A CONSTRUCTION OF LOCAL QF-RINGS WITH RADICAL CUBED ZERO

I. KIKUMASA, K. OSHIRO AND H. YOSHIMURA

ABSTRACT. The purpose of this paper is to give a construction of local QF-rings with Jacobson radical cubed zero. From our construction, we can foresee that there are many QF-rings which are not finite dimensional algebras over fields. Needless to say, local QF-rings together with local Nakayama rings are important artinian rings in the sense that these rings are parts of QF-rings and Nakayama rings. Furthermore, as we mention, local QF-rings are important for the study on the Faith conjecture, since the Faith conjecture is not solved even for local semiprimary one-sided selfinjective rings with Jacobson radical cubed zero.

1. INTRODUCTION

There are many open problems on QF-rings. The two most famous, longstanding, unsolved problems are the Nakayama conjecture and the Faith conjecture. One may refer to Nicholson-Yousif [16] for the Faith conjecture, as well as for several more recent questions on QF-rings.

The Faith conjecture. Is a semiprimary right self-injective ring a *QF*-ring? Faith conjectured "no" in his book [6].

The Faith conjecture is not solved even for a local semiprimary ring with radical cubed zero. Thus we record:

Problem 1. Is a semiprimary local right self-injective ring with radical cubed zero a *QF*-ring?

The following result gives some information on this question.

Fact 1. (Baba-Oshiro [2]) If R is a semiprimary ring, then R is a right self-injective ring if and only if R is a right simple-injective ring. In particular, if R is a local semiprimary ring with radical J cubed zero, then R is right self-injective if and only if $_RJ^2$, J_R^2 are simple and, for any maximal right submodule M of J, there exists $a \in J \setminus J^2$ satisfying aM = 0.

We now provide a careful analysis of Problem 1 and translate this problem into a problem on two-sided vector spaces over division rings.

In order to do so, let R be a local semiprimary ring with $J^2 \neq 0$ and $J^3 = 0$, where J := J(R) denotes the radical of R. Let D denote the division ring R/J and put $\overline{J} = J/J^2$.

The detailed version of this paper will be submitted for publication elsewhere.

Then, \overline{J} and J^2 are (D, D)-bispaces. We denote by $Soc^{\ell}(R)$ and $Soc^{r}(R)$ the left and the right socle of R, respectively and by $l_{R}(A)$ and $r_{R}(A)$ the left and the right annihilator of a subset A of R, respectively.

We now record some properties on R.

- Fact 2. (1) If $_RSoc^{\ell}(R)$ and $Soc^{r}(R)_R$ are simple, then $r_Rl_R(A) = A$ and $l_Rr_R(B) = B$ for any finitely generated right submodule A and for any finitely generated left submodule B of J, $J^2 = Soc^{\ell}(R) = Soc^{r}(R)$, and $_DJ^2$ and J_D^2 are one-dimensional spaces.
 - (2) If J_R is finitely generated and $_RSoc^{\ell}(R)$ and $Soc^{r}(R)_R$ are simple, then R is QF. For this QF-ring R, we can make a new QF-ring T of graded type as follows: Consider the (D, D)-bispace $T = D \times \overline{J} \times J^2$. In T, we define a multiplication by setting

$$t_1 t_2 = (d_1 d_2, d_1 \overline{a_2} + \overline{a_1} d_2, d_1 s_2 + s_1 d_2 + a_1 a_2)$$

for $t_1 = (d_1, \overline{a_1}, s_1)$ and $t_2 = (d_2, \overline{a_2}, s_2) \in T$, where $\overline{a_i} = a_i + J^2 \in J/J^2 =: \overline{J}$. Then, T is a QF-ring with $J(T) = 0 \times \overline{J} \times J^2$, $J(T)^2 = 0 \times 0 \times J^2$ and $J(T)^3 = 0$. (In general, $R \not\cong T$.)

