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Abstract. We study the regularities and linearity defects of graded modules over a
Koszul algebra. These invariants are closely related to Koszul duality. We mainly con-
sider a Koszul commutative algebra A and its dual A!. We also introduce results on
monomial ideals in an exterior algebra E :=

∧ 〈y1, . . . , yn〉, which is a primary example
of a Koszul algebra. The linearity defects of monomial ideals in E have combinatorial
interest, and the results in this part belong to joint work with R. Okazaki.

1. Introduction

Let A =
⊕

i∈NAi be a Koszul algebra over a field K := A0, and *mod A the category
of finitely generated graded left A-modules. The Koszul duality is a certain derived
equivalence between A and its Koszul dual algebra A! := Ext•A(K,K).

For M ∈ *mod A, set βi, j(M) := dimK Exti
A(M, K)−j. If P• : · · · → P1 → P0 → M →

0 is a minimal graded free resolution of M , then Pi
∼= ⊕

j∈Z S(−j)βi, j(M). We call

regA(M) := sup{ j − i | i ∈ N, j ∈ Z with βi, j(M) 6= 0 }
the (Castelnuovo-Mumford) regularity of M . When A is a polynomial ring, regA(M) has
been studied by many authors from both geometric and computational interest. Even
for a general Koszul algebra A, regA(M) is still an interesting invariant closely related to
Koszul duality (see Theorem 5 below).

Let P• be a minimal graded free resolution of M ∈ *mod A. The linear part lin(P•) of
P• is the chain complex such that lin(P•)i = Pi for all i and its differential maps are given
by erasing all the entries of degree ≥ 2 from the matrices representing the differentials of
P•. According to Herzog-Iyengar [7], we call

ldA(M) := sup{ i | Hi(lin(P•)) 6= 0 }
the linearity defect of M . This invariant is related to the regularity via Koszul duality
(see Theorem 7 below).

In §4, we study the regularities and linearity defects of modules over a Koszul com-
mutative algebra A or its dual A!. Even in this case, it can occur ldA(M) = ∞ for
some M ∈ *mod A, while Avramov-Eisenbud [1] showed that regA(M) < ∞ for all
M ∈ *mod A. On the other hand, Herzog-Iyengar [7] proved that if A is complete inter-
section or Golod then ldA(M) < ∞ for all M ∈ *mod A. Initiated by these results, we
will show the following. Since the results in §4 have not been written elsewhere, we will
also give precise proofs.

The detailed versions of this paper will be submitted for publication elsewhere.
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Theorem A. For a Koszul commutative algebra A and N ∈ *mod A!, we have;
(1) If regA!(N) < ∞, then ldA!(N) < ∞.
(2) If A is a complete intersection, then regA!(N) < ∞ for all N ∈ *mod A!.
(3) If A is Golod and N has a finite presentation, then regA!(N) < ∞.

Let E :=
∧ 〈y1, . . . , yn〉 be the exterior algebra. It is a primary example of a Koszul

algebra. Eisenbud et. al [5] showed that ldE(N) < ∞ for all N ∈ *mod E (now this is
a special case of Theorem A). If n ≥ 2, then sup{ ldE(N) | N ∈ *mod E } = ∞. On the
other hand, we can prove that there is a uniform bound C such that

ldE(E/J) < C for all graded ideals J of E.

While we know little about the actual value of C, we can treat ldE(E/J) very precisely
if J ⊂ E is a monomial ideal. In §5, we collect results in this direction. Most results in
this section belong to joint work with R. Okazaki of Osaka university.

For a simplicial complex ∆ ⊂ 2[n] (here [n] := {1, 2, . . . , n}), set J∆ := (
∏

i∈F yi |
F ⊂ [n], F 6∈ ∆ ) to be a monomial ideal of E. Note that any monomial ideal of E is of
the form J∆ for some ∆. Recently, J∆ has become an important tool of Combinatorial
Commutative Algebra.

Theorem B. (Okazaki-Y [10]) With the above notation, we have the following.

(1) ldE(E/J∆) ≤ max{1, n− 2}.
(2) ldE(J∆) only depends on the topology of the geometric realization |∆∨| of the

Alexander dual ∆∨ of ∆ (and char(K)).
(3) If n ≥ 4, we have ld(E/J∆) = n− 2 ⇐⇒ ∆ is an n-gon.

