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Recently, A.S. Muktibodh [12, 11, 10] considered a 2-Con-Cos group G defined as
follows: the commutator subgroup G′ of a finite group G consist of two conjugate classes
Ca and C1 = {1}, and cosets G′x are conjugate classes Cx of x ∈ G \ G′. In this paper,
we replace ”2-Con-Cos” by ”concos”.

These groups are just groups having exactly one non-linear irreducible character be-
cause the number of irreducible characters is equal to the number of conjugate classes,
G′ 6= {1} contains at least two conjugate classes and a coset G′x of G′ contains at least
one conjugate class Cx.

In §1, we shall prove these groups are isomorphic to affine groups over finite fields
or central products of some dihedral groups D of order 8 and quaternion groups Q, and
conversely.

After my talk, Professor Y. Ninomiya informed me that this characterization was
known in some papers [14, 13, 2]. Further the paper [2] stated that more general informa-
tion was considered in [8]. However I have arranged this characterization for some reasons
that our proof is slight different from others, rather self contained and necessary for §2
and §3.

In §2, we determine C-irreducible R-representations of concos groups.
In §3, we shall show concos groups appear in the proof of Hurwitz theorem concerning

quadratic forms. We also determine C-irreducible R-representations of slight different
groups in the proof of this theorem.

All representations and characters are considered over C.

1. Characterization of concos groups

First we show elementary properties of concos groups from the definition.

Lemma 1. Let G be concos. Then we have

(1) If N is a normal subgroup of G then N = {1} or N ⊃ G′.
(2) G′ is an elementary abelian p-group.
(3) Exactly one non-linear irreducible character η of G has the next values and we can

see from these values that η is faithful.

η(1)2 = |G/G′|(|G′| − 1), η(x) = −|G/G′|
η(1)

for x ∈ G′ \ {1},

and η(x) = 0 for x ∈ G \G′.

The detailed version of this paper will be submitted for publication elsewhere.
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Proof. (1) If N contains b 6= 1, then N contains Cb. In case b ∈ G′, N ⊃ Cb = Ca and so
N ⊃ G′. In case b 6∈ G′, N ⊃ Cb = G′b and so N = Nb−1 ⊃ G′.

(2) G′ is a p-group because G′ = {1} ∪ Ca and G′ contains an element of prime order
p. Thus G′′ is a normal subgroup of G properly contained in a p-group G′ and so G′′ = 1
from (1).

(3) Let ρG and ρG/G′ are regular characters of G and G/G′, respectively. Then we
have

ρG = ρG/G′ + η(1)η.

Using this we obtain our assertion.

The next theorem follows from Lemma 1 (1) and (2).

Theorem 2 ([14, 13, 2, 12]). Let G be concos. Then we have the next groups and
conversely.

1. G is the central product QDr−1 or Dr where D is the dihedral group of order 8
and Q is the quaternion group of order 8.

2. G is the next permutation group over a finite field Fq of order q > 2.

G = {x → αx + β | α ∈ F∗q and β ∈ Fq}.
2. Real representations of concos groups

Let Ψ be a C-irreducible representation of a finite group G and let χ be a character
afforded by Ψ. We set

ν(χ) =
1

|G|
∑
x∈G

χ(x2).

If χ is linear, then ν(χ) = (χ, χ̄), where (χ, χ̄) is the inner product of χ and χ̄ is the
complex conjugate of χ. Thus it is easy to see that ν(χ) = 1, 0 and also that (1) ν(χ) = 1
if and only if χ = χ̄ and (2) ν(χ) = 0 if and only if χ 6= χ̄.

Frobenius and Schur proved in [4] (see [3]) that ν(χ) = 1, 0,−1 and

(1) ν(χ) = 1 if and only if Ψ is equivalent to an R-representation.
(2) ν(χ) = 0 if and only if χ 6= χ̄.
(3) ν(χ) = −1 if and only if χ = χ̄ but Ψ is not equivalent to an R-representation.

