
　
ON A TENSOR PRODUCT OF SQUARE MATRICES

IN JORDAN CANONICAL FORMS
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Abstract. Let K be an algebraically closed field of characteristic p > 0. We shall
consider the problem of finding out a Jordan canonical form of J(a, s)⊗K J(b, t), where
J(a, s) means the Jordan block with eigenvalue a ∈ K and size s.

1. Introduction

To construct graded local Frobenius algebras over an algebraically closed field K, it is
important to find out a Jordan canonical form (simply, JCF) of tensor product of square
matrices. In fact, it is known that any graded local Frobenius algebra is of the form of
Λ(ϕ, γ) = T (V )/R(ϕ, γ), where V is a finite dimensional K-vector space, γ an element
of GL(V ), and ϕ : V ⊗n → K a K-linear map satisfying several conditions. Further, if we
decompose as (V, γ) =

⊕
i(Vi, γi), then the conditions of ϕ can be described in terms of

each ϕi1...ir : Vi1 ⊗ · · · ⊗ Vir → K. Then, we have to find out a Jordan canonical form of
γi1 ⊗ · · · ⊗ γir as an element in GL(Vi1 ⊗ · · · ⊗ Vir). (For detail, refer to T. Wakamatsu
[2]).

Let K be an algebraically closed field of characteristic p > 0, and J(a, s), J(b, t) Jordan
blocks over K. We shall consider the problem of finding out a JCF of J(a, s) ⊗ J(b, t),
where ⊗ means ⊗K . And then we may assume s 6 t.

In the case of ab 6= 0, our problem is reduced to the problem of finding the indecompos-
able decomposition of R as a K[θ]-module, where R means the polynomial ring K[x, y]
with relation (xs = 0 = yt) and θ = x + y. In Theorem 3, we show that we can find out
s homogeneous elements ω0, ω1, . . . , ωs−1 such that

R ∼=
s−1⊕
i=0

K[θ]ωi

as K[θ]-modules, where the degree of ωi is i (for each 0 6 i 6 s−1). Applying this result,
we show an algorithm for computing a JCF of J(a, s) ⊗ J(b, t) in Theorem 15. In the
case of ab = 0, we give the complete solution of our problem in Theorem 9.

A. Martsinkovsky and A. Vlassov [1] gave the solution of this problem in the case of
p = 0.

2. Main Result

2.1. The indecomposable decomposition that gives a JCF of J(a, s)⊗J(b, t). To
find out a JCF of J(a, s)⊗ J(b, t), we have to find its eigenvalues, the number of Jordan
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blocks, and the sizes of Jordan blocks. It is clear the eigenvalue of J(a, s)⊗J(b, t) is only
ab.

We consider the indecomposable decomposition of

K[X]

((X − a)s)
⊗ K[Y ]

((Y − b)t)

as a K[X ⊗ Y ]-module. By replacing variables and so on, we have the following:

(1) ab 6= 0:
(

K[X]

((X − a)s)
⊗ K[Y ]

((Y − b)t)

)

K[X⊗Y ]

∼=
(

K[X, Y ]

(Xs, Y t)

)

K[X+Y ]

.

(2) a = 0, b 6= 0:
(

K[X]

(Xs)
⊗ K[Y ]

((Y − b)t)

)

K[X⊗Y ]

∼=
(

K[X, Y ]

(Xs, Y t)

)

K[X]

.

(3) a 6= 0, b = 0:
(

K[X]

((X − a)s)
⊗ K[Y ]

(Y t)

)

K[X⊗Y ]

∼=
(

K[X, Y ]

(Xs, Y t)

)

K[Y ]

.

(4) a = 0 = b:
(

K[X]

(Xs)
⊗ K[Y ]

(Y t)

)

K[X⊗Y ]

∼=
(

K[X, Y ]

(Xs, Y t)

)

K[XY ]

.

We put x = X̄, y = Ȳ ∈ K[X, Y ]/(Xs, Y t), and R = K[x, y].

Lemma 1. Our problem is reduced to the problem of finding the indecomposable decom-
position of R as a K[θ]-module, where θ means x + y (if ab 6= 0), x (a = 0, b 6= 0),
y (a 6= 0, b = 0), and xy (a = 0 = b).

We discuss on the assumption ab 6= 0, i.e. θ = x + y, unless otherwise stated.
It is clear R is a finite dimensional graded K-algebra. In fact, we denote by Ri the subset

of R consisting of all homogeneous elements with degree i, then we have R =
⊕s+t−2

i=0 Ri.
And we immediately know dimK Ri are as follows (1, 2, . . . , s, s, . . . , s, s− 1, . . . , 1) for
0 6 i 6 s + t− 2.

The subalgebra K[θ] of R is uniserial, and hence is a quasi-Frobenius. We denote by n
the nilpotency of θ (i.e. θn 6= 0, but θn+1 = 0), and then we can choose 〈1, θ, · · · , θn〉 as
a K-basis of K[θ]. By easy calculation, we have the following inequality on n:

Lemma 2. We have t− 1 6 n 6 s + t− 2. In particular, n = s + t− 2 if p = 0.

Since the algebra K[θ] is uniserial, any indecomposable summand M of RK[θ] can be
of written as K[θ]ω for some element ω in R. Hence we can write the indecomposable
decomposition of RK[θ] such as:

(2.1) R =
r⊕

i=1

K[θ]ωi (ωi ∈ R).
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We shall call each element ωi a generator (for an indecomposable summand of RK[θ]),
and the set {ω1, . . . , ωr}, which consists of the generators in (2.1), a generating set (for
the indecomposable decomposition of RK[θ]). Although a generating set is not unique, we
can choose some generating set that helps us to consider our problem:

Theorem 3. There exists a generating set {ω0, ω1, . . . , ωs−1} whose generator ωi is an
i-th degree homogeneous element. Hence,

R =
s−1⊕
i=0

K[θ]ωi (ωi ∈ Ri).

We prepare some lemmas and notation for the proof of Theorem 3.
For a uniserial K[θ]-submodule M of R generated by some homogeneous elements

of R, we denote by σ(M) the socle degree of M as a K[θ]-module; i.e. σ(M) = d if
socK[θ](M) ⊆ Rd. For example, σ(K[θ]) = n, and σ(K[θ]x) = n + 1 if θnx 6= 0. The
following lemmas are easily checked:

Lemma 4. Let α, β be homogeneous elements of R. If σ(K[θ]α) 6= σ(K[θ]β), then
K[θ]α ∩K[θ]β = {0} holds. Hence K[θ]α + K[θ]β = K[θ]α⊕K[θ]β.

Lemma 5. Let κ be a homogeneous element of R. If d := σ(K[θ]κ) < s + t − 2, then
κxs+t−2−d 6= 0 holds. Hence,

s+t−2−d∑
i=0

K[θ]κxi =
s+t−2−d⊕

i=0

K[θ]κxi.

The multiplication map ×θj : Ri → Ri+j is a K-linear map. We denote by K(i, i + j)
the kernel of this map.

Lemma 6. For each 0 6 i 6 s− 1, we have the following:

(1) The map ×θt−1−i : Ri → Rt−1 is injective.
(2) The map ×θs+t−1−2i : Ri → Rs+t−1−i is not injective.

Hence, for an elemant κi in K(i, s + t− 1− i) ⊆ Ri, we have

θs+t−2−1−2iκi = 0, but θt−1−iκi 6= 0.

We now prove Theorem 3:

The proof of Theorem 3. We put n0 = n and m0 = s + t − 2 − n0. If m0 > 0, then we
have

m0∑
i0=0

K[θ]xi0 =

m0⊕
i0=0

K[θ]xi0 ⊆ R

by Lemma 5. If this direct sum coincides with R, then we finish the proof. Suppose
not. By Lemma 6, we can take an element κ(1) ∈ K(m0 + 1, n0) and then we have
t−1 6 σ(K[θ]κ(1)) 6 n0−1. We put n1 = σ(K[θ]κ(1)) and m1 = (n0−1)−n1. If m1 > 0,
then we have

(

m0⊕
i0=0

K[θ]xi0) + (

m1∑
i1=0

K[θ]κ(1)x
i1) =

m0⊕
i0=0

K[θ]xi0 ⊕
m1⊕

i1=0

K[θ]κ(1)x
i1 ⊆ R
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from Lemma 5. Thus, we can construct the direct sum of K[θ]-submodules of R. However,
since R is finite dimensional, this construction will be over in finite steps. And it is clear
that this construction finishes just when s-th direct summand is constructed. By Krull-
Schmidt theorem, this decomposition is the indecomposable decomposition of RK[θ]. (And
this argument does work when some mi is zero.) ¤
Remark 7. (1) This proof gives concretely the indecomposable summands of RK[θ] such
as:

K[θ], K[θ]x, . . . , K[θ]xm0 ,

K[θ]κ(1), K[θ]κ(1)x, . . . , K[θ]κ(1)x
m1 ,

· · · · · ·
K[θ]κ(r−1), K[θ]κ(r−1)x, . . . , K[θ]κ(r−1)x

mr−1 ,

where κ(i) means some elnement in K(mi−1 + 1, ni−1) and mi = (ni−1 − 1) − ni, ni =
σ(K[θ]κ(i)). Thus, these κ(i), mi, ni are determined by the following order:

n = n0 → m0 → κ(1) → n1 → m1 → κ(2) → · · · → ni−1 → mi−1 → κ(i) → · · · .

(Then we define n−1 = s + t− 1, m−1 = 0, and κ(0) = 1R for convenience).
(2) We have to discuss on whether the value of ni = σ(K[θ]κ(i)) varies by the choice

of an element κ(i) ∈ K(mi−1 + 1, ni−1). However, we immediately find that the sequence
(n0, n1, . . . , nr−1) is unique by the uniqueness of the indecomposable decomposition of
RK[θ]. Therefore we can choose κi free.

(3) Theorem 3 declares the number of Jordan blocks of J(a, s)⊗ J(b, t) is s if ab 6= 0.

Definition 8. Thus, the particular indecomposable summands

(K[θ] =) K[θ]κ(0), K[θ]κ(1), . . . , K[θ]κ(r−1)

of RK[θ] characterize the indecomposable decomposition of RK[θ]. So, we shall call each
K[θ]κ(i) a leading module (of RK[θ]). And we call the number of the indecomposable
summands of RK[θ] whose lengths are equal to that of K[θ]κ(i) the leading degree of
K[θ]κ(i).

By this result, if there are r leading modules K[θ]κ(0), K[θ]κ(1), . . . , K[θ]κ(r−1), then
we have

J(a, s)⊗ J(b, t) ≡
r−1⊕
i=0

J(ab, `i)
⊕di ,

where `i and di mean the length and leading degree of K[θ]κ(i) respectively.
In the case of ab = 0, the algebra K[θ] is also uniserial. Hence we can apply a similar

argument of the proof of Theorem 3.

Theorem 9. If ab = 0. Then, for any characteristic p, we have the following:

(1) a = 0, b 6= 0 : By taking {1, y, . . . , yt−1} as a generating set;

J(0, s)⊗ J(b, t) ≡ J(0, s)⊕t.

(2) a 6= 0, b = 0 : By taking {1, x, . . . , xs−1};