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Abstract. A nonassociative quaternion algebra over a field F is a four-dimensional
F -algebra A whose nucleus is a separable quadratic extension field of F . We define the
notion of a valuation ring for A, and we also define a value function on A with values
from a totally ordered group. We determine the structure of the set on which a value
function assumes non-negative values. The main result of this paper states that, given
a valuation ring of a quaternion algebra A, there is a value function associated to it if
and only if the valuation ring is invariant under proper F -automorphisms of A and is
integral over its center. We later restrict our attention to the case when the nucleus is a
tamely ramified and defectless extension of F . With this assumption, we determine the
precise connection between value functions, valuation rings, and maximal orders in A –
the latter in the event F is discretely valued. We give various examples that illustrates
the difference between the associative valuation theory and the nonassociative one.

Key Words: Value functions, valuation rings, maximal orders, nonassociative quater-
nion algebras.

1. Introduction

A ring will have a multiplicative unit element and, unless the context demands oth-
erwise, will be assumed to be nonassociative. Let A be an algebra over a field F . The
nucleus N = N(A) of A is the set of elements of A which associate with every pair of
elements of A, that is,

(ab)c = a(bc)

when one of the elements is in N . It is an associative subalgebra of A. The center Z(A)
of A is

{z ∈ N | za = az∀a ∈ A}.
The algebra A is said to be simple in case 0 and A are the only ideals of A. It is called
central simple if A ⊗F L is simple for every field extension L of F . It is said to be a
division algebra if it is not the zero ring and the equations

ax = b, ya = b

have unique solutions x, y ∈ A for all a 6= 0, b ∈ A. We shall always assume that A is a
finite dimensional division algebra over F in this paper. By [7, Theorem 2.1], Z(A) is a
field extension of F and A is a central simple algebra over Z(A). Since A is a division
algebra, a routine argument shows that N is an associative division algebra. If R is a
ring, let

U(R) = {a ∈ R | ba = ac = 1 for some b, c ∈ R}.
The detailed version of this paper has been submitted for publication elsewhere.
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Observe that if R is associative, then U(R) is simply the group of multiplicative units of R.
If R is an associative ring, then J(R) will denote its Jacobson radical and R = R/J(R).

This paper is organized in the following manner. In Section 1 we define the notions
of a valuation ring and value functions on arbitrary nonassociative finite dimensional
division algebras, and we also state some elementary general results. The rest of the
paper, however, is entirely devoted to how the valuation rings and value functions thus
defined relate to nonassociative quaternion algebras. In Section 2, we determine the
structure of the set on which a value function assumes non-negative values. The main
result of this paper is Theorem 14 in Section 3, which states that, given a valuation ring
of a quaternion algebra A, there is a value function associated to it if and only if the
valuation ring is invariant under proper F -automorphisms of A and is integral over its
center. In Section 4, we restrict our attention to the case when the nucleus is a tamely
ramified and defectless extension over F . With this assumption, we determine the precise
connection between value functions, valuation rings, and maximal orders in A – the latter
in the event F is discretely valued. Finally in Section 5, we give various examples that
illustrates the difference between the associative valuation theory and the nonassociative
one. Also, the examples demonstrate the necessity of certain assumptions made earlier
on in the paper. The reader interested in learning more about nonassociative quaternion
algebras is referred to articles [3, 10].

If A is associative, recall that a subring B of A is called a (Dubrovin) valuation ring of
A if there is an ideal I of B such that:

(a) B/I is simple Artinian,
(b) if x ∈ A \B, then there are b1, b2 ∈ B with b1x, xb2 ∈ B \ I

(see [1, 5, 9]). Note that since A is finite dimensional over its center, B/I is a PI-ring
for any ideal I of B hence, if I is a maximal ideal of B, then B/I must be Artinian.
Therefore condition (a) can be replace by the weaker:

(a′) I is a maximal ideal of B.
We therefore make the following definition in the nonassociative setting, leaving out the
Artinianness condition.