Fact 3. Assume that R_R is (simple-)injective. Then

- (1) $_RSoc^{\ell}(R)$ and $Soc^{r}(R)_R$ are simple.
- (2) For any maximal submodule M of J_R , aM = 0 for some $a \in J \setminus S$.
- (3) $r_R l_R(A) = A$ for any finitely generated submodule A of J_R and $l_R r_R(B) = B$ for any finitely generated submodule B of $_R J$.
- (4) Put $J^* = \operatorname{Hom}_R(\overline{J}_R, J_R^2)$. Then, for any $a \in J$, the map $a \to (a)_L$ (left multiplication) gives an (R, R)-bimodule isomorphism and a (D, D)-bispace isomorphism: ${}_R\overline{J}_R \cong {}_RJ_R^*$ and ${}_D\overline{J}_D \cong {}_DJ_D^*$.
- (5) Put $\alpha = \dim(\overline{J}_D)$. If α is finite, then R is QF, while if α is infinite, then $\dim(_D\overline{J}) = (\#D)^{\alpha} = \#R > \alpha$; in particular, if $\alpha = \aleph_0$ and $\#D = \aleph$, then $\dim(_D\overline{J}) = \aleph$, where #A denotes the cardinal number of a set A.

Most known information on R emanates from Fact 2 and Fact 3. In particular, (4) in Fact 3 is important for investigating Problem 1.

2. Local QF-rings

We now give a construction of local *QF*-rings.

In this section, let D be a division ring and let $_DV_D$ be a (D, D)-bispace. We put

$$T = D \times V \times (V \otimes_D V).$$

Then, T is a (D, D)-bispace. In T, we define a multiplication as follows:

$$t_1 t_2 = (d_1 d_2, d_1 v_2 + v_1 d_2, d_1 x_2 + x_1 d_2 + v_1 \otimes v_2)$$

-37-

for $t_1 = (d_1, v_1, x_1)$ and $t_2 = (d_2, v_2, x_2) \in T$. It is easy to see that T is a local semiprimary ring with radical cubed zero and that

 $J(T) = 0 \times V \times V \otimes_D V$ and $J(T)^2 = 0 \times 0 \times V \otimes_D V$.

We identify $D \times 0 \times 0$, $0 \times V \times 0$ and $0 \times 0 \times V \otimes_D V$ with D, V and $V \otimes_D V$, respectively. We note the following:

- **Proposition 4.** (1) Assume that there exists a (D, D)-bisubspace I of $V \otimes_D V$ with $\dim ((V \otimes_D V)/I_D) = \dim ((V \otimes_D V)/_D I) = 1$ and $vD \otimes_D V \not\subset I$ and $V \otimes_D Dv \not\subset I$ for any $0 \neq v \in V$. Then, I is an ideal of T, $J(T/I)^2 = Soc^r(T/I) = Soc^\ell(T/I)$, and $J(T/I)^2$ is simple as a left T/I-module and as a right T/I-module.
 - (2) Assume that dim (V_D) is finite and such a (D, D)-bisubspace I in (1) exists. Then, T/I is a local QF-ring with radical cubed zero.

Proof. (1) is easily seen and (2) follows from Fact 1.

Let pD be a one-dimensional right vector space and let $\rho \in \operatorname{Aut}(D)$. Then, pD becomes a one-dimensional left vector space by defining $dp = p\rho(d)$ for $d \in D$. We denote such a (D, D)-bispace by pD^{ρ} . We also put

$$V^* = \operatorname{Hom}_D(V_D, pD_D^{\rho}).$$

Then, V^* is canonically a (D, D)-bispace. Here we assume the following:

Assumption A: There exists a (D, D)-bispace isomorphism $\theta : V \to V^*$.

Since the map $(V, V) \to pD^{\rho}$ given by $(v, w) \mapsto \theta(v)(w)$ is a bilinear (D, D) onto map, the map

$$\lambda: V \otimes_D V \to pD^{\rho} \text{ by } \sum_i v_i \otimes w_i \mapsto \sum_i \theta(v_i)(w_i)$$

is a (D, D)-bispace onto homomorphism. As is easily seen, Ker λ is an ideal of the ring $T = D \times V \times (V \otimes_D V)$. We put

$$D\langle V, \theta, \rho, pD^{\rho} \rangle = T / \operatorname{Ker} \lambda.$$

Let $w \in \lambda^{-1}(p)$ be fixed and put $s = w + \operatorname{Ker} \lambda \in (V \otimes_D V) / \operatorname{Ker} \lambda$. Then we can show the following result.

Theorem 5. Let R be the ring $D(V, \theta, \rho, pD^{\rho})$ above. Then the following hold.

- (1) $J := J(R) = (V \times V \otimes_D V) / \operatorname{Ker} \lambda, \ J^2 = (V \otimes_D V) / \operatorname{Ker} \lambda = Rs = sR, \ J^3 = 0$ and $\operatorname{Soc}^r(R) = \operatorname{Soc}^\ell(R) = J^2.$
- (2) $_RJ^2$ and J_R^2 are simple.
- (3) R is a right self-injective ring.
- (4) R is QF if and only if dim (V_D) is finite.

