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ABSTRACT. The purpose of this paper is to give a construction of local QF-rings with
Jacobson radical cubed zero. From our construction, we can foresee that there are many
QF-rings which are not finite dimensional algebras over fields. Needless to say, local QF-
rings together with local Nakayama rings are important artinian rings in the sense that
these rings are parts of QF-rings and Nakayama rings. Furthermore, as we mention, local
QF-rings are important for the study on the Faith conjecture, since the Faith conjecture
is not solved even for local semiprimary one-sided selfinjective rings with Jacobson radical
cubed zero.

1. INTRODUCTION

There are many open problems on @F-rings. The two most famous, longstanding,
unsolved problems are the Nakayama conjecture and the Faith conjecture. One may
refer to Nicholson-Yousif [16] for the Faith conjecture, as well as for several more recent
questions on @QF-rings.

The Faith conjecture. Is a semiprimary right self-injective ring a QF-ring? Faith
conjectured “no” in his book [6].

The Faith conjecture is not solved even for a local semiprimary ring with radical cubed
zero. Thus we record:

Problem 1. Is a semiprimary local right self-injective ring with radical cubed zero a
QF-ring?

The following result gives some information on this question.

Fact 1. (Baba-Oshiro [2|) If R is a semiprimary ring, then R is a right self-injective ring
if and only if R is a right simple-injective ring. In particular, if R is a local semiprimary
ring with radical J cubed zero, then R is right self-injective if and only if rJ?, J5 are
simple and, for any mazimal right submodule M of J, there exists a € J \ J? satisfying
aM = 0.

We now provide a careful analysis of Problem 1 and translate this problem into a
problem on two-sided vector spaces over division rings.

In order to do so, let R be a local semiprimary ring with J2? # 0 and J? = 0, where
J := J(R) denotes the radical of R. Let D denote the division ring R/J and put J = J/J2.

The detailed version of this paper will be submitted for publication elsewhere.
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Then, J and J? are (D, D)-bispaces. We denote by Soc’(R) and Soc”(R) the left and the
right socle of R, respectively and by Ig(A) and rg(A) the left and the right annihilator of
a subset A of R, respectively.

We now record some properties on R.

Fact 2. (1) If rSoc*(R) and Soc"(R)r are simple, then rrlr(A) = A and lgrr(B) =
B for any finitely generated right submodule A and for any finitely generated left
submodule B of J, J?> = Soc*(R) = Soc"(R), and pJ? and J? are one-dimensional
spaces.

(2) If Jg is finitely generated and rSoc*(R) and Soc"(R)g are simple, then R is QF.
For this QF-ring R, we can make a new QF-ring T of graded type as follows:
Consider the (D, D)-bispace T = D x J x J%. In T, we define a multiplication by
setting

tltg = (dldg, dla_g + a_ldg, d182 + 81d2 + alag)

for ty = (dy,a1,s1) and ty = (dy, as, 322 e T, where a; = a; + J*> € J/J? =: J.
Then, T is a QF-ring with J(T) = 0x J x J?, J(T)> =0x0x J% and J(T)? = 0.
(In general, R 2 T.)

Fact 3. Assume that Ry is (simple-)injective. Then

(1) rSoct(R) and Soc"(R)r are simple.

(2) For any maximal submodule M of Jg, aM =0 for some a € J\ S.

(3) rrlr(A) = A for any finitely generated submodule A of Jr and lgrr(B) = B for
any finitely generated submodule B of rJ.

(4) Put J* = Homg(Jg, J%). Then, for any a € J, the map a — (a)r (left multipli-
cation) giwes an (R, R)-bimodule isomorphism and a (D, D)-bispace isomorphism.:
RJRgRJI*Q an_dDJD%DJl*). .

(5) Put o =dim (Jp). If a is finite, then R is QF, while if « is infinite, then dim (p.J)
= (#D)* = #R > «a; in particular, if a = Xy and #D = R, then dim (pJ) = R,

where #A denotes the cardinal number of a set A.

Most known information on R emanates from Fact 2 and Fact 3. In particular, (4) in
Fact 3 is important for investigating Problem 1.

2. LOCAL QF-RINGS
We now give a construction of local Q)F-rings.
In this section, let D be a division ring and let pVp be a (D, D)-bispace. We put
T=DxVx((V&pV).
Then, T is a (D, D)-bispace. In T', we define a multiplication as follows:

tltg = (dldQ, dl'UQ -+ Ulcég’,?dl.’L'Q + l’ldg + U1 X UQ)



for t, = (dy,v1,21) and ty = (da, ve,x9) € T. It is easy to see that T is a local semiprimary
ring with radical cubed zero and that

JT)=0xVxVepV and JT)>=0x0xV ®pV.