2. Koszul Algebras and Koszul Duality

Let A =
⊕

i∈NAi be a graded algebra over a field K := A0 with dimK Ai < ∞ for all
i ∈ N, *Mod A the category of graded left A-modules, and *mod A the full subcategory
of *Mod A consisting of finitely generated modules. We say M =

⊕
i∈ZMi ∈ *Mod A

is quasi-finite, if dimk Mi < ∞ for all i and Mi = 0 for i ¿ 0. If M ∈ *mod A, then
it is clearly quasi-finite. We denote the full subcategory of *Mod A consisting of quasi-
finite modules by qf A. Clearly, qf A is an abelian category with enough projectives. For
M ∈ *Mod A and j ∈ Z, M(j) denotes the shifted module of M with M(j)i = Mi+j. For
M,N ∈ *Mod A, set HomA(M,N) :=

⊕
i∈ZHom*Mod A(M,N(i)) to be a graded k-vector

space with HomA(M, N)i = Hom*Mod A(M, N(i)). Similarly, we also define Exti
A(M, N).

Set m :=
⊕

i>0 Ai, and regard K = A/m as a graded left A-module. For M ∈ qf A,
i ∈ N and j ∈ Z, set

βi, j(M) := dimK Exti
A(M, K)−j.

Note that M ∈ qf A has a minimal graded free resolution P• : · · · → P1 → P0 → M → 0,
which is unique up to isomorphism. In this situation, we have Pi

∼= ⊕
j∈Z S(−j)βi, j(M).

It is easy to see that βi, j(M) < ∞ for all i, j. But, if A is not left noetherian, then
βi(M) :=

∑
j∈Z βi j(M) can be infinite even for M ∈ *mod A.

We say A is Koszul, if βi, j(K) 6= 0 implies i = j, in other words, the left A-module K
has a graded free resolution of the form

· · · −→ A(−i)⊕βi −→ · · · −→ A(−2)⊕β2 −→ A(−1)⊕β1 −→ A −→ K → 0.
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Even if we regard K as a right A-module, we get an equivalent definition.
The polynomial ring K[x1, . . . , xn] and the exterior algebra

∧ 〈y1, . . . , yn〉 are primary
examples of Koszul algebras. Of course, there are many other important Koszul algebras.
In the noncommutative case, many Koszul algebras are not noetherian.

Koszul duality is a derived equivalence between a Koszul algebra A and its dual A!. A
standard reference of this subject is Beilinson et.al [2]. But, in this paper, we follow the
convention of Mori [9].

Recall that Yoneda product makes A! :=
⊕

i∈N Exti
A(K, K) a graded K-algebra. If A is

Koszul, then so is A! and we have (A!)! ∼= A. The Koszul dual of the polynomial ring S :=
K[x1, . . . , xn] is the exterior algebra E :=

∧ 〈y1, . . . , yn〉. In this case, since S is regular
and noetherian, the Koszul duality is very simple. It states an equivalence Db(*mod S) ∼=
Db(*mod E) which is sometimes called Bernstein-Gel’fand-Gel’fand correspondence (BGG
correspondence for short). In the general case, the description of the Koszul duality is
slightly technical.

Let C(qf A) be the homotopy category of cochain complexes in qf A, and C↑(qf A) its
full subcategory consisting of complexes X• satisfying

X i
j = 0 for i À 0 or i + j ¿ 0.

We denote for D↑(qf A) the localization of C↑(qf A) at quasi-isomorphisms.
We denote V ∗ for the dual space of a K-vector space V . Note that if M ∈ *Mod A

then M∗ :=
⊕

i∈Z(M−i)
∗ is a graded right A-module. And we fix a basis {xλ} of A1 and

its dual basis {yλ} of (A1)
∗ (= (A!)1). Let (X•, ∂) ∈ C↑(qf A). In this notation, we define

the contravariant functor FA : C↑(qf A) → C↑(qf A!) as follows.

FA(X•)p
q =

⊕
A!

q+j ⊗K (Xj−p
−j )∗

with the differential d = d′ + d′′ given by

d′ : A!
q+j ⊗K (Xj−p

−j )∗ 3 a⊗m 7−→ (−1)p
∑

yλa⊗mxλ ∈ A!
q+j+1 ⊗K (Xj−p

−j−1)
∗

and

d′′ : A!
q+j ⊗K (Xj−p

−j )∗ 3 a⊗m 7−→ a⊗ ∂∗(m) ∈ A!
q+j ⊗K (Xj−p−1

−j )∗.