Proof. (1), (2) and (4) follow from Proposition 4. To show (3), let I be a maximal submodule of J_R . By Fact 1, it suffices to show that there exists $a \in J \setminus J^2$ satisfying aI = 0. Let X be a subspace of V_D with $X/\operatorname{Ker} \lambda = I$. Then, as X is a proper subspace -38-

of V, we can take $0 \neq v^* \in V^*$ such that $v^*(X) = 0$. Put $a = \theta^{-1}(v^*) + \text{Ker }\lambda$. Then, $a \in J \setminus J^2$ and aI = 0, as desired.

By Theorem 5, we can translate Problem 1 into the following:

Problem 2. Does there exist a division ring D and a (D, D)-bispace V such that $\dim(V_D) = \infty$ and $_DV_D \cong _DV_D^*$ ((D, D)-isomorphism)?

If such a space $_DV_D$ exists, Theorem 5 asserts the Faith conjecture is true, that is, we can construct a semiprimary right self-injective ring which is not QF. However, this problem is very difficult. In fact, if we try to solve this, we immediately encounter pathologies.

However, as a biproduct of the study on Problem 2, we can obtain an important way of constructing local QF-rings. We shall state this construction.

Lemma 6. Let V be a bispace over a division ring D with $n = \dim_{D}(DV) = \dim_{D}(VD) < \infty$. Then we can take $x_1, \ldots, x_n \in V$ satisfying $V = Dx_1 \oplus \cdots \oplus Dx_n = x_1D \oplus \cdots \oplus x_nD$.

Proof. Let $x_1, \ldots, x_k, y, z \in V$ such that x_1, \ldots, x_k, y and x_1, \ldots, x_k, z are left and right independent over D, respectively. If $Dz \cap \sum_{i=1}^k Dx_i = 0$ or $yD \cap \sum_{i=1}^k x_iD = 0$, then x_1, \ldots, x_k, z or x_1, \ldots, x_k, y are left and right independent, respectively. If otherwise, i.e., $Dz \subset \sum_{i=1}^k Dx_i$ and $yD \subset \sum_{i=1}^k x_iD$, then $x_1, \ldots, x_k, y+z$ are left and right independent. By continuing this procedure, the statement is shown.

Now, henceforth, let

$$V_D = x_1 D \oplus \dots \oplus x_n D$$

be a finite dimensional right vector space over a division ring D and let

$$\sigma = (\sigma_{ij}) : D \to (D)_n \text{ by } d \mapsto \sigma(d) = \begin{pmatrix} \sigma_{11}(d) & \cdots & \sigma_{1n}(d) \\ & \cdots & \\ \sigma_{n1}(d) & \cdots & \sigma_{nn}(d) \end{pmatrix}$$

be a ring homomorphism, where $(D)_n$ is the ring of all $n \times n$ matrices over D. By using σ , we define a left D-operation on V as follows: For $d \in D$, $dx_i = \sum_{j=1}^n x_j \sigma_{ji}(d)$, namely,

$$d(x_1,\ldots,x_n) = (x_1,\ldots,x_n) \begin{pmatrix} \sigma_{11}(d) & \cdots & \sigma_{1n}(d) \\ & \cdots & \\ \sigma_{n1}(d) & \cdots & \sigma_{nn}(d) \end{pmatrix}.$$

Then, V_D becomes a (D, D)-bispace. We denote this bispace by $V\langle x_1, \ldots, x_n; \sigma \rangle$ or simply V^{σ} . We note that pD^{ρ} mentioned above is $pD\langle p; \rho \rangle$.

-39-

Proposition 7. The following are equivalent:

(1)
$$V^{\sigma} = Dx_1 \oplus \cdots \oplus Dx_n.$$

(2) There is a ring homomorphism $\xi = (\xi_{ij}) : D \to (D)_n$ such that for $1 \le i, k \le n$, the following formulas hold:

$$\sum_{j=1}^{n} \sigma_{kj}(\xi_{ij}(d)) = \begin{cases} d & k = i \\ 0 & k \neq i \end{cases}$$

and

$$\sum_{j=1}^{n} \xi_{jk}(\sigma_{ji}(d)) = \begin{cases} d & k=i\\ 0 & k\neq i. \end{cases}$$

Proof. (1) \Rightarrow (2). Since $x_i d = \sum_j \xi_{ij}(d) x_j = \sum_j (\sum_k x_k \sigma_{kj}(\xi_{ij}(d)))$, we see that

$$\sum_{j} \sigma_{kj}(\xi_{ij}(d)) = \begin{cases} d & k = i \\ 0 & k \neq i. \end{cases}$$

Similarly, the second formula is obtained.