Let d be a fixed element of a finite group G and let sd be the number of elements
x ∈ G such that x2 = d. There is the formula [3, p. 22 (3.6) ] about sd as follows:

sd =
∑

λ∈Λ

ν(λ)λ(d)

where Λ is the set of irreducible characters of G.

The next lemma is useful on C-irreducible R-representations of concos groups.

Lemma 3. Let G be a concos group, G′ = {1}∪Ca and let η be exactly one non-linear
irreducible character. Then we have

s1 − sa =
|G|
η(1)

ν(η).

–112–



In the next proposition we can see C-irreducible R-representations of concos 2-groups.
We also can see the numbers of elements of orders 4, 2 in these groups. Our counting
method is different from [5, pp. 205-207]. Therefore this gives a different proof about
that Dr and QDr−1 are not isomorphic (see Remark. (2) ).

Proposition 4. Let G be an extra special 2-group Dr or QDr−1 of order 2n, where
n = 2r + 1. Then elements in G are of order 1 or 2 or 4. Let R be the C-irreducible
representation of degree 2r and η is a character afforded by R. Let s be the number of
elements of order 2 or 1 and let t be the number of elements of order 4. Then we have

(1) In case G = Dr, R is equivalent to an R-representation, s = 2n−1 + 2r and
t = 2n−1 − 2r.

(2) In case G = QDr−1, R is not equivalent to an R-representation but η = η̄, s =
2n−1 − 2r and t = 2n−1 + 2r.

Remark.

(1) The groups D and Q have the same character table. Hence group algebras CD
and CQ over C are isomorphic. But two group algebras over R are not isomorphic.
In fact,

RD ∼= R(4) ⊕ (R)2 and RQ ∼= R(4) ⊕H
where H is the quaternion algebra over R.

(2) Dr is not isomorphic to QDr−1 because C-irreducible R-representations of degree
2r are different (see [5, pp. 205-206]).

Here we state about R-representations of affine groups over finite fields.

Proposition 5. Let G be a permutation group on finite field Fq, where q is a power
of a prime p, defined by

G = {x → ax + b | a ∈ F∗q, b ∈ Fq}.
Let s be the number of elements x with x2 = 1 and let t be the number of elements x ∈ G
such that x2 = u1 where u1 : x → x + 1. Then in case p 6= 2, s = |G′| + 1 and t = 1 and
in case p = 2, s = |G′| and t = 0. The C-irreducible representation of degree |G′| − 1 is
equivalent to an R-representation.

3. Theorem of Hurwitz

The converse of the next theorem is well known. In case n = 1, it is trivial. In case
n = 2, 4, we have

1. (x2
1 + x2

2)(y
2
1 + y2

2) = (x1y1 + x2y2)
2 + (x1y2 − x2y1)

2.
2. (x2

1 + x2
2 + x2

3 + x2
4)(y

2
1 + y2

2 + y2
3 + y2

4) =
(x1y1 − x2y2 − x3y3 − x4y4)

2 + (x1y2 + x2y1 + x3y4 − x4y3)
2 +

(x1y3 − x2y4 + x3y1 + x4y2)
2 + (x1y4 + x2y3 − x3y2 + x4y1)

2.

In case n = 8, it is also known. The next theorem is very interested to suggest that
algebras over the real number field can be constructed.

Theorem 6 (Hurwitz [7,1,6]). In polynomial ring C[x1, x2, . . . , xn, y1, y2, . . . , yn],
–113–



if the next equation is satisfied for zs =
∑

kt c
(k)
st xkyt, then n = 1, 2, 4, 8

(x2
1 + x2

2 + · · ·+ x2
n)(y2

1 + y2
2 + · · ·+ y2

n) = z2
1 + z2

2 + · · ·+ z2
n.

A key point in the above theorem is to prove n = 1, 2, 4, 8 if the next group Hn has a
faithful representation of degree n, namely, there is such a group Hn in GL(n,C).