We identify D x0x0,0xV x0and 0x0xV ®pV with D, V and V ®p V', respectively.
We note the following:

Proposition 4. (1) Assume that there ezists a (D, D)-bisubspace I of V ®@p V' with
dim (VepV)/Ip) =dim (VepV)/pl) =1 andvDQpV ¢ I andV@pDv ¢ I
for any 0 #v € V. Then, I is an ideal of T, J(T/I)? = Soc"(T/I) = Soc*(T/I),
and J(T/I)?* is simple as a left T /I-module and as a right T /I-module.

(2) Assume that dim (Vp) is finite and such a (D, D)-bisubspace I in (1) exists. Then,
T/I is a local QF-ring with radical cubed zero.

Proof. (1) is easily seen and (2) follows from Fact 1. m

Let pD be a one-dimensional right vector space and let p € Aut(D). Then, pD becomes
a one-dimensional left vector space by defining dp = pp(d) for d € D. We denote such a
(D, D)-bispace by pD”. We also put

V* = Homp(Vp, pDp).
Then, V* is canonically a (D, D)-bispace. Here we assume the following:
Assumption A: There exists a (D, D)-bispace isomorphism 6 : V' — V*.
Since the map (V, V) — pD? given by (v, w) — 0(v)(w) is a bilinear (D, D) onto map,
the map

)

ANV @&pV —pD? by Zvi ® w; ZH(%)(W)

is a (D, D)-bispace onto homomorphism. As is easily seen, Ker A is an ideal of the ring

T=DxVx((V&pV). Weput
D{(V,0,p,pD?) =T/ Ker \.

Let w € A™1(p) be fixed and put s = w + Ker A € (V ®p V)/Ker A. Then we can show
the following result.

Theorem 5. Let R be the ring D{V,0, p,pD?) above. Then the following hold.
(1) J:=J(R)=(VxV@pV)/Ker), J?=(VepV)/KerA=Rs=sR, J?=0
and Soc"(R) = Soc'(R) = J2.
(2) rJ? and J% are simple.
(3) R is a right self-injective ring.
(4) R is QF if and only if dim (Vp) is finite.

Proof. (1), (2) and (4) follow from Proposition 4. To show (3), let I be a maximal
submodule of Jr. By Fact 1, it suffices to show that there exists a € J \ J? satisfying
al = 0. Let X be a subspace of Vp with Xéé(er)\ = [. Then, as X is a proper subspace



of V, we can take 0 # v* € V* such that v*(X) = 0. Put a = 67 *(v*) + Ker \. Then,
a € J\ J?and al =0, as desired. O

By Theorem 5, we can translate Problem 1 into the following:

Problem 2. Does there exist a division ring D and a (D, D)-bispace V such that
dim (Vp) = o0 and pVp = pV} ((D, D)-isomorphism)?

If such a space pVp exists, Theorem 5 asserts the Faith conjecture is true, that is, we can
construct a semiprimary right self-injective ring which is not QF. However, this problem
is very difficult. In fact, if we try to solve this, we immediately encounter pathologies.

However, as a biproduct of the study on Problem 2, we can obtain an important way
of constructing local @QF-rings. We shall state this construction.

Lemma 6. Let V' be a bispace over a division ring D withn = dim (pV') = dim (Vp) < oo.
Then we can take x1,...,x, € V satisfyingV =Dz, & ---® Dr,=2:DF--- P x,D.

Proof. Let xy,...,x,y,2 € V such that xy,...,xg,y and xq,..., s, z are left and
right independent over D, respectively. If DzN Zle Dz;=0o0ryDnN Zle x;D = 0, then
T1,...,Tk, 2 OF Tq,..., T,y are left and right independent, respectively. If otherwise, i.e.,
Dz C Zle Dzx;and yD C Zle x;D, then x1, ..., z, y+ 2z are left and right independent.
By continuing this procedure, the statement is shown. ]

Now, henceforth, let
Vob=a21D®---Dx,D
be a finite dimensional right vector space over a division ring D and let
Ull(d) R Uln(d)
o= (04):D— (D), by d— o(d) =
o (d) -+ oun(d)

be a ring homomorphism, where (D),, is the ring of all n x n matrices over D. By using
o, we define a left D-operation on V' as follows: For d € D, dv; =} 7, x;0;(d), namely,

Ull(d) s Uln(d)
d(xy, ..., x) = (T1,...,T,)
op1(d) -+ oun(d)
Then, Vp becomes a (D, D)-bispace. We denote this bispace by V(x1, ..., x,;0) or simply
V2. We note that pD? mentioned above is pD(p; p).