The contravariant functor FA! : C↑(qf A!) → C↑(qf A) is given by the similar way. They
induce the contravariant functors FA : D↑(qf A) → D↑(qf A!) and FA! : D↑(qf A!) →
D↑(qf A).

Theorem 1. The contravariant functors FA and FA! give an equivalence

D↑(qf A) ∼= D↑(qf A!)op.

The next result easily follows from Theorem 1 and the fact that FA(K) = A!.

Lemma 2 (cf. [9, Lemma 2.8]). For M ∈ qf A, we have

βi, j(M) = dim H i−j(FA(M))j.
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3. Castelnuovo-Mumford Regularity and Linearity Defect

Throughout this section, A =
⊕

i∈NAi is a Koszul algebra.

Definition 3. For M ∈ qf A, we call

regA(M) := sup{ j − i | i ∈ N, j ∈ Z with βi, j(M) 6= 0 }
the (Castelnuovo-Mumford) regularity of M . For convenience, we set the regularity of the
0 module to be −∞.

If M 6∈ *mod A, then β0, j(M) 6= 0 for arbitrary large j and regA(M) = ∞. So regA(M)
is essentially an invariant of M ∈ *mod A. But we regard it as an invariant of M ∈ qf A
for later convenience. The following is clear.

Lemma 4. (1) For M ∈ qf A, we have

regA(M) < ∞ =⇒ βi(M) < ∞ for all i =⇒ M has a finite presentation.

(2) Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence in qf A. If two of M,M ′

and M ′′ have finite regularity, so does the third.
(3) If M ∈ *mod A has finite length, then regA(M) = sup{ i | Mi 6= 0}.
If A is a polynomial ring K[x1, . . . , xn] (more generally, A is AS regular), then regA(M)

of M ∈ *mod A can be defined in terms of the local cohomology modules H i
m(M), see

[6, 8, 15]. If A is commutative, it is known that regA(M) < ∞ for all M ∈ *mod A (see
Theorem 8 below). But this need not be true in the non-commutative case. In fact, if
A is not left noetherian, then A has a graded left ideal I such that β1(A/I) = ∞. In
particular, if A is not left noetherian, then regA(M) = ∞ for some M ∈ *mod A. The
author does not know any example M ∈ *mod A such that βi(M) < ∞ for all i but
regA(M) = ∞.

The next result directly follows from Lemma 2.

Theorem 5 (Eisenbud et al [5], Mori [9]). For M ∈ qf A, we have

regA(M) = − inf{ i | H i(FA(M)) 6= 0 }.
Let P• : · · · → P1 → P0 → M → 0 be a minimal graded free resolution of M ∈ qf A.

The linear part lin(P•) of P• is the chain complex such that lin(P•)i = Pi for all i and
its differential maps are given by erasing all the entries of degree ≥ 2 from the matrices
representing the differentials of P•. It is easy to check that lin(P•) is actually a complex,
but it is not acyclic in general.

Definition 6 (Herzog-Iyengar [7]). Let M ∈ qf A and P• its minimal graded free resolu-
tion. We call

ldA(M) := sup{ i | Hi(lin(P•)) 6= 0 }
the linearity defect of M .

We say M ∈ *mod A has a linear free resolution if there is some l ∈ Z such that
βi, j(M) 6= 0 implies that j − i = l. It is easy to see that

regA(M) = inf{ i | M≥i :=
⊕
j≥i

Mj has a linear free resolution}.
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For i ∈ Z and M ∈ qf A, M〈i〉 denotes the submodule of M generated by the degree
i component Mi. We say M ∈ qf A is componentwise linear, if M〈i〉 has a linear free
resolution for all i ∈ Z. For example, if M has a linear free resolution, then it is com-
ponentwise linear. Note that M can be componentwise linear even if it is not finitely
generated. For example,

⊕
i∈NK(−i) is componentwise linear. It is easy to see that

ldA(M) = inf{ i | Ωi(M) is componentwise linear }, here Ωi(M) is the ith syzygy of M .
Clearly, we have ldA(M) ≤ proj. dimA(M). The inequality is strict quite often. For

example, we have proj. dimA(M) = ∞ and ldA(M) < ∞ for many M . On the other hand,
sometimes ldA(M) = ∞.

The next result connects the linearity defect with the regularity via Koszul duality.