Hn = {(−I)s0Bs1
1 Bs2

2 · · ·Bsn−1

n−1 | sk = 0, 1}
where B2

k = −I, BkB` = −B`Bk for k 6= `.
However we can show that 2-groups Hn are realized in GL(m,C) for some m. Therefore

we shall state about C-irreducible R-representations of 2-groups Hn.

Lemma 7. The group Hn has two irreducible characters η1 and η2 for an even integer
n. Let s be the number of elements x ∈ Hn with x2 = 1 and let t be the number of
elements x ∈ Hn of order 4. Then we obtain.

(1) s + t = 2n.

(2) ν(η1) = ν(η2) = 2−
n+2

2 (s− t).
(3)

ν(η1) =





1 for s > 2n−1,
−1 for s < 2n−1,

0 for s = 2n−1.

(4) s = 2n−1 + 2
n
2 ν(η1) and t = 2n−1 − 2

n
2 ν(η1).

(5)
s

2
=

n−1∑

k≡0,3 mod 4

(
n− 1

k

)
and

t

2
=

n−1∑

k≡1,2 mod 4

(
n− 1

k

)
.

Proof. (1) is clear since every element of Hn is of order 1, 2, 4.

(2) follows from η1(1) = η2(1) = 2
n−2

2 , η1(−1) = η2(−1) = −2
n−2

2 and the next
equations

ν(η1) =
1

|Hn|(sη1(1) + tη1(−1)) =
η1(1)

|Hn| (s− t) = ν(η2).

(3) and (4) follow easily from (1) and (2).
(5) follows from the equations

(Bt1Bt2 · · ·Btk)
2 =

{
I for k ≡ 0, 3 mod 4,
−I for k ≡ 1, 2 mod 4.

We proved our assertion

Using (5) in the above lemma, we can find value of ν(η1). For this purpose, we consider
the next equation

(1 + i)m = {
√

2(cos
π

4
+ i sin

π

4
)}m = 2

m
2 (cos

mπ

4
+ i sin

mπ

4
)

where i =
√−1. Comparing imaginary parts between left and right sides in the above

equation, we have the next formula

[m−1
2 ]∑

r=0

(−1)r

(
m

2r + 1

)
= 2

m
2 sin

mπ

4
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where [ ] is the Gauss symbol. In particular, we have for m = 4k + 2.

[m−1
2 ]∑

r=0

(−1)r

(
m

2r + 1

)
= (−1)

m−2
4 2

m
2 (see [9, p.11]). (¶)

The next proposition state about C-irreducible R-representations of groups Hn.

Proposition 8. Let η be a non-linear irreducible character of Hn. Then in case n
is odd, Hn is concos and so we already know about C-irreducible R-representations of
groups Hn. In case n is even, we have

ν(η) =





0 for n ≡ 2 mod 4,
−1 for n ≡ 4 mod 8,

1 for n ≡ 0 mod 8.

Proof. In case n ≡ 2 mod 4, noting that k ≡ 0, 3 mod 4 is equivalent to n − 1 − k ≡
1, 2 mod 4 for 0 ≤ k ≤ n− 1, we obtain easily

s

2
=

n−1∑

k≡0,3 mod 4

(
n− 1

k

)
=

n−1∑

k≡0,3 mod 4

(
n− 1

n− 1− k

)

=
n−1∑

`≡1,2 mod 4

(
n− 1

`

)
=

t

2
.

In the another cases, using the above formula (¶), we have the our assertions.

s

2
=

n−1∑

k≡0,3 mod 4

(
n− 1

k

)
=

n−2∑

k≡0,3 mod 4

{(
n− 2

k − 1

)
+

(
n− 2

k

)}

= 2n−2 −
[n−3

2 ]∑

`=0

(−1)`

(
n− 2

2` + 1

)
=

{
2n−2 + 2

n−2
2 for n ≡ 0 mod 8,

2n−2 − 2
n−2

2 for n ≡ 4 mod 8.

where 0 ≤ k ≤ n− 1 and
(

n−2
−1

)
=

(
n−2
n−1

)
= 0.
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