall the de¯nition of the syzygies of a given module. Let M be an
R-module and n a positive integer. Let

F² = (¢ ¢ ¢
dn+1
! Fn

dn! Fn¡1
dn¡1
! ¢ ¢ ¢

d2! F1
d1! F0 ! 0)
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be a minimal free resolution of M . We de¯ne the nth syzygy ­nM of M as the image of
the homomorphism dn. We set ­0M = M .

We recall the de¯nition of a resolving subcategory.

De¯nition 8. A subcategory X of modR is called resolving if it satis¯es the following
four conditions.

(1) X contains R.
(2) X is closed under direct summands: if M is an R-module in X and N is a direct

summand of M , then N is also in X .
(3) X is closed under extensions: for an exact sequence 0 ! L ! M ! N ! 0 of

R-modules, if L and N are in X , then M is also in X .
(4) X is closed under kernels of epimorphisms: for an exact sequence 0 ! L!M !

N ! 0 of R-modules, if M and N are in X , then L is also in X .

Now we state the main theorem in this paper.

Theorem 9. Let X be a resolving subcategory of modR such that the residue ¯eld k has a
right X -approximation. Assume that there exists an R-module G 2 X of in¯nite projective
dimension such that ExtiR(G;R) = 0 for i À 0. Let M be an R-module such that each
X 2 X satis¯es ExtiR(X;M) = 0 for iÀ 0. Then M has ¯nite injective dimension.

We shall prove Theorem 9 in the next section. In the rest of this section, we will state
and prove several results by using Theorem 9. We begin with two corollaries which are
immediately obtained.

Corollary 10. Let X be a resolving subcategory of modR which is contained in the
subcategory fM j ExtiR(M;R) = 0 for i À 0 g of modR. Suppose that in X there is an
R-module of in¯nite projective dimension. If k has a right X -approximation, then R is
Gorenstein.

Proof. Each module X in X satis¯es ExtiR(X;R) = 0 for iÀ 0. Hence Theorem 9 implies
that R has ¯nite injective dimension as an R-module. ¤

Corollary 11. Let X be one of the following.

(1) G(R).
(2) The subcategory fM j ExtiR(M;R) = 0 for i > n g of modR, where n is a non-

negative integer.
(3) The subcategory fM j ExtiR(M;R) = 0 for iÀ 0 g of modR.

Suppose that in X there is an R-module of in¯nite projective dimension. If k has a right
X -approximation, then R is Gorenstein.

Proof. The subcategory X of modR is resolving. Since X is contained in the subcategory
fM j ExtiR(M;R) = 0 for iÀ 0 g, the assertion follows from Corollary 10. ¤

Remark 12. Corollary 11 implies Theorem 5. Indeed, any nonfree totally re°exive module
has in¯nite projective dimension by [9, (1.2.10)].

For a subcategory X of modR, let X? (respectively, ?X ) denote the subcategory
of modR consisting of all R-modules M such that ExtiR(X;M) = 0 (respectively,
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ExtiR(M;X) = 0) for all X 2 X and i > 0. Applying Wakamatsu's lemma to a re-
solving subcategory, we obtain the following lemma.

Lemma 13. Let X be a resolving subcategory of modR. If an R-module M has a right
X -approximation, then there is an exact sequence 0 ! Y ! X ! M ! 0 of R-modules
with X 2 X and Y 2 X?.

By using this lemma and the theorem which was formerly called \Bass' conjecture",
we obtain another corollary of Theorem 9.

Corollary 14. Let X be a resolving subcategory of modR such that k has a right X -
approximation and that k is not in X . Assume that there is an R-module G 2 X with
pdRG = 1 and ExtiR(G;R) = 0 for iÀ 0. Then R is Cohen-Macaulay and dimR > 0.

Before giving the next corollary of Theorem 9, we establish an easy lemma without
proof.

Lemma 15. (1) Let X be a contravariantly ¯nite resolving subcategory of modR.
Then, k 2 X if and only if X = modR.

(2) Let X be a resolving subcategory of modR. Suppose that every R-module in ?(X?)
admits a right X -approximation. Then X = ?(X?).

(3) Let M and N be nonzero R-modules. Assume either that M has ¯nite projective
dimension or that N has ¯nite injective dimension. Then one has an equality

supf i j ExtiR(M;N) 6= 0 g = depthR ¡ depthRM:

Now we can show the following corollary. There are only two contravariantly ¯nite
resolving subcategories possessing such G as in the corollary.

Corollary 16. Let X be a contravariantly ¯nite resolving subcategory of modR. Assume
that there is an R-module G 2 X with pdRG = 1 and ExtiR(G;R) = 0 for iÀ 0. Then
either of the following holds.