Theorem 7 (cf. [15, Theorem 4.7]). For M ∈ qf A, we have

ldA(M) = sup{ regA(H i(FA(M))) + i | i ∈ Z}.
Proof. For a complex X•, H(X•) denotes the complex such that H(X•)i = H i(X•) for
all i and all differentials are 0. Let P• be a minimal graded free resolution of M . Then
lin(P•) is isomorphic to FA!(H(FA(M))) (this is proved in [15] under the assumption that
A is selfinjective, but the assumption is clearly irrelevant). So the assertion follows from
Theorem 5. ¤

4. Koszul Commutative Algebras and their Quadratic Dual

In this section, we study a Koszul commutative algebra A and its dual A!.

Theorem 8 (Avramov-Eisenbud [1]). If A is a Koszul commutative algebra, then we have
regA(M) < ∞ for all M ∈ *mod A.

On the other hand, even if A is Koszul and commutative, ldA(M) can be infinite for
some M ∈ *mod A, as pointed out in [7]. In fact, if ldA(M) < ∞ then the Poincaré series
PM(t) =

∑
i∈N βi(M) · ti is rational. But there exists a Koszul commutative algebra A

such that PM(t) is not rational for some M ∈ *mod A. But we have the following.

Theorem 9 (Herzog-Iyengar [7]). Let A be a Koszul commutative algebra.

(1) If A is complete intersection, then ldA(M) < ∞ for all M ∈ *mod A, while
sup{ ldA(M) | M ∈ *mod A } = ∞ in most cases.

(2) If A is Golod, then ldA(M) ≤ 2 · dimK A1 < ∞ for all M ∈ *mod A.

Now we are interested in regA!(N) and ldA!(N) for a Koszul commutative algebra A.

Theorem 10. If A is a Koszul commutative algebra, we have the following.

(1) Let N ∈ *mod A!. If regA!(N) < ∞, then ldA!(N) < ∞.
(2) The following conditions are equivalent.

(a) ldA(M) < ∞ for all M ∈ *mod A.
(b) If N ∈ *mod A! has a finite presentation, then regA!(N) < ∞.

(3) Let N ∈ qf A!. If there is some c ∈ N such that dimK Ni ≤ c for all i ∈ Z, then
ldA!(N) < ∞.
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Proof. (1) The complex FA!(N) is always bounded above. Hence if regA!(N) < ∞ then
H i(FA!(N)) 6= 0 for only finitely many i by Theorem 5. Thus the assertion follows from
Theorems 7 and 8.

(2) The implication (a) ⇒ (b): First assume that N ∈ *mod A! has a finite presen-
tation of the form A!(−1)⊕β1 → A!⊕β0 → N → 0. Then there is M ∈ *mod A with
M =

⊕
i=0,1 Mi such that FA(M) gives this presentation. Since ldA(M) < ∞, we have

regA!(N) < ∞ by Theorem 7.
If N ∈ *mod A! has a finite presentation, then for a sufficiently large s, N≥s :=

⊕
i≥s Ni

has a presentation of the form A!(−s − 1)⊕β1 → A!(−s)⊕β0 → N≥s → 0. (To see this,
consider the short exact sequence 0 → N≥s → N → N/N≥s → 0, and use the fact that
regA!(N/N≥s) < s.) We have shown that regA!(N≥s) < ∞. So regA!(N) < ∞ by the
above short exact sequence.

The implication (b) ⇒ (a): Set s := min{ i | Mi 6= 0 }. Then we have a finite presenta-
tion A!⊗K (Ms+1)

∗ → A!⊗K (Ms)
∗ → H−s(FA(M)) → 0. Hence regA!(H−s(FA(M))) < ∞

by the assumption. Let ∂i be the differential map of the complex FA(M). By the exact
sequence

0 −→ Im ∂−s−1 −→ A! ⊗K (Ms)
∗ −→ H−s(FA(M)) −→ 0,

we have regA!(Im ∂s−1) < ∞. Similarly, by the short exact sequence

0 −→ Ker ∂−s−1 −→ A! ⊗ (Ms+1)
∗ −→ Im ∂−s−1 −→ 0,

we have regA!(Ker ∂−s−1) < ∞. Consider the short exact sequence

0 −→ Im ∂−s−2 −→ Ker ∂−s+1 −→ H−s−1(FA(M)) −→ 0.

Since there is a surjection A! ⊗K (Ms+2)
∗ → Im ∂−s−2, Im ∂−s−2 is finitely generated.

Hence regA!(H−s−1(FA(M))) has a finite presentation, and its regularity is finite by the
assumption. So we also have regA!(Im ∂−s−2) < ∞. Repeating this argument, we can show
that regA!(H i(FA(M))) < ∞ for all i. On the other hand, by Theorem 5 and Theorem 8,
H i(FA(M)) 6= 0 for only finitely many i. So the assertion follows from Theorem 7.