(2) \Rightarrow (1). Since $\sum_{j} \xi_{ij}(d) x_j = \sum_{j} (\sum_k x_k \sigma_{kj}(\xi_{ij}(d))) = x_i \sum_{j} \sigma_{ij}(\xi_{ij}(d)) = x_i d$, we see that for any $d \in D$,

$$\xi(d) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} d_s$$

from which $V^{\sigma} = Dx_1 + \cdots + Dx_n$.

Next, to show that $\{Dx_1, \ldots, Dx_n\}$ is an independent set, assume $d_1x_1 + \cdots + d_nx_n = 0$ for $d_1, \ldots, d_n \in D$. Since $\sum_i (\sum_j x_j \sigma_{ji}(d_i)) = 0$, we see that $\sum_i \sigma_{ji}(d_i) = 0$ for $j = 1, \ldots, n$ and hence

$$\begin{aligned} \sigma_{11}(d_1) + \sigma_{12}(d_2) + \dots + \sigma_{1n}(d_n) &= 0 & \dots & (1) \\ \sigma_{21}(d_1) + \sigma_{22}(d_2) + \dots + \sigma_{2n}(d_n) &= 0 & \dots & (2) \\ & \dots & \dots & \\ \sigma_{n1}(d_1) + \sigma_{n2}(d_2) + \dots + \sigma_{nn}(d_n) &= 0 & \dots & (n). \end{aligned}$$

Thus, $0 = \xi_{1j} \times (1) + \xi_{2j} \times (2) + \dots + \xi_{nj} \times (n) = \sum_i \xi_{ij}(\sigma_{ij}(d_j)) = d_j;$ hence $d_j = 0$, as desired. \Box

By Proposition 7, we see that, if there is a ring homomorphism $\xi = (\xi_{ij}) : D \to (D)_n$ satisfying the formulas of the proposition, then $V^{\sigma} = Dx_1 \oplus \cdots \oplus Dx_n$. For this situation, we use $V\langle x_1, \ldots, x_n; \sigma, \xi \rangle$ instead of $V\langle x_1, \ldots, x_n; \sigma \rangle$. Moreover, we construct the ring *R* above for this bispace under Assumption A and denote it by $D\langle V, \sigma, \xi, \theta, \rho, pD^{\rho} \rangle$. Combining the proposition with Lemma 6, we have the following:

Theorem 8. Assume that dim $(_DV) = n < \infty$. Then, $R = D\langle V, \sigma, \xi, \theta, \rho, pD^{\rho} \rangle$ is a local QF-ring with radical cubed zero.

Now, we return to our Assumption A and construct such a (D, D)-bispace isomorphism $\theta: V \to V^*$ under some condition. Let $\xi = (\xi_{ij}): D \to (D)_n$ be a ring homomorphism -40-

satisfying the formulas of Proposition 7(2) such that $\rho \xi_{ij} = \sigma_{ij}$ for all i, j. For each i, let $\alpha_i \in V^* = \operatorname{Hom}_D(V_D, pD_D^{\rho})$ be defined by

$$\alpha_i: x_1d_1 + \dots + x_nd_n \mapsto pd_i$$

where $d_1, \ldots, d_n \in D$. Then, ${}_DV^* = D\alpha_1 \oplus \cdots \oplus D\alpha_n$ and the map

 $\theta^*: {}_DV_D \to {}_DV_D^*$ by $d_1x_1 + \dots + d_nx_n \to d_1\alpha_1 + \dots + d_n\alpha_n$

is a (D, D)-bispace isomorphism. Therefore, in this case, we can make a local QF-ring $D\langle V, \sigma, \xi, \theta^*, \rho, pD^{\rho} \rangle$. In particular, setting $\rho = id_D$, we can take σ as ξ above. Hence, we obtain the following, which is useful for making local QF-rings with radical cubed zero.

