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Abstract. In [3], K.Oshiro and his students introduced “ojectivity (generalized injec-
tivity)”, a new concept of relative injectivity, and using this injectivity we obtained some
results for direct sums of extending modules. Afterward, S.H.Mohamed and B.J.Müller
[9] defined a dual concept of ojectivity as follows:

Definition. M is said to be N -dual ojective (or generalized N -projective) if, for any
epimorphism g : N → X and any homomorphism f : M → X, there exist decompositions
N = N1 ⊕ N2, M = M1 ⊕ M2, a homomorphism h1 : M1 → N1 and an epimorphism
h2 : N2 → M2, such that gh1 = f |M1 and fh2 = g|N2 .

The concept of relative dual ojectivity is a generalization of relative projectivity and
this projectivity has an important meaning for the study of direct sums of lifting modules
(cf. [6], [9]).

In this paper we introduce some results on “dual ojectivity” and apply it to direct
sums of quasi-discrete modules.

1. Introduction

A module M is said to be lifting if, it satisfies the following property: For any submodule
X of M , there exists a decomposition M = X∗ ⊕X∗∗ such that X∗ ⊆ X and the kernel
X/X∗ of the canonical epimorphism M/X∗ → M/X is a small submodule of M/X∗,
equivalently, X ∩X∗∗ is a small submodule of X∗∗. In [9], S.H.Mohamed and B.J.Müller
defined dual ojective module. This projectivity plays an important role in the study
of direct sums of lifting modules (cf. [6], [9]). Since the structure of dual ojectivity is
complicated, it is difficult to see whether dual ojectivity pass to a (finite) direct sum. This
problem is not easy even in the case each module is quasi-discrete.

In this paper we consider this problem and apply it to direct sums of quasi-discrete
modules.

Throughout this paper R is a ring with identity and all modules considered are unitary
right R-modules. A submodule S of a module M is said to be a small submodule, if
M 6= K + S for any proper submodule K of M and we write S ¿ M in this case. Let
M be a module and let N and K be submodules of M with K ⊆ N . K is said to be
a co-essential submodule of N in M if N/K ¿ M/K and we write K ⊆c N in M in
this case. Let X be a submodule of M . X is called co-closed submodule in M if X has
not a proper co-essential submodule in M . X ′ is called a co-closure of X in M if X ′ is a
co-closed submodule of M with X ′ ⊆c X in M .

The detailed version of this paper will be submitted for publication elsewhere.
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A module M has the finite internal exchange property if, for any finite direct sum
decomposition M = M1 ⊕ · · · ⊕ Mn and any direct summand X of M , there exists
Mi ⊆ Mi (i = 1, · · · , n) such that M = X ⊕M1 ⊕ · · · ⊕Mn.

A module M is said to be a lifting module if, for any submodule X, there exists a direct
summand X∗ of M such that X∗ ⊆c X in M .

Let {Mi | i ∈ I} be a family of modules and let M = ⊕IMi. M is said to be a lifting
module for the decomposition M = ⊕IMi if, for any submodule X of M , there exist
X∗ ⊆ M and Mi ⊆ Mi (i ∈ I) such that X∗ ⊆c X in M and M = X∗ ⊕ (⊕IMi), that
is, M is a lifting module and satisfies the internal exchange property in the direct sum
M = ⊕IMi.

Let X be a submodule of a module M . A submodule Y of M is called a supplement of
X in M if M = X + Y and X ∩ Y ¿ Y , if and only if Y is minimal with M = X + Y .
Note that supplement Y of X in M is co-closed in M . A module M is (⊕−)supplemented
if, for any submodule X of M , there exists a submodule (direct summand) Y of M such
that Y is supplement of X in M . A module M is called amply supplemented if, X contains
a supplement of Y in M whenever M = X + Y . We note that

lifting ⇒ amply supplemented ⇒ supplemented.

Now we consider the following condition:

(]) Any submodule of M has a co-closure in M .

Note that a module M is amply supplemented if and only if M is supplemented with
a condition (]) (cf. [2], [5]).

The reader can refer to [1], [4], [8], [11] and [12] for research on lifting modules, quasi-
discrete modules and exchange properties.

2. Generalized Projectivity

A module A is said to be B-dual ojective (generalized B-projective) if, for any homo-
morphism f : A → X and any epimorphism g : B → X, there exist decompositions
A = A1 ⊕ A2, B = B1 ⊕ B2, a homomorphism h1 : A1 → B1 and an epimorphism
h2 : B2 → A2 such that g ◦ h1 = f |A1 and f ◦ h2 = g|B2 (cf. [9]). Note that every
B-projective modules is B-dual ojective.

Now we introduce some properties of the dual ojectivity.

Proposition 2.1 (cf. [9]). Let B∗ be a direct summand of B. If A is B-dual ojective,
then A is B∗-dual ojective.

Proposition 2.2 (cf. [6, Proposition 2.2]). Let A be a module with the finite internal
exchange property and let A∗ be a direct summand of A. If A is B-dual ojective, then A∗

is B-dual ojective.

Proposition 2.3 (cf. [6, Proposition 2.3]). Let M = A⊕B be supplemented with (])
and let A∗ be a direct summand of A. If A is B-dual ojective, then A∗ is B-dual ojective.
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A ring R is said to be right perfect if any right R-module has projective cover. By [10,
Theorem 1.3], any submodule N of a module M over a right perfect ring has co-closure
of N in M . Thus the following is immediate from Proposition 2.3.

Corollary 2.4. Let R be a right perfect ring, A, B be R-modules and A∗ be a direct
summand of A. If A is B-dual ojective, then A∗ is B-dual ojective.

A module A is said to be im-small B-projective if, for any epimorphism g : B → X and
any homomorphism f : A → X with Imf ¿ X, there exists a homomorphism h : A → B
such that g ◦ h = f (cf. [5]).

Proposition 2.5. (1) Let A be a module and let {Bi | i = 1, · · · , n} be a family of
modules. Then A is im-small ⊕n

i=1Bi-projective if and only if A is im-small Bi-projective
(i = 1, · · · , n).

(2) Let I be any set and let {Ai | i ∈ I} be a family of modules. Then ⊕IAi is im-small
B-projective if and only if Ai is im-small B-projective for all i ∈ I.

Proposition 2.6 (cf. [6, Proposition 2.5]). Let A be any module and let B be a lifting
module. If A is B-dual ojective, then A is im-small B-projective.

The concept of relative dual ojectivity has an important meaning for the study of direct
sums of lifting modules.

Theorem 2.7 (cf. [6, Theorem 3.7]). Let M1, · · · ,Mn be lifting modules with the finite
internal exchange property and put M = M1 ⊕ · · · ⊕Mn. Then the following conditions
are equivalent.

(1) M is lifting with the finite internal exchange property.
(2) M is lifting for M = M1 ⊕ · · · ⊕Mn.
(3) Mi and ⊕j 6=iMj are relative dual ojective.

3. Direct sums of quasi-discrete modules

A lifting module M is said to be quasi-discrete if M satisfies the following condition
(D):

(D) If M1 and M2 are direct summands of M such that M = M1 + M2, then M1 ∩M2

is a direct summand of M .

Any quasi-discrete module has the internal exchange property [10, Theorem 3.10].

Lemma 3.1 (cf. [7]). Let N be a quasi-discrete module and let M = M1⊕· · ·⊕Mn be
lifting for M = M1⊕· · ·⊕Mn. Assume that Mi is generalized N -projective (i = 1, · · · , n).
Then, for any epimorphism f : M → X with ker f ¿ M and any epimorphism g : N → X

with ker g ¿ N , there exist decompositions M = M ⊕M , N = N ⊕N and epimorphisms

ϕ : M → N , ψ : N → M such that f |
M

= g ◦ ϕ and g|
N

= f ◦ ψ.

By the using lemma above, we can obtain the following propositions.

Proposition 3.2 (cf. [7]). Let N be a quasi-discrete module and M = M1 ⊕ · · · ⊕Mn

be lifting for M = M1 ⊕ · · · ⊕ Mn. If Mi is N -dual ojective (i = 1, · · · , n), then M is
N -dual ojective.
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Proposition 3.3 (cf. [7]). Let M be a quasi-discrete module and N = N1 ⊕ · · · ⊕Nm

be lifting for N = N1 ⊕ · · · ⊕Nm. If Ni and M are relative dual ojective (i = 1, · · · ,m),
then M is N -dual ojective.

The following is immediate from Propositions 3.2, 3.3, Theorem 2.7 and induction.

Theorem 3.4. Let M1, · · · ,Mn be quasi-discrete modules and put M = M1⊕· · ·⊕Mn.
Then the following conditions are equivalent.

(1) M is lifting with the (finite) internal exchange property.
(2) M is lifting for M = M1 ⊕ · · · ⊕Mn.
(3) Mi is Mj-dual ojective (i 6= j).

A module H is said to be hollow if it is an indecomposabe lifting module.

Corollary 3.5. Let H1, · · · , Hn be hollow modules and put M = H1⊕· · ·⊕Hn. Then
the following conditions are equivalent.

(1) M is lifting with the (finite) internal exchange property.
(2) M is lifting for M = H1 ⊕ · · · ⊕Hn.
(3) Hi is Hj-dual ojective (i 6= j).
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