(1) X = modR,
(2) R is Cohen-Macaulay and X = C(R).

Proof. Suppose that X 6= modR. Then k is not in X . By Corollary 14, R is Cohen-
Macaulay.

First, we show that C(R) is contained in X . For this, let M be a maximal Cohen-
Macaulay R-module. We have only to prove that M is in ?(X?). Let N be a nonzero
R-module in X?. Theorem 9 implies that N is of ¯nite injective dimension. Since
M is maximal Cohen-Macaulay, we have supf i j ExtiR(M;N) 6= 0 g = 0. Therefore
ExtiR(M;N) = 0 for all N 2 X? and i > 0. It follows that M is in ?(X?), as desired.

Next, we show that X is contained in C(R). We have an exact sequence 0 ! Y !
X ! k ! 0 with X 2 X and Y 2 X? by Lemma 13. Since k is not in X , the module
Y is nonzero. By Theorem 9, Y has ¯nite injective dimension. For a nonzero R-module
X 0 in X , we have equalities 0 ¸ supf i j ExtiR(X 0; Y ) 6= 0 g = depthR ¡ depthRX

0 =
dimR¡depthRX

0. Therefore X 0 is a maximal Cohen-Macaulay R-module, as desired. ¤

Next, we study contravariantly ¯nite resolving subcategories all of whose objects X
satisfy ExtÀ0

R (X;R) = 0. We start by considering special ones among such subcategories.
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Proposition 17. Let X be a contravariantly ¯nite resolving subcategory of modR. Sup-
pose that every R-module in X has ¯nite projective dimension. Then either of the following
holds.

(1) X = F(R),
(2) R is regular and X = modR.

Proof. If X = modR, then our assumption says that all R-modules have ¯nite projective
dimension. Hence R is regular. Assume that X 6= modR. Then there is an R-module M
which is not in X . There is an exact sequence 0 ! Y ! X ! M ! 0 with X 2 X and
Y 2 X? by Lemma 13. Note that Y 6= 0 as M =2 X . Fix a nonzero R-module X 0 2 X .
We have ExtiR(X 0; Y ) = 0 for all i > 0, and hence pdRX

0 = supf i j ExtiR(X 0; Y ) 6=
0 g = 0 by the Auslander-Buchsbaum formula. Hence X 0 is free. This means that X is
contained in F(R). On the other hand, X contains F(R) since X is resolving. Therefore
X = F(R). ¤

Combining Proposition 17 with Corollary 16, we can get the following.

Corollary 18. Let X be a contravariantly ¯nite resolving subcategory of modR. Suppose
that every module X 2 X is such that ExtiR(X;R) = 0 for i À 0. Then one of the
following holds.

(1) X = F(R),
(2) R is Gorenstein and X = C(R),
(3) R is Gorenstein and X = modR.

Proof. The corollary follows from Proposition 17 in the case where all R-modules in X are
of ¯nite projective dimension. So suppose that in X there exists an R-module of in¯nite
projective dimension. Then Corollary 16 shows that either of the following holds.

(1) X = modR,
(2) R is Cohen-Macaulay and X = C(R).

By the assumption that every X 2 X satis¯es ExtiR(X;R) = 0 for i À 0, we have
ExtiR(k;R) = 0 for i À 0 in the case (i). In the case (ii), since ­dk is in X where
d = dimR, we have Exti+dR (k;R) »= ExtiR(­dk;R) = 0 for iÀ 0. Thus, in both cases, the
ring R is Gorenstein. ¤

Finally, we obtain the following result from Corollary 18 and Theorem 3. It says that
the category of ¯nitely generated modules over a Gorenstein local ring possesses only
three contravariantly ¯nite resolving subcategories.

Corollary 19. Let R be a Gorenstein local ring. Then all the contravariantly ¯nite
resolving subcategories of modR are F(R), C(R) and modR.

3. Proof of the main theorem

Let M be an R-module. Take a minimal free resolution F² = (¢ ¢ ¢
d2! F1

d1! F0 ! 0)
of M . We de¯ne the transpose TrM of M as the cokernel of the R-dual homomorphism
d¤1 : F ¤0 ! F ¤1 of d1. The transpose TrM has no nonzero free summand.

For an R-module M , let M¤M be the ideal of R generated by the subset

f f(x) j f 2M¤; x 2M g
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of R. Note that M has a nonzero free summand if and only if M¤M = R.