Theorem 9. Let $V_D = x_1 D \oplus \cdots \oplus x_n D$ be an n-dimensional vector space over a division ring D and let $\sigma = (\sigma_{ij}) : D \to (D)_n$ be a homomorphism satisfying the formulas: For $1 \le i, k \le n$,

$$\sum_{j=1}^{n} \sigma_{kj}(\sigma_{ij}(d)) = \begin{cases} d & k = i \\ 0 & k \neq i \end{cases}$$

and

$$\sum_{j=1}^{n} \sigma_{jk}(\sigma_{ji}(d)) = \begin{cases} d & k=i\\ 0 & k\neq i. \end{cases}$$

Then we can make a local QF-ring $D\langle V, \sigma, \sigma, \theta^*, id_D, 1D^{id_D} \rangle$.

3. Examples of local QF-rings

Example 1. Let $V = x_1 D \oplus \cdots \oplus x_n D$ be an *n*-dimensional vector space over a division ring D and let π be a ring automorphism of D. Consider a ring homomorphism

$$\sigma: D \to (D)_n$$
 by $d \mapsto \begin{pmatrix} \pi(d) & 0 \\ & \ddots & \\ 0 & & \pi(d) \end{pmatrix}$.

Then, by σ , V becomes a (D, D)-bispace and

$$\begin{pmatrix} \pi^{-1}(d) & 0 \\ & \ddots & \\ 0 & & \pi^{-1}(d) \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} d$$

The map $\xi = (\xi_{ij}) : D \to (D)_n$ is given by

$$d \mapsto \begin{pmatrix} \pi^{-1}(d) & 0 \\ & \ddots & \\ 0 & \pi^{-1}(d) \end{pmatrix}.$$

It then follows from the argument above Theorem 9 that we can construct a local QF-ring $D\langle V, \sigma, \xi, \theta^*, \pi^2, pD^{\pi^2} \rangle$.

Example 2. Let \mathbb{C} be the field of complex numbers, let $V = x_1 \mathbb{C} \oplus x_2 \mathbb{C}$ be a 2-dimensional vector space over \mathbb{C} and consider a ring homomorphism

$$\sigma: \mathbb{C} \to (\mathbb{C})_2 \text{ by } a+bi \mapsto \begin{pmatrix} a & bi \\ bi & a \end{pmatrix}$$

Then the map σ satisfies the formulas in Theorem 9. Hence we can make a local QF-ring $\mathbb{C}\langle V, \sigma, \sigma, \theta^*, id_{\mathbb{C}}, 1\mathbb{C}^{id_{\mathbb{C}}}\rangle$.

This example can be slightly generalized as the following:

Example 3. Let k be a commutative field and let $f(x) = x^n - a \in k[x]$ be irreducible with α a root, $D = k(\alpha)$ and $V = \sum_{i=1}^{n} \bigoplus x_i D$. Let a map

$$\sigma: D \to (D)_n \text{ by } \sum_{i=0}^{n-1} a_i \alpha^i \mapsto \begin{pmatrix} a_0 & a_1 \alpha & a_2 \alpha^2 & \cdots & a_{n-1} \alpha^{n-1} \\ a_{n-1} \alpha^{n-1} & a_0 & a_1 \alpha & \cdots & a_{n-2} \alpha^{n-2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ a_2 \alpha^2 & \ddots & \ddots & \ddots & a_1 \alpha \\ a_1 \alpha & a_2 \alpha^2 & \cdots & a_{n-1} \alpha^{n-1} & a_0 \end{pmatrix}.$$

Then, σ is a ring homomorphism satisfying the formulas in Theorem 9. Hence, for a given *n*-dimensional vector space V over D, we can make a local QF-ring $D\langle V, \sigma, \sigma, \theta^*, id_D, 1D^{id_D} \rangle$.

Example 4. Let \mathbb{H} be the quaternion algebra, let $V = x_1 \mathbb{H} \oplus x_2 \mathbb{H} \oplus x_3 \mathbb{H} \oplus x_4 \mathbb{H}$ be a 4-dimensional vector space over \mathbb{H} and consider a ring homomorphism

$$\sigma: \mathbb{H} \to (\mathbb{H})_4 \text{ by } a+bi+cj+dk \mapsto \begin{pmatrix} a & bi & cj & dk \\ bi & a & dk & cj \\ cj & dk & a & bi \\ dk & cj & bi & a \end{pmatrix}.$$

Then, σ satisfies the formulas in Theorem 9. Hence we can make a local *QF*-ring $\mathbb{H}\langle V, \sigma, \sigma, \theta^*, id_{\mathbb{H}}, 1\mathbb{H}^{id_{\mathbb{H}}}\rangle$.