Definition 1. Let A be a division algebra finite dimensional over its center F . If B is
a subring of A and I is a maximal ideal of B such that, if x ∈ A \ B, then there are
b1, b2 ∈ B ∩N with b1x, xb2 ∈ B \ I, then we shall call (B, I) a valuation ring pair of A.

If (B, I) a valuation ring pair of A, we shall sometimes simply refer to B as a valuation
ring of A if there is no danger of confusion. We set B = B/I. Observe that, if A were
associative, then our definition of a valuation ring above would become that of a Dubrovin
valuation ring.

Now let Γ be a totally ordered group, written additively for convenience although it is
not assumed to be abelian.

Definition 2. A value function on A with value group Γ is a surjection w : A 7→ Γ∪{∞}
such that for all a, b ∈ A we have:

(1) w(a) = ∞ if and only if a = 0,
(2) w(a + b) ≥ min{w(a), w(b)},
(3) w(ab) ≥ w(a) + w(b),
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(4) w(a−1) = −w(a) ∀ a ∈ U(N),
(5) im(w) = w(U(N)) ∪ {∞}

(cf [5, Definition 2.1]).

The following lemma is now self-evident, or can be proved in the same manner as the
statements in [5, Lemma 2.2].

Lemma 3. Suppose A has a value function w. Then

(1) w(ab) = w(a) + w(b), w(ba) = w(b) + w(a) ∀ a ∈ U(N).
(2) w|N is a valuation on N .
(3) If w(a) 6= w(b), then w(a± b) = min{w(a), w(b)}.
(4) Bw = {a ∈ A | w(a) ≥ 0} is a subring of A and Jw = {a ∈ A | w(a) > 0} is a

two-sided ideal of Bw.

We will denote Bw/Jw by Bw.

Remark 4. Given a valuation w on an associative division algebra A, it does satisfy [5,
Definition 2.1]. In particular, condition (4) of [5, Definition 2.1] is satisfied, that is,

im(w) = w(st(w)) ∪ {∞}, where st(w) = {s ∈ U(A) | w(s−1) = −w(s)}.
Notice that if w is a valuation then the stabilizer of w, st(w), coincides with U(N) in

the associative case. In fact, by [5, Lemma 2.2], a value function in the sense of [5] is a
valuation if and only if st(w) = U(A) (= U(N)).

If A is nonassociative, we split condition (4) of [5, Definition 2.1] into two parts, namely
(4) and (5) of Definition 2. As a result, and in view of Lemma 3(2) above, our value
functions generalize valuations on associative division algebras, rather than value functions
of [5]. Further, the nucleus plays a role synonymous to that played by the stabilizer in
the associative case. Consequently, the value group of A, which coincides with im(st(w))
in the associative case, is now equal to the value group of N .

Finally, given a value function w on A, just as in the proof of [5, Theorem 2.4], for each
x ∈ A \ Bw ∃ b1, b2 ∈ B ∩ N such that b1x, xb2 ∈ Bw \ Jw: choose t ∈ U(N) such that
w(t) = w(x) and set b1 = b2 = t−1. Hence (Bw, Jw) is a valuation ring pair if and only if
Jw is a maximal ideal of Bw.

Proposition 5. We have the following:

(1) Γ is abelian.
(2) aBwa−1 = Bw∀a ∈ U(N).
(3) One-sided ideals of the form aBw (= Bwa), a ∈ N , are actually two-sided, and are

totally ordered by inclusion.

2. Value Functions on Nonassociative Quaternion Algebras

A nonassociative quaternion algebra over F is a four-dimensional F -algebra A, with a
unit element, whose nucleus N is a separable quadratic extension field of F . If x 7→ x̂
denotes the F -involution on N , then by [10]

A = N ⊕NJ
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where Jx = x̂J ∀ x ∈ N and J2 = b ∈ N \ F .
Incidentally, given a four-dimensional F -algebra of the form A′ = N ⊕ NJ ′ where

J ′x = x̂J ′ ∀ x ∈ N and J ′2 = b′ ∈ N , then one has the following classification: if b′ = 0,
then A′ is not simple, since NJ ′ is a proper ideal; otherwise if 0 6= b′ ∈ F , then one gets
the usual cyclic F -algebras of degree 2; if b′ ∈ N \F , then one obtains the nonassociative
quaternion algebras now under discussion - which are always division algebras (see [10]),
and Z(A′) = F .

