
LONG EXACT SEQUENCES COMING FROM TRIANGLES

AMNON NEEMAN

Abstract. Suppose we are given a homological functor, from a triangulated to an

abelian category. It takes triangles to long exact sequences. It turns out that not every

long exact sequence can occur; there are restrictions.
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0. Introduction

Suppose A is a sufficiently nice abelian category, so that it has a derived category
D(A). This will happen, for example, if A has enough projectives, or if it has enough
injectives; for details see Hartshorne [2] or Verdier [3, 4]. Given a distinguished triangle
in D(A)

X −−−−→ Y −−−−→ Z −−−−→ ΣX ,

we can form the long exact sequence in cohomology. We deduce in A a long exact
sequence

· · · // H−1(Z) // H0(X) // H0(Y ) // H0(Z) // H1(X) // · · ·
We can wonder what long exact sequences can be obtained this way.

It is clear that any sequence of length four is obtainable. If we have an exact sequence
in A

0 // A // B // C // D // 0
then it is very easy to deal with it; consider B and C as objects of A ⊂ D(A), and
complete the morphism B −→ C into a triangle in D(A). The reader can easily check
that the long exact sequence, obtained from the functor H applied to this triangle, is
nothing other than

0 // A // B // C // D // 0 .
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The remarkable fact, which I do not fully understand, is what comes next. It turns out
that not all sequences of length five

0 // A // B // C // D // E // 0

are the long exact sequences of triangles. Any exact sequence of length five defines a
class in Ext3A(E, A), or equivalently a morphism E −→ Σ3A in D(A). It turns out that
the sequence will be the long exact sequence of a triangle if and only if this class in
Ext3A(E, A) vanishes. In this article I will only prove the necessity, but the sufficiency is
easy enough.

More is true. Given any distinguished triangle X
u−→ Y

v−→ Z
w−→ ΣX in the derived

category D(A), we can look at its long exact sequence in cohomology. It can be chopped
into bits of length five, for example

0 // K // H0(X)
H0(u)

// H0(Y )
H0(v)

// H0(Z) // Q // 0 ,

where K is the kernel of H0(u) : H0(X) −→ H0(Y ), while Q is cokernel of H0(v) :
H0(Y ) −→ H0(Z). We will prove that, for every such length-five bit, the corresponding
element in Ext3A(Q,K) vanishes. I know that this vanishing is necessary, but have no
idea whether it suffices. In other words, I do not know whether it characterizes the long
exact sequences coming from triangles in D(A).

In the proof we will be slightly more general. We will start with an arbitrary triangu-
lated category T, possessing a t–structure; the reader is referred to Beilinson, Bernstein
and Deligne [1] for the definitions and elementary properties of t–structures. We will
let A be the heart of the t–structure. We will assume that T is nice enough so that the
inclusion A −→ T factors through a triangulated functor F : Db(A) −→ T; this is a very
weak hypothesis, usually satisfied. We recall that, for any pair of objects A,B ∈ A, we
have

HomDb(A)(A,B) = HomT(A,B) , HomDb(A)(A,ΣB) = HomT(A, ΣB) .

The reason for the first equality is that A embeds fully faithfully in both Db(A) and T, and
the second equality is because both groups classify extensions 0 −→ B −→ E −→ A −→ 0
in A. But it is perfectly possible for a non-zero morphism α : A −→ ΣnB, in the category
Db(A), to map to zero in T; all we learn, from the discussion above, is that this can only
happen if n ≥ 2.

What we will prove, in the generality of triangulated categories T with t–structures,
is the following. Given any triangle X

u−→ Y
v−→ Z

w−→ ΣX in the category T, we can
still look at its long exact sequence in cohomology. It can still be chopped into bits of
length five, for example

0 // K // H0(X)
H0(u)

// H0(Y )
H0(v)

// H0(Z) // Q // 0 .
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Every such length-five bit corresponds to an element in Ext3A(Q, K), that is to a mor-
phism α : Q −→ Σ3K in Db(A). We will prove that the functor F : Db(A) −→ T must
take α to zero.