Further, using Theorem 9, we shall show two constructing ways of local QF-algebras R with radical cubed zero, one of which gives an example of a local QF-algebra which is not a finite dimensional algebra.

Example 5. Let E be a field and let π be an automorphism of E satisfying

(1)
$$\pi^2 = id_E$$
.

(2) $\alpha \pi(\alpha) + \beta \pi(\beta) = 0 \Rightarrow \alpha = 0$ and $\beta = 0$ for $\alpha, \beta \in E$.

Define a 2-dimensional vector space over E: Let $D = E \oplus E\mathbf{i} = \{\alpha + \beta \mathbf{i} \mid \alpha, \beta \in E\}$ with the product $\mathbf{i}\alpha = \pi(\alpha)\mathbf{i}$ for any $\alpha \in E$ (the addition, as well as the multiplication between elements of E being the natural ones). Then, D is a division ring, as it can be checked; see the product:

$$(\alpha + \beta \mathbf{i})(\pi(\alpha) - \beta \mathbf{i}) = \alpha \pi(\alpha) + \beta \pi(\beta)$$

-42-

and if $\alpha + \beta i \neq 0$, then we have $\alpha \pi(\alpha) + \beta \pi(\beta) \neq 0$ by (3). Also, the center of D is $K := \{a \in E \mid \pi(a) = a\}.$

Let $V = x_1 D \oplus x_2 D$ be a 2-dimensional vector space over D and consider a ring homomorphism

$$\sigma: D \to (D)_2$$
 by $\alpha + \beta \mathbf{i} \mapsto \begin{pmatrix} \alpha & \beta \mathbf{i} \\ \beta \mathbf{i} & \alpha \end{pmatrix}$

Then we see that σ satisfies the formulas in Theorem 9. Hence we can make a local QF-ring $R = D\langle V, \sigma, \sigma, \theta^*, id_D, 1D^{id_D} \rangle$.

We shall give some examples of fields E satisfying (1) and (2) above.

- (i) Let $E = \mathbb{C}$ or an arbitrary imaginary quadratic field (e.g. $\mathbb{Q}(\sqrt{-3})$) and the map $\pi: E \to E$ defined by $\pi(\alpha) = \overline{\alpha}$, where $\overline{\alpha}$ denotes the conjugate of α .
- (ii) Let K be a field and π an automorphism of K satisfying the conditions (1) and (2). Moreover, let E = K(x) be the field of rational functions in x over K. For $f = a_n x^n + \cdots + a_1 x + a_0 \in K[x]$, we put $\overline{f} = \pi(a_n) x^n + \cdots + \pi(a_1) x + \pi(a_0)$. Then the map $\overline{\pi} : E \to E$ given by $\overline{\pi}(f/g) = \overline{f}/\overline{g}$ is an automorphism of E. We see that the fixed field of $\overline{\pi}$ in E is F(x), where F is the fixed field of π in K, and E and $\overline{\pi}$ satisfies (1) and (2) again.

Example 6. Let *E* be a division ring such that *E* is infinite dimensional over its center *K* and $x^2 \neq -1$ holds for any element $x \in E$.

Define a 2-dimensional vector space over E: Let $D = E \oplus E\mathbf{i} = \{\alpha + \beta \mathbf{i} \mid \alpha, \beta \in E\}$. Define the products $\mathbf{i}^2 = -1$ and $\mathbf{i}\alpha = \alpha \mathbf{i}$ for any $\alpha \in E$. Then, D becomes a ring (the addition, as well as the multiplication between elements of E being the natural ones). Furthermore, D is a division ring. Actually, let $d = \alpha + \beta \mathbf{i}$ be a non-zero element in D. If $\beta = 0$, then clearly $d^{-1} = \alpha^{-1}$. In case $\beta \neq 0$, it is easily checked that $(\alpha + \beta \mathbf{i}) \cdot (\beta^{-1}\alpha - \mathbf{i})\beta^{-1}((\alpha\beta^{-1})^2 + 1)^{-1} = 1$ and $((\beta^{-1}\alpha)^2 + 1)^{-1}(\beta^{-1}\alpha - \mathbf{i})\beta^{-1} \cdot (\alpha + \beta \mathbf{i}) = 1$. This means that d is invertible.