If A has a value function, then by Lemma 3(2) F is a valued field. On the other hand,
suppose (F, V ) is a valued field and let A be a finite dimensional associative division
algebra with center F . In [8, Theorem] it was shown that the valuation on F extends to a
valuation on A if and only if V is indecomposed in each field K such that F ⊆ K ⊆ A. In
[4, Theorem 2], it was shown that the valuation on F extends to a valuation on A if and
only if A⊗F Fh is a division algebra, where (Fh, Vh) is the Henselization of (F, V ) (see [2]
for the definition and properties of Henselization). We now have the following analogous
results in this nonassociative setting:

Proposition 6. Suppose F is a valued field with valuation ring V . Then the following
are equivalent:

(1) A has a value function w with F ∩Bw = V .
(2) V is indecomposed in N .
(3) A⊗F Fh is a division algebra, where (Fh, Vh) is the Henselization of (F, V ).

Example 7. Let F = Q, N = Q(i), b = i ∈ N \ F , and let v be a valuation on N
extending the 3-adic valuation on F . If one defines w on A by

w(x + yJ) = min(v(x), v(y)) ∀ x, y ∈ N,

then it is easily seen that w is a value function on A and

Bw = Z[i](3Z[i]) ⊕ Z[i](3Z[i])J and Jw = 3Z[i](3Z[i]) ⊕ 3Z[i](3Z[i])J.

We will see later (Theorem 17(2)) that (Bw, Jw) is actually a valuation ring pair of A. ¤
For the rest of this section, A will have a value function w defined on it. Then w|N is

a valuation on N , which for now we will also denote by w. Let S be its corresponding
valuation ring and let V = S ∩ F . Then S is the integral closure of V in N , since V is
indecomposed in N . We have S = N ∩ Bw. We will say that w is a normalized value
function if w(J) = 0. Given an arbitrary value function w, we know there is a t ∈ U(N)
such that w(t) = w(J). Since

A = N ⊕NJ = N ⊕N(
1

t
J),

upon replacing J by 1
t
J if necessary, we may and will assume that w is normalized in this

section. Since J2 = b, we see that w(b) ≥ 2w(J) = 0, hence we will always have b ∈ S in
this section.

By [10], there are only two types of F -automorphisms on A: for the first type, the
automorphism φ is given by

φ(x + yJ) = x + γyJ where γγ̂ = 1.
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Such a map fixes N element-wise and is called a proper automorphism of A. We will
see in Section 3 that valuation rings that are integral and invariant under proper F -
automorphisms of A are precisely those arising from value functions on A. On the other
hand, we will make no use of automorphisms of the second type, which occur only when
b̂ = −b and there is a γ ∈ N satisfying γγ̂ = −1. An automorphism of this type is given
by φ(x + yJ) = x̂ + γŷJ .

Proposition 8. If φ is a proper automorphism of A, then w(φ(z)) = w(z) ∀ z ∈ A. In
particular, φ(Bw) = Bw and φ(Jw) = Jw.

Proposition 9. U(Bw) = {x + yJ ∈ Bw | xx̂− yŷb ∈ U(S)}.
Let T = TN/F : N 7→ F be the usual trace map, i.e., T (x) = x + x̂. As an F -

linear mapping, it is known that right multiplication by an element z = x + yJ of A has
characteristic polynomial

cz(t) = {t2 − T (x)t + xx̂− yŷb}{t2 − T (x)t + xx̂− yŷb̂} ∈ F [t].