(3) Let X be the set of all graded submodules of A⊕c which are generated by elements
of degree 1. By Brodmann [3], there is some C ∈ N such that regA(M) < C for all
M ∈ X. To prove the theorem, it suffices to show that regA(H i(FA!(N))) + i < C for all
i. We may assume that i = 0. Note that H0(FA!(N)) is the cohomology of the sequence

A⊗K (N1)
∗ ∂−1−→ A⊗K (N0)

∗ ∂0−→ A⊗K (N−1)
∗.

Since Im(∂0)(−1) is a submodule of A⊕ dimK N−1 ⊂ A⊕c generated by elements of degree
1, we have regA(Im(∂0)) < C. Consider the short exact sequence

0 −→ Ker(∂0) −→ A⊗K (N0)
∗ −→ Im(∂0) −→ 0.

Since regA(A⊗K(N0)
∗) = 0, we have regA(Ker(∂0)) ≤ C. Similarly, we have regA(Im(∂−1)) <

C. By the short exact sequence

0 −→ Im(∂−1) −→ Ker(∂0) −→ H0(FA!(N)) −→ 0,

we are done. ¤
Corollary 11. If A is a Koszul complete intersection, then regA!(N) < ∞ and ldA!(N) <
∞ for all N ∈ *mod A!.
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Proof. If N ∈ *mod A! has a finite presentation, we have regA!(N) < ∞ and ldA!(N) < ∞
by Theorem 9 (1) and Theorem 10. On the other hand, it is know that A! is noetherian.
Hence all N ∈ *mod A! has a finite presentation. So we are done. ¤

Proposition 12. Let A be a Koszul commutative algebra which is Golod. If N ∈ *mod A!

has a presentation of the form A!(−1)⊕β1 → A!⊕β0 → N → 0, then regA!(N) ≤ 2·dimK A1.

Proof. Follows from Theorem 9 (2) and the argument similar to the proof of Theorem 10
(2). ¤

In the situation of the above proposition, A is not necessarily noetherian. So it can
occur regA!(N) = ∞ for some N ∈ *mod A! even if A is Golod.

5. Linearity Defects of Face Rings

Let S := K[x1, . . . , xn] be the polynomial ring, and E :=
∧ 〈y1, . . . , yn〉 the exterior

algebra. The next result is now a special case of Theorem 10, but it initiated the study
on linearity defect.

Theorem 13 (Eisenbud et. al. [5]). We have ldE(M) < ∞ for all M ∈ *mod E.

If n ≥ 2, there is no uniform bound for ldE(M), that is, sup{ ldE(M) | M ∈ *mod E } =
∞. On the other hand, we have

ldE(M) ≤ cn! · 2(n−1)! ( c := max{ dimK Mi | i ∈ Z } )

for M ∈ *mod E. This bound follows from Brodmann’s bound for the regularity of
M ∈ *mod S. We also remark that the above bound seems very far from sharp. For
example, the author does not know a graded ideal J ⊂ E with ldE(E/J) > n− 1. When
J is a monomial ideal, we can actually prove that ldE(E/J) ≤ n− 1.

Set [n] := {1, 2, . . . , n}. We say ∆ ⊂ 2[n] is an (abstract) simplicial complex, if F ∈ ∆
and G ⊂ F imply G ∈ ∆. For a simplicial complex ∆ ⊂ 2[n], we have monomial ideals

I∆ := (
∏
i∈F

xi | F ⊂ [n], F 6∈ ∆ ) of S,

and

J∆ := (
∏
i∈F

yi | F ⊂ [n], F 6∈ ∆ ) of E.

We call K[∆] := S/I∆ the Stanley–Reisner ring of ∆, and K〈∆〉 := E/J∆ the exterior
face ring of ∆. Both are very important in Combinatorial Commutative Algebra, see
[4, 12]. In this section, we introduce the results on the linearity defects of K[∆] and
K〈∆〉. See [10] for detail.

Theorem 14 (Okazaki-Y [10]). For a simplicial complex ∆ ⊂ 2[n], we have

ldE(K〈∆〉) = ldS(K[∆]).
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There might exists a direct proof of the above result. But, in [10], we use the fact
that BGG correspondence Db(*mod S) ∼= Db(*mod S) has special meaning for K[∆] and
K〈∆〉 (this is the author’s previous result, see [13]). From this, we can show that both
ldS(K(∆)) and ldE(K〈∆〉) equal

(5.1) max{ i− depthS( Extn−i
S (I∆∨ , S) ) | 0 ≤ i ≤ n }.