Next, let $V = x_1 D \oplus x_2 D$ be a 2-dimensional vector space over D and consider a ring homomorphism

$$\sigma: D \to (D)_2$$
 by $\alpha + \beta \mathbf{i} \mapsto \begin{pmatrix} \alpha & \beta \mathbf{i} \\ \beta \mathbf{i} & \alpha \end{pmatrix}$.

Then we see that σ satisfies the formulas in Theorem 9. Hence we can make a local QF-ring $R = D\langle V, \sigma, \sigma, \theta^*, id_D, 1D^{id_D} \rangle$ and we can see that R is an infinite dimensional algebra with K (its center).

We shall give an example of a division ring E in Example 6. Consider the functional field $L = \mathbb{R}(x)$ over the field \mathbb{R} of real numbers and let σ be an into monomorphism of L given by $f(x)/g(x) \to f(x^2)/g(x^2)$. Let $L[y;\sigma]$ be a skew-polynomial ring associated with σ . Although $L[y;\sigma]$ is a non-commutative domain, it has the quotient ring which is a division ring. We denote it by E. As is easily seen, the center of E is \mathbb{R} and E is infinite dimensional over \mathbb{R} and it holds that $a^2 \neq -1$ for any non-zero element $a \in E$.

Acknowledgment. We are indebted to Dr. Cosmin Roman for making Example 5. -43-

References

- E.P. Armendariz and J.K. Park, Self-injective rings with restricted chain conditions, Arch. Math. 58 (1992), 24–53.
- [2] Y. Baba and K. Oshiro, On a Theorem of Fuller, J. Algebra 154, 1 (1993), 86–94.
- [3] Changchang Xi, On the finitistic conjecture, Advances in Ring Theory, Proceedings of the 4th China-Japan-Korea international Conference, 282–294
- [4] J. Clark and D.V. Huynh, A note on perfect self-injective rings, Quart. J. Math. (Oxford) 45 (1994), 13–17.
- [5] _____, When is a self-injective semiperfect ring quasi-Frobenius?, J. Algebra 165 (1994), 531–542.
- [6] C. Faith, "Algebra II. Ring Theory", Grundlehren Math. Wiss. 192, Springer-Verlag, Heidelberg/New York/Berlin (1976).
- [7] C. Faith and D.V. Huynh, When self-injective rings are QF: A report on a problem, J. Algebra Appl. 1 (2002), 72–105.
- [8] I. Kikumasa, K. Oshiro and H. Yoshimura, A construction of local QF-rings with radical cubed zero, preprint.
- [9] I. Kikumasa and H. Yoshimura, Commutative QF-algebras with radical cube zero, Comm. Algebra 31 (2003), 1837–1858.
- [10] _____, Isomorphism classes of QF-algebras with radical cube zero, "Advances in Ring Theory", Proceedings of the 4-th China-Japan-Korea International Symposium on Ring Theory, World Scientific (2005), 106–117.
- [11] K. Koike, On self-injective semiprimary rings, Comm. Algebra 28 (2000), 4303-4319.
- [12] A.I. Kostrikin and I.R. Shafarevich, "Algebra II", Encyclopaedia of Mathematical Sciences 18, Springer-Verlag, Berlin/Heidelberg/New York (1991).
- [13] T. Nakayama, On algebras with complete homology, Abh.Math.Sem, Univ.Hanburg 22 (1958), 300-307.
- [14] W.K. Nicholson and M.F. Yousif, *Mininjective rings*, J. Algebra **187** (1997), 548–578.
- [15] _____, On perfect simple-injective rings, Proc. Amer. Math. Soc. **125** (1997), 979–985.
- [16] _____, "Quasi-Frobenius Rings", Cambridge Tracts in Mathematics 158, Cambridge University Press, Cambridge (2003).
- [17] B. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra 4 (1966), 373–387.
- [18] _____, Two examples of local artinian rings, Proc. Amer. Math. Soc. 107 (1989), 63–65.
- [19] _____, "Rings with Morita Duality", Lect. Notes Math. 1523, Springer-Verlag, New York/Heidelberg/Berlin (1992).
- [20] _____, A note on perfect self-injective rings, Comm. Algebra 24 (1996), 749–755.

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING YAMAGUCHI UNIVERSITY YOSHIDA, YAMAGUCHI 753-8512 JAPAN *E-mail address:* {kikumasa, oshiro, yoshi}@yamaguchi-u.ac.jp