Proposition 7. The following are equivalent:

(1) Vo =Dzy & --- @ Dux,.
_39_



(2) There is a ring homomorphism § = (&) : D — (D), such that for 1 < i,k < n,
the following formulas hold:

Z Uk] 5@]

d k=i
0 k#i

and

Proof. (1) = (2). Since z;d = _; &j(d)x; = > ;(3 ) Trow;(§i5(d))), we see that

(
d k
0 k

Z Okj 61]

Similarly, the second formula is obtalned.

(2) = (1). Since 32, &j(d)a; = 22,000, whow;(§5(d))) = 2532, 045(&i5(d)) = 2id, we see

that for any d € D,

7é2

- d k=i
;@’“(Uﬂ {o k4 i,

:L‘n xn
from which V? = Dxy + -+ + Dx,.
Next, to show that {Dxy, ..., Dx,} is an independent set, assume dyx; +- - -+ dpz,, = 0
fordi,...,d, € D. Since 3 (>, zj05:(d;)) = 0, we see that >, 05;(d;) =0 for j=1,...n
and hence

011(d1)+012(d2)+"‘+O’1n(dn) = O (1)

oo1(dr) + 092(da) + -+ - +o2n(dy)) = 0 -+ (2)

oni(dy) + op2(da) + -+ opu(dy) = 0 -+ (n).
Thus, 0 = & X (1) + & X (2) + - + &y X (n) = >, &j(045(d;)) = dj; hence dj = 0, as
desired. O

By Proposition 7, we see that, if there is a ring homomorphism ¢ = (&;;) : D — (D),
satisfying the formulas of the proposition, then V° = Dxy & --- @ Dx,. For this situ-
ation, we use V(x1,...,x,;0,€) instead of V(xy,...,x,;0). Moreover, we construct the
ring R above for this bispace under Assumption A and denote it by D(V,0,&,0, p, pD*).
Combining the proposition with Lemma 6, we have the following:

Theorem 8. Assume that dim (pV) =n < co. Then, R = D{(V,0,£,0,p,pD?) is a local
QF-ring with radical cubed zero.

Now, we return to our Assumption A and construct such a (D, D)-bispace isomorphism
0 : V — V* under some condition. Let & ZO(SU) : D — (D),, be a ring homomorphism



satisfying the formulas of Proposition 7(2) such that p¢;; = o;; for all 4, j. For each 1, let
a; € V* = Homp(Vp, pDY,) be defined by

o T1dy + - -+ 2pdy — pd;,
where di, ..., d, € D. Then, pV* = Da; @ - -- @ Day, and the map
0*: pVp — pV} by dixy + -+ dyx, — diog + -+ - + dpay,

is a (D, D)-bispace isomorphism. Therefore, in this case, we can make a local QF-ring
D(V,0,&,0%, p,pDP). In particular, setting p = idp, we can take o as £ above . Hence, we
obtain the following, which is useful for making local QQF-rings with radical cubed zero.

Theorem 9. LetVp =x1D&---Bx,D be an n-dimensional vector space over a division
ring D and let 0 = (0;;) : D — (D), be a homomorphism satisfying the formulas: For

1<i,k<n,
" d k=i
> okiloi(d) = { :
= 0 k#i
and
- d k=i
> ojloji(d) = { .
= 0 k#i.

Then we can make a local QF-ring D{V,a,0,0* idp,1D"P).

3. EXAMPLES OF LOCAL (QF-RINGS

Example 1. Let V =21D & --- & x, D be an n-dimensional vector space over a division
ring D and let 7 be a ring automorphism of D. Consider a ring homomorphism

7(d) 0
oc:D— (D), by d — :
0 7(d)
Then, by o, V becomes a (D, D)-bispace and
7 1(d) 0 ) )
=1 |d
0 7 1(d)) \x, T,
The map & = (&;;) : D — (D), is given by
7 1(d) 0
d —
0 71(d)

It then follows from the argument above Theorem 9 that we can construct a local QF-ring
D(V,0,€,6", 7% pD™).
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Example 2. Let C be the field of complex numbers, let V = 21;C®x,C be a 2-dimensional
vector space over C and consider a ring homomorphism

. a b
0:C—(C)y by a+bi — (bi a)'

Then the map o satisfies the formulas in Theorem 9. Hence we can make a local QF-ring
C(V,0,0,0%, idc, 1Cc).