Here

∆∨ := {F ⊂ [n] | [n] \ F 6∈ ∆ }
is the Alexander dual of ∆ (it is easy to check that ∆∨ is a simplicial complex again).
We also remark that the number in (5.1) is closely related to the notion of sequentially
Cohen-Macaulay modules (c.f. [12, Theorem 2.11]).

Theorem 14 suggests that we may set

ld(∆) := ldS(K[∆]) = ldE(K(〈∆〉)).
A simplicial complex ∆ gives the topological space |∆| which is called the geometric

realization of ∆. In other words, ∆ is a “triangulation” of |∆|. It is well-known that many
homological/ring theoretical invariants of K[∆] only depend on the topological space |∆|
(and char(K)). But, for ldS(K[∆]), the Alexander dual ∆∨ is essential.

Theorem 15 (Okazaki-Y [10]). If ∆ 6= 2T for any T ⊂ [n], ld(∆) is a topological invariant
of the geometric realization |∆∨| of the Alexander dual ∆∨.

The above result follows from the fact that ld(∆) equals the number given in (5.1) and
“sheaf method” in the Stanley-Reisner ring theory, which was introduced by the author
([14]).

As a remark, ld(∆) depends on the characteristic char(K) of K. In fact, when |∆∨| is
homeomorphic to a real projective plane P2R, we have

ld(∆) =

{
3 if char(K) = 2

1 otherwise.

The earlier (and slightly weaker) version of the next result was first given in the thesis
of T. Römer [11], and treats ldE(K〈∆〉). Later, it was improved by the author in [15].
The original proofs were slightly complicated. But, now we can give a simple proof which
uses Theorem 14 and the fact that if a free module S(−i) appears in the minimal graded
free resolution of K[∆] then i ≤ n.

Theorem 16 (Herzog-Römer, Y [15]). For a simplicial complex ∆ ⊂ 2[n], we have

ld(∆) ≤ max{ 1, n− 2 }.
So it is natural to ask which simplicial complex attains the equality ld(∆) = n− 2. For

an answer, the following holds.

Theorem 17 (Okazaki-Y [10]). If n ≥ 4, we have ld(∆) = n − 2 ⇐⇒ ∆ is an n-gon
(i.e., |∆| is a circle).
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To prove the theorem, we use ld(∆) = ldS(K[∆]). If ∆ is an n-gon, then βn−1(K[∆]) =
0, βn−2, n(K[∆]) 6= 0 and βn−3, n−1(K[∆]) = 0. Hence we have [Hn−2(lin(P•))]n 6= 0,
where P• is the minimal graded free resolution of K[∆]. The proof of the converse can be
reduced to the case when dim ∆ = 1 (i.e., ∆ is essentially a simple graph). Regarding ∆
as a graph, we say a subgraph C of ∆ is a minimal cycle, if it is a cycle with no chords.
In this terminology, ∆ is an n-gon if and only if ∆ itself is a minimal cycle. Anyway, the
assertion essentially comes from the following fact: If dim ∆ = 1, H1(∆; K) is generated
by H1(C; K) for minimal cycles C of ∆, in other words, we have a surjection

(5.2)
⊕

C:minimal cycle

H1(C; K) −→ H1(∆; K) −→ 0.

Example 18. The Alexander dual of the 5-gon is homeomorphic to the Möbius band.
So the above theorem states that if |∆∨| is homeomorphic to the Möbius band then
ld(∆) = 3, and any triangulation of the Möbius band requires at least 5 points. In this
sense, the problem on “ a simplicial complex ∆ ⊂ 2[n] with small n − ld(∆)” is weakly
related to the classical combinatorial problem on “a triangulation with small number of
vertices”. For example, if |∆∨| is homeomorphic to the cylinder or the real projective
plane and char(K) = 2, then ld(∆) = 3. In both cases, there is a triangulation with 6
vertices (this is the smallest possible number), and then we have ld(∆) = 3 = n− 3.

For a simplicial complex ∆ ⊂ 2[n] and F ⊂ [n], the restriction ∆|F := {G ∈ ∆ | G ⊂ F }
is a simplicial complex again. If dim ∆ = 1 and ld(∆) ≥ 2, then we have

ld(∆) ≥ min{#F − 2 | ∆|F is a #F -gon }.
But the inequality can be strict.
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