Proposition 20. Let X be a subcategory of modR and 0 ! Y
f
! X ! M ! 0 an

exact sequence of R-modules with X 2 X and Y 2 X?. Let G 2 X , set H = Tr­G,

and suppose that (H¤H)M = 0. Let 0 ! K
g
! F

h
! H ! 0 be an exact sequence of

R-modules with F free. Then the induced sequence

0 ¡¡¡! K ­R Y
g­RY¡¡¡! F ­R Y

h­RY¡¡¡! H ­R Y ¡¡¡! 0

is exact, and the map h­R Y factors through the map F ­R f : F ­R Y ! F ­R X.

Proof. We can show that there is a commutative diagram

0 ¡¡¡! H ­R Y
±

¡¡¡! H ­R X
"

¡¡¡! H ­RM ¡¡¡! 0

®

?
?
y»= ¯

?
?
y °

?
?
y0

0 ¡¡¡! HomR(H¤; Y )
³

¡¡¡! HomR(H¤;X)
´

¡¡¡! HomR(H¤;M) ¡¡¡! 0

with exact rows, and see that ± is a split monomorphism. Thus, the homomorphism
h­RY factors through the homomorphism F ­R f . We have isomorphisms TorR1 (H; Y ) =
TorR1 (Tr ­G; Y ) »= HomR(­G; Y ) = 0, which completes the proof of the proposition. ¤

Now we can prove the following, which will play a key role in the proof of Theorem 9.

Proposition 21. Let X be a subcategory of modR which is closed under syzygies. Let
0 ! Y ! X ! M ! 0 be an exact sequence of R-modules with X 2 X and Y 2 X?.
Suppose that there is an R-module G 2 X with pdRG = 1 and ExtiR(G;R) = 0 for
i À 0. Put Hi = Tr­(­iG) and assume that ((Hi)

¤Hi)M = 0 for i À 0. Let D =
(Dj)j¸0 : modR ! modR be a contravariant cohomological ±-functor. If Dj(X) = 0 for
j À 0, then Dj(Y ) = Dj(M) = 0 for j À 0.

Proof. Replacing G with ­iG for i À 0, we may assume that ExtiR(G;R) = 0 for all

i > 0 and that ((Hi)
¤Hi)M = 0 for all i ¸ 0. Let F² = (¢ ¢ ¢

di+1
! Fi

di! Fi¡1
di¡1
! ¢ ¢ ¢

d2!

F1
d1! F0 ! 0) be a minimal free resolution of G. Dualizing this by R, we easily see that

Hi
»= (­i+3G)¤ and ­Hi

»= (­i+2G)¤ for i ¸ 0. By Proposition 20, for each integer i ¸ 0
we have an exact sequence

0 ! (­i+2G)¤ ­R Y ! (Fi+2)
¤ ­R Y

fi! (­i+3G)¤ ­R Y ! 0

such that fi factors through (Fi+2)
¤ ­R X. The homomorphism Dj(fi) factors through

Dj((Fi+2)
¤ ­R X), which vanishes for j À 0. Hence Dj(fi) = 0 for j À 0, and we obtain

an exact sequence

0 ! Dj((Fi+2)
¤ ­R Y ) ! Dj((­i+2G)¤ ­R Y )

"i;j
! Dj+1((­i+3G)¤ ­R Y ) ! 0

for i ¸ 0 and j À 0. Thus, there is a sequence

Dj((­i+2G)¤ ­R Y )
"i;j
! Dj+1((­i+3G)¤ ­R Y )

"i+1;j+1
! Dj+2((­i+4G)¤ ­R Y )

"i+2;j+2
! ¢ ¢ ¢

of surjective homomorphisms of R-modules, and "i;j is an isomorphism. It follows that
Dj((Fi+2)

¤ ­R Y ) = 0 for i ¸ 0 and j À 0. Thus we have Dj(Y ) = 0 for j À 0, and
Dj(M) = 0 for j À 0. ¤
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Now we can prove our main theorem.

Proof of Theorem 9. Since k admits a right X -approximation, there exists an exact se-
quence 0 ! Y ! X ! k ! 0 of R-modules with X 2 X and Y 2 X? by Lemma 13.
For an integer i ¸ 0, put Hi = Tr ­(­iG). The module Hi has no nonzero free summand.
We have (Hi)

¤Hi 6= R. Hence ((Hi)
¤Hi)k = 0 for i ¸ 0. Applying Proposition 21 to the

contravariant cohomological ±-functor D = (ExtjR( ;M))j¸0, we obtain Dj(k) = 0 for

j À 0. Namely, we have ExtjR(k;M) = 0 for j À 0, which implies that M has ¯nite
injective dimension. ¤
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