This example can be slightly generalized as the following:

Example 3. Let k£ be a commutative field and let f(x) = 2™ — a € k[z] be irreducible
with o a root, D = k(a) and V = 3"" | @x;D. Let a map

ag aa asa’ e Ayt
1 a,_10" 1 a ajo e a2
o:D— (D), by E a;
—
: asa’? : a o
aio asa® - a,_ "t ag

Then, o is a ring homomorphism satisfying the formulas in Theorem 9. Hence, for a given
n-dimensional vector space V over D, we can make a local QF-ring D(V, o, 0, 0%, idp, 1D¥P).

Example 4. Let H be the quaternion algebra, let V = x1H & x.H & x3H & x4H be a
4-dimensional vector space over H and consider a ring homomorphism

a bi cj dk

_ . . bi a dk cj
o:H— (H), by a+bi+cj+dk — oAb a b
dk c¢j i a

Then, o satisfies the formulas in Theorem 9. Hence we can make a local @QF-ring
H(V, 0, 0,0, idy, 1H ),

Further, using Theorem 9, we shall show two constructing ways of local QQF-algebras
R with radical cubed zero, one of which gives an example of a local QQF-algebra which is
not a finite dimensional algebra.

Example 5. Let E be a field and let 7 be an automorphism of E satisfying

(1) 71'2 = ZdE

(2) ar(a)+ pr(f)=0=a=0and =0 for o, € E.
Define a 2-dimensional vector space over E : Let D = E® Et = {a+ (i | o,0 € E}
with the product ia = 7(a)i for any o € E (the addition, as well as the multiplication

between elements of F being the natural ones). Then, D is a division ring, as it can be
checked; see the product:

(o + §i)(n(a) 93 = am(a) + ()



and if o + ¢ # 0, then we have an(a) + Gn(5) # 0 by (3). Also, the center of D is
K :={a€ F|n(a)=a}.

Let V = 21D @ 22D be a 2-dimensional vector space over DD and consider a ring
homomorphism

0:D— (D) by a+fBi — (gz ﬂaz)

Then we see that o satisfies the formulas in Theorem 9. Hence we can make a local
QF-ring R = D(V,0,0,0* idp, 1D"P).

We shall give some examples of fields E satisfying (1) and (2) above.

(i) Let E = C or an arbitrary imaginary quadratic field (e.g. Q (v/=3)) and the map
7 : E — F defined by 7(a) = @, where @ denotes the conjugate of a.

(ii) Let K be a field and 7 an automorphism of K satisfying the conditions (1) and
(2). Moreover, let E' = K(z) be the field of rational functions in z over K. For
f=a,a"+ - +ax+ay € Klx], we put f = 7(a,)a" + -+ m(a1)z + 7(ag).
Then the map 7 : E — E given by @(f/g) = f/g is an automorphism of E. We
see that the fixed field of 7 in E is F'(x), where F' is the fixed field of 7 in K, and
E and 7 satisfies (1) and (2) again.

Example 6. Let E be a division ring such that FE is infinite dimensional over its center
K and 22 # —1 holds for any element x € E.

Define a 2-dimensional vector space over E : Let D = E® Ei={a+ (i | o, € E}.
Define the products 3> = —1 and 4a = o4 for any a € E. Then, D becomes a ring
(the addition, as well as the multiplication between elements of E being the natural
ones). Furthermore, D is a division ring. Actually, let d = a + 3% be a non-zero element
in D. If 8 = 0, then clearly d! = a~!. In case 3 # 0, it is easily checked that
(a+Bi)- (3 1a—1)5- (af~)2+1) ! = 1 and ((5-1a)?+1)"1(8~La—4)F~"-(a+ i) = 1.
This means that d is invertible.

Next, let V = 21D & 22D be a 2-dimensional vector space over D and consider a ring
homomorphism

o:D— (D) by a+fBi — (gz iz)

Then we see that o satisfies the formulas in Theorem 9. Hence we can make a local
QF-ring R = D(V,0,0,0*,idp,1D"P) and we can see that R is an infinite dimensional
algebra with K (its center).

We shall give an example of a division ring F in Example 6. Consider the functional
field L = R(x) over the field R of real numbers and let o be an into monomorphism of
L given by f(x)/g(x) — f(x*)/g(x*). Let Lly; o] be a skew-polynomial ring associated
with 0. Although L[y; o] is a non-commutative domain, it has the quotient ring which
is a division ring. We denote it by E. As is easily seen, the center of F is R and F is
infinite dimensional over R and it holds that a? # —1 for any non-zero element a € FE.

Acknowledgment. We are indebted to Dr. Cosmin Roman for making Example 5.
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