1. The proof

Before all else we need to fix our conventions for this section.

Notation 1.1. Let T be a triangulated category with a t–structure. Let A be the heart of
this t–structure. Assume that the category T is “natural” enough so that the embedding
of A into T extends to a triangulated functor F : Db(A) −→ T. We fix these assumptions
throughout the section.

Let us also fix the notation that H : T −→ A will be the homological functor sending
an object X ∈ T to the truncation H(X) =

(
X≤0

)≥0. We will let Hn(X) = H(ΣnX).

With these conventions, we are ready to state and prove our main observation:

Lemma 1.2. Let X −→ Y −→ Z −→ ΣX be a triangle in T, and suppose that
(1) X and Y lie in T≤1 ∩ T≥0.
(2) Z lies in A = T≤0 ∩ T≥0.

This implies that the functor H sends the triangle to the long exact sequence

(∗) 0 // H0(X) // H0(Y ) // H0(Z) // H1(X) // H1(Y ) // 0

with all the other terms vanishing. In the abelian category A, this 5–term exact sequence
defines a class in Ext3A

(
H1(Y ),H0(X)

)
. This class can also be viewed as a morphism

α : H1(Y ) −→ Σ3H0(X), in the derived category Db(A).
We assert that, under the functor F : Db(A) −→ T, the image of α vanishes.

Proof. Consider the commutative square

X //

²²

Y

²²
X≥1 // Y ≥1 .
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We may complete to a 3× 3 diagram, were the rows and columns are triangles

X //

²²

Y //

²²

Z //

²²

ΣX

²²
X≥1 //

²²

Y ≥1 //

²²

I //

²²

ΣX≥1

²²
ΣX≤0 //

²²

ΣY ≤0 //

²²

ΣK //

²²

Σ2X≤0

²²
ΣX // ΣY // ΣZ // Σ2X ,

and the proof is by studying this 3 × 3 diagram. In the second row, we have that
Σ

(
X≥1

)
= H1(X) and Σ

(
Y ≥1

)
= H1(Y ) are both in A ⊂ T, and that the morphism

Σ
(
X≥1

) −→ Σ
(
Y ≥1

)
is surjective; it is the morphism H1(X) −→ H1(Y ) in the long

exact sequence (*) of the lemma. The second row reduces to the short exact sequence in
A

0 // I // H1(X) // H1(Y ) // 0 ,

and the map Y ≥1 −→ I is the image, under the functor F : Db(A) −→ T, of the
morphism in Db(A) defining the extension 0 −→ I −→ H1(X) −→ H1(Y ) −→ 0.

So much for the second row. Now look at the commutative diagram

Z //

²²

ΣX

²²
I // ΣX≥1 // ΣY ≥1 .

If we apply to it the functor H, we discover the diagram

H0(Z) //

²²

H1(X)

H0(I) // H1(X) // H1(Y ) .

Both Z and I lie in the heart A, and the diagram above identifies for us the map Z −→ I

as the factorization of the morphism from Z = H0(Z) to H1(X) through the kernel of
H1(X) −→ H1(Y ), which is the image of Z −→ H1(X). Now the column

K // Z // I // ΣK

is a triangle, which reduces to the short exact sequence 0 −→ K −→ Z −→ I −→ 0
in A ⊂ T. We also learn that the map I −→ ΣK is the image, under the functor
F : Db(A) −→ T, of the morphism in Db(A) corresponding to the extension.
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Next consider the commutative square

Y ≤0 //

²²

K

²²
Y // Z .

If we apply the functor H we learn that the map Y ≤0 −→ K, which is a map between
objects in A, is just the factorization through K of the morphism H0(Y ) −→ H0(Z) = Z.
The triangle

X≤0 // Y ≤0 // K //// ΣX≤0

is therefore nothing fancy; it is simply the exact sequence 0 −→ H0(X) −→ H0(Y ) −→
K −→ 0 in A. Moreover, the map K −→ ΣX≤0 is just exactly the image, under the
functor F : Db(A) −→ T, of the morphism in Db(A) corresponding to the extension.

What we have learned so far is that three of the six triangles, in our 3 × 3 diagram,
amount to short exact sequences in A

0 // H0(X) // H0(Y ) // K // 0

0 // K // Z // I // 0

0 // I // H1(X) // H1(Y ) // 0 .

Moreover, the differentials of these triangles are the classes of the three extensions, and
are also part of our 3× 3 diagram. The composite of these three differentials is the map

Y ≥1 // I

²²
ΣK // Σ2X≤0 ,

which the reader will find in our diagram. The commutativity of

Y ≥1 // I //

²²

ΣX≥1

²²
ΣK // Σ2X≤0 ,

coupled with the vanishing of Y ≥1 −→ I −→ ΣX≥1, tells us that this composite vanishes.
In the category T the three extensions compose to zero. ¤

Proposition 1.3. Let the conventions be as in Notation 1.1. Suppose X
u−→ Y

v−→
Z

w−→ ΣX is a triangle in T. Complete H0(X) −→ H0(Y ) −→ H0(Z) to an exact
sequence

0 // K // H0(X)
H0(u)

// H0(Y )
H0(v)

// H0(Z) // Q // 0 ,
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where K must be the kernel of H0(u) : H0(X) −→ H0(Y ), while Q is forced to be the
cokernel of H0(v) : H0(Y ) −→ H0(Z). The sequence defines an element in Ext3A(Q,K),
or equivalently a morphism α : Q −→ Σ3K in Db(A).

We assert that the functor F : Db(A) −→ T takes α to zero.

Proof. Consider the commutative square

X //

²²

Y

²²
X≥0 // Y ≥0 .

It may be extended to a morphism of triangles, which we will write

X //

²²

Y //

²²

Z //

²²

ΣX

²²
X ′ // Y ′ // Z ′ // ΣX ′ .

That is X ′ = X≥0 and Y ′ = Y ≥0. We have
(1) X ′ and Y ′ belong to T≥0, while Z ′ belongs to T≥−1.
(2) The three maps

H0(X) −→ H0(X ′) , H0(Y ) −→ H0(Y ′) , H0(Z) −→ H0(Z ′)

are all isomorphisms. For X ′ = X≥0 and Y ′ = Y ≥0 this is obvious, by the defini-
tion of the functor H in terms of truncations. For Z ′ consider the commutative
diagram with exact rows

H0(X)

ρ

²²

// H0(Y ) //

σ

²²

H0(Z)

τ

²²

// H1(X) //

Σρ

²²

H1(Y )

Σσ
²²

H0(X ′) // H0(Y ′) // H0(Z ′) // H1(X ′) // H1(Y ′) .

We know that ρ, σ, Σρ and Σσ are isomorphisms. The 5–lemma permits us to
conclude that so is τ .

Now apply the dual construction; consider the commutative square

(Y ′)≤0 //

²²

(Z ′)≤0

²²
Y ′ // Z ′ .
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We can extend to a morphism of triangles

X ′′ //

²²

Y ′′ //

²²

Z ′′ //

²²

ΣX ′′

²²
X ′ // Y ′ // Z ′ // ΣX ′ ;

as before, this means Y ′′ = (Y ′)≤0 and Z ′′ = (Z ′)≤0. We leave it as an exercise to the
reader to check that

(1) X ′′ belongs to T≤1 ∩ T≥0, and Y ′′ belong to A = T≤0 ∩ T≥0, while Z ′′ belongs to
T≤0 ∩ T≥−1.

(2) The three maps

H0(X ′′) −→ H0(X ′) , H0(Y ′′) −→ H0(Y ′) , H0(Z ′′) −→ H0(Z ′)

are all isomorphisms.
The proposition now follows from Lemma 1.2, applied to the triangle Σ−1Z ′′ −→

X ′′ −→ Y ′′ −→ Z ′′. ¤
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