If we agree to interpret cz(x + yJ) as

{(x + yJ)2 − T (x)(x + yJ) + xx̂− yŷb}{(x + yJ)2 − T (x)(x + yJ) + xx̂− yŷb̂},
which is an unambiguous expression, then we have cz(x + yJ) = 0. Given a subring R of
F , we will say that z = x + yJ ∈ A is integral over R if cz(t) ∈ R[t]. A subring B of A
will be called integral if each one of its elements is integral over B ∩ F . A valuation ring
pair (B, I) of A will be called integral if B is integral. A subring of A will be called an
order in A if it contains an F -basis of A. It will be called an R-order if it is an integral
order containing R and the field of fractions of R is F . If an R-order is maximal among
the R-orders of A with respect to inclusion, it will be called a maximal R-order (or just a
maximal order if the context is clear). Clearly, every R-order is contained in a maximal
order. Note that, if an order B containing R is finitely generated over R and z ∈ B
then, as in the associative case, by computing cz(t) using an F -basis of A contained in B,
one readily sees that cz(t) ∈ R[t] and hence B is an R-order if F is the field of fractions
of R. Conversely, if R is Noetherian and B is an R-order in A, then the proof of [6,
Theorem 10.3] shows that B is finitely generated over R: if {u1, u2, u3, u4} ⊆ B is an
F -basis for A and α = det(T (uiuj)) ∈ F , then α 6= 0 as was pointed out in the paragraph
before [3, Proposition 1.4], and B is a submodule of the finitely generated R-module
α−1(Ru1 + Ru2 + Ru3 + Ru4).

Proposition 10. Bw is a V -order in A.

We will encounter more V -orders in §4.

Proposition 11. We have the following:

(1) If w(x + yJ) = min(w(x), w(y)) ∀ x, y ∈ N , then Bw = S ⊕ SJ and Jw =
J(S)⊕ J(S)J .

(2) If Bw = S⊕SJ , then w(x+yJ) = min(w(x), w(y)) ∀ x, y ∈ N and Bw = S⊕S J ,

where Js = ŝ J and J
2

= b.
(3) If w(b) > 0, then w(x + yJ) = min(w(x), w(y)) ∀ x, y ∈ N and (Bw, Jw) is not a

valuation ring pair of A.
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Since (Bw, Jw) cannot be a valuation ring pair when w(b) > 0, we turn our attention
to the case where we may have w(b) = 0. To handle the general situation, we will make
use of the following notation: by definition of a value function, for each u ∈ U(S) there
is a λu ∈ S \ {0} such that w(λu) = w(1 + uJ). Let

Bu = S ⊕ λ−1
u S(1 + uJ),

a free S-submodule of Bw.

Theorem 12. With the notation described above, we have the following:

(1) w(λu1) ≤ w(λu2) if and only if Bu1 ⊆ Bu2. In particular, the set {Bu | u ∈ U(S)}
is linearly ordered by inclusion.

(2) S⊕SJ ⊆ Bu ∀ u ∈ U(S), Bw = ∪u∈U(S)Bu, and Jw = ∪u∈U(S)[J(S)⊕λ−1
u J(S)(1+

uJ)].
(3) For each u ∈ U(S), Bu is a subring of Bw and T ( 1

λu
S) ⊆ V .

(4) Bw is finitely generated over S if and only if Bw = Bu for some u ∈ U(S).

3. Valuation Rings in Nonassociative Quaternion Algebras

Let (B, I) be a valuation ring pair of A. In this section, we are going to determine the
precise conditions that will guarantee the existence of a value function w on A such that
(B, I) = (Bw, Jw).

A subring B of A will be called invariant if φ(B) = B for every proper F -automorphism
φ of A. A valuation ring pair (B, I) will be called invariant if B is invariant.

A valuation ring pair (B, I) of A will be called normalized if J ∈ B \ I. Without loss
of generality, we may assume that (B, I) is normalized: if J 6∈ B, then we know there

is a t ∈ N such that tJ ∈ B \ I; in this case, replace J by tJ . If J ∈ I, then 1
b
J 6∈ B,

otherwise we would have 1 = (1
b
J)J ∈ I. So there is a t ∈ N such that t

b
J ∈ B \ I, in

which case we replace J by t
b
J .

Lemma 13. If (B, I) is normalized, integral, and invariant, then

(1) S = B ∩N is a valuation ring of N .
(2) If u ∈ U(S), then there is a σu ∈ S \ {0} such that

σu
1− uûb

(1 + uJ) ∈ B \ I.

Further, for any t ∈ N ,

(3) v(t) = v(σu) if and only if t
1− uûb

(1 + uJ) ∈ B \ I, where v is a valuation on N

corresponding to S.

If (B, I) is normalized, integral, and invariant and if Γ is the value group of the valuation
v, we define a map w : A 7→ Γ ∪ {∞} by

w(x + yJ) =




∞ if x + yJ = 0,
min(v(x), v(y)) if v(x) 6= v(y),

v(x) + v(1− uûb)− v(σu) otherwise, where u =
y
x.
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By Lemma 13, σu exists for each u ∈ U(S) and v(σu) depends only on u. Hence w
is well defined. This w turns out to be a value function corresponding to (B, I) in the
following theorem.

In the associative setting, given a Dubrovin valuation ring of a finite-dimensional divi-
sion algebra, then in [9, Theorem G & Corollary G] we learn that there is a valuation on
the division algebra giving rise to the Dubrovin valuation ring if and only if the Dubrovin
valuation ring is invariant under inner automorphisms of the division algebra. In [5],
certain value functions are defined on central simple algebras. Given a Dubrovin valua-
tion ring of such an algebra, there is one such value function giving rise to the Dubrovin
valuation ring if and only if the Dubrovin valuation ring is integral [5, Corollary 2.5]. We
have the following analogue of these two results, but here we need both the invariance
and the integralness assumptions.

Theorem 14. Given a valuation ring pair (B, I) of A, there is a value function w such
that (B, I) = (Bw, Jw) if and only if (B, I) is integral and invariant.

Note that the condition is clearly necessary, by Proposition 10 and Proposition 8.

Corollary 15. Let (B, I) be a valuation ring pair of A that is invariant and integral.
Then:

(1) I is the unique maximal ideal of B such that, if z ∈ A \B, then there are b1, b2 ∈
B ∩N with b1z, zb2 ∈ B \ I.

(2) φ(I) = I for every proper F -automorphism φ.
(3) U(B) = {x + yJ ∈ B | xx̂− yŷb ∈ U(S)}.
(4) If in addition (B, I) is normalized, then B = ∪u∈U(S)[S ⊕ σu

1− uûb
S(1 + uJ)] and

I = ∪u∈U(S)[J(S)⊕ σu
1− uûb

J(S)(1 + uJ)].

By Remark 4, we immediately have:

Corollary 16. Given a value function w on A, if Jw is a maximal ideal of Bw, then it
is the unique maximal ideal of Bw satisfying the condition that, if z ∈ A \Bw, then there
are b1, b2 ∈ N ∩Bw with b1z, zb2 ∈ Bw \ Jw.

4. The case when N/F is Tamely Ramified and Defectless

All undefined terminology used in this section relating to valuations on fields can be
found in [2]. Let us once and for all fix some notation for this section. The quaternion
algebra A will have a normalized value function w defined on it. Let S = N ∩ Bw, a
valuation ring of N , and let V = S ∩ F , a valuation ring of F . We also know that V is
indecomposed in N , and so S is the integral closure of V in N .

Let v be a valuation on N with valuation ring S. Let e (resp. f) be the ramification
index (resp. residue degree) of S over F . In our case, it is well known that

ef ≤ 2.

If we have equality ef = 2, then we say N/F is defectless. We call N/F tamely ramified
if the characteristic of V does not divide e and S is separable over V . When N/F is
tamely ramified and defectless then, in our situation, there are exactly two cases: N/F is
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an inertial extension if f = 2; it is tamely and totally ramified when e = 2. In the latter
case, the characteristic of V is not 2, of course.

In this section, we will assume that N/F is tamely ramified and defectless. Under this
assumption, Bw has a particulary desirable form and we will determine precise condi-
tions for (Bw, Jw) to be a valuation ring pair of A. This section also shows that there
are abundant examples of valuation ring pairs of A when N/F is tamely ramified and
defectless.

Theorem 17. Suppose N/F is tamely ramified and defectless. Then:

(1) Bw = S ⊕ SJ .
(2) If N/F is inertial, then (Bw, Jw) is a valuation ring pair of A if and only if w(b)=0.

When this occurs, Jw is the unique maximal ideal of Bw and Bw is a central simple
V -algebra, which is a division algebra unless b is a norm from S to V .

(3) If N/F is tamely and totally ramified, then (Bw, Jw) is a valuation ring pair of
A if and only if b is not a square in S. When this occurs, then Jw is the unique
maximal ideal of Bw and Bw is a separable quadratic extension field of V .

For the rest of this section, we shall assume that V is a DVR, hence N/F is defectless
by [2, Corollary 18.7]. Let J(S) = πS, and let v be the J(S)-adic valuation on N .

The set {t ∈ N | v(tt̂b − 1) ≥ 0} is clearly non-empty. Let k ∈ {0, 1} be the largest
integer such that there is a u ∈ N with v(uûb−1) ≥ 2k. If we assume N/F is a tamely and
totally ramified extension, then by [3, Proposition 2.5], if k = 0, then B = S ⊕ S(1 + uJ)
is the unique maximal V -order containing S, while if k = 1, then there are exactly two
maximal orders containing S, namely B1 = S⊕π−1S(1+uJ) and B2 = S⊕π−1S(1+u π̂

π
J).

Corollary 18. Suppose V is a DVR and N/F is tamely ramified. Then we have

(1) If N/F is inertial, then (Bw, Jw) is a valuation ring pair of A if and only if Bw is
a maximal order and w(b) = 0.

(2) Otherwise if N/F is tamely and totally ramified, then:
(a) If w(b) = 0, then Bw is the intersection of (at most two) maximal orders.
(b) (Bw, Jw) is a valuation ring pair of A if and only if Bw is a maximal order

and b is not a square in S.

5. Examples

Example 19. A subring B1 of A that is invariant but not integral, a subring B2 of A
that is integral but not invariant, and a valuation ring pair (B, I) that is neither integral
nor invariant.

Let F = Q, V = Z(5), N = Q(i). Then J(V ) splits completely in N . Let W = Z[i](2+i),
one of the two extensions of V to N . Let S be the integral closure of V in N , that is,
S = Z[i](2+i) ∩ Z[i](2−i).

Then B1 = W is an invariant subring, but not integral. (If A was an associative division
algebra, then any subring that is invariant under F -automorphisms of A is integral.)
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Now let b = i ∈ S \ F . Then B2 = S ⊕ SJ is integral, but not invariant under the
proper automorphism φ(x + yJ) = x + y(2−i

2+i
)J .

Therefore, in general, being integral and being invariant are mutually independent phe-
nomena.

Finally, let b = i ∈ W \ F and let B = W ⊕WJ . Note that B is not invariant under
the proper automorphism φ(x+yJ) = x+y(2−i

2+i
)J . Let I = J(W )⊕J(W )J . Then (B, I)

is a valuation ring pair of A. It is neither integral nor invariant.

Therefore, unlike in the associative setting, valuation rings over a DVR need not be
maximal orders.

Example 20. An invariant maximal order over a DVR that is not a valuation ring.

Let F = Q, V = Z(3), and N = Q(i). Then S = Z[i](3Z[i]) is a valuation ring of N lying
over V which is inertial over F . Let b = 3 + 9i ∈ S \ F and let B = S ⊕ SJ . Then B is a
maximal order but, for any maximal ideal I of B, (B, I) is not a valuation ring pair of A.

Therefore, unlike in the associative case, maximal orders over a DVR need not be
valuation rings.

The condition that w(b) = 0 is necessary in part 2(a) of Corollary 18, as the following
example shows. Keeping the notation of Section 4, we have:

Example 21. A Bw which is not an intersection of maximal orders, but V is a DVR and
N/F is tamely and totally ramified.

Suppose V is a DVR and N/F is tamely and totally ramified. Let J(S) = πS and
let v be the J(S)-adic valuation on N . Let b = (π̂π)π ∈ S \ F . If w(x + yJ) =
min(v(x), v(y)) ∀ x, y ∈ N , it is easily seen that w is a value function on A and Bw =
S ⊕ SJ . But Bw is not the intersection of maximal orders in A.
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