
　

AUSLANDER-REITEN CONJECTURE ON GORENSTEIN RINGS

TOKUJI ARAYA

Abstract. The Auslander-Reiten conjecture is related closely to the Nakayama con-
jecture. In this lecture, we consider the Auslander-Reiten conjecture for a Gorenstein
rings.

1. Introduction

The Nakayama’s 1958 conjecture (NC) is a one of most famous and important conjecture
in ring theory.

(NC) Let 0 →ΛΛ → I0 → I1 → · · · be a minimal injective resolution of an artin algebra
Λ. If all Ij are projective, then Λ is self-injective.

Auslander and Reiten conjectured the generalized Nakayama conjecture (GNC) in [3]

(GNC) Let 0 →ΛΛ → I0 → I1 → · · · be a minimal injective resolution of an Artin
algebra Λ. For any indecomposable injective Λ-module I, I is a direct summand of some
Ij.

They showed that (GNC) holds for all artin algebras if and only if the following con-
jecture (ARC’) holds for all artin algebras.

(ARC’) For an Artin algebra Λ, if M is a finitely generated Λ-module and Exti
Λ(M, M⊕

Λ) = 0 (∀i > 0), then M is projective.

M. Auslander, S. Ding, and Ø. Solberg widened the context to algebras over commu-
tative local rings [2].

(ARC) For a commutative Noetherian local ring R, if M is a finitely generated R-module
and Exti

R(M,M ⊕R) = 0 (∀i > 0), then M is free.

They showed in [2] that if R is a complete intersection, then R satisfies (ARC). We
shall show the following main theorem.

Theorem 1. Let R be a Gorenstein ring. If Rp satisfies (ARC) for all p ∈ SpecR with
ht p ≤ 1, then Rp satisfies (ARC) for all p ∈ SpecR.

The detailed version of this paper will be submitted for publication elsewhere.



2. Main Results

Through in this paper, we denote by R the d-dimensional commutative Gorenstein
local ring with the unique maximal ideal m. We also denote by mod R the category of
finitely generated R-modules and by CM R the full subcategory of mod R consisting of
all maximal Cohen-Macaulay modules.

We give a following condition to consider the Auslander-Reiten conjecture.

(ARC) For M ∈ mod R, suppose Exti
R(M,M ⊕R) = 0 (i > 0), then M is free.

The main theorem of this paper is following;

Theorem 1. If Rp satisfies (ARC) for all p ∈ SpecR with ht p ≤ 1, then Rp satisfies
(ARC) for all p ∈ SpecR.

It is difficult to check the freeness of modules in general. We give a following theorem
to check the freeness of vector bundles.

Theorem 2. We assume dim R = d ≥ 2. Let M ∈ CM R be a vector bundle. Suppose
Extd−1

R (M,M) = 0, then M is free.

We say M is a vector bundle if Mp is a free Rp-module for all prime ideal p which is
not maximal ideal m. We want to omit the assumption M is a vector bundle in Theorem
2. But there is a counterexample if M is not a vector bundle.

Example 3. Let k be a field. We set R = k[x, y, z]/(xy) be a 2-dimensional hypersurface
and M = R/(x). In this case, we can check that Exti

R(M,M) = 0 if and only if i is odd.
In particular, we see that Ext2−1

R (M,M) = 0 even if M is not free.

We prepare a lemma to show Theorem 2.

Lemma 4. [9, Lemma 3.10.] Let R be a d-dimensional Cohen-Macaulay local ring and ω
be a canonical module. We denote by (−)∨ the canonical dual Hom R(−, ω). For vector
bundles M and N ∈ CM R, we have a following isomorphism;

Extd
R(Hom (N, M), ω) ∼= Extd+1

R (M, (tr N)∨)

Here, Hom (N, M) is the set of stable homomorphisms.

Proof of Theorem 2. Let M ∈ CM R be a vector bundle and we assume Extd−1
R (M,M) = 0.

We take a minimal free resolution of M ;

F• : · · · → F1 → F0 → M → 0.

Apply (−)∗ := Hom R(−, R), we get exact sequence;

0 → M∗ → F ∗
0 → F ∗

1 → tr M → 0.

Since R is Gorenstein and M is maximal Cohen-Macaulay, we have Ω2M ∼= (tr M)∗(∼=
(tr M)∨). Therefore, we have
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Extd+1
R (M, (tr N)∨) ∼= Extd+1

R (M, (tr N)∗)
∼= Extd+1

R (M, Ω2M)
∼= Extd−1

R (M,M) = 0.

Since M is vector bundle,

Hom R(M, M)p
∼= Hom Rp

(Mp,Mp) = 0 (∀p 6= m).

Thus we have Hom R(M,M) has finite length and we have

Hom R(M, M) ∼= Extd
R(Extd

R(Hom R(M, M), R), R)
∼= Extd

R(Extd+1
R (M, (tr M)∨), R) = 0

Thus we get M is free. ¤

Proof of Theorem 1. We put P := { p ∈ SpecR | Rp does not satisfy (ARC) } and assume
P 6= φ. Let q be a minimal element in P and replace R with Rq. By the minimalty, R is
a d(≥ 2)-dimrnsional Gorenstein local ring which does not satisfy (ARC) but Rp satisfy
(ARC) for all prime p 6= m. There exists M ∈ mod R s.t. Exti

R(M, M ⊕ R) = 0 (∀i > 0)
but M is not free. Since Exti

R(M, R) = 0 (i > 0), M is maximal Cohen-Macaulay. For
any p 6= m, Exti

Rp
(Mp,Mp⊕Rp) = 0 (∀i > 0) and Rp satisfies (ARC), we have Mp is a free

Rp-module. Thus we get M is vector bundle. Furthermore, Extd−1
R (M, M) = 0 implies

M is free. (∵Theorem 2.) Therefore we get contradiction and we have P = φ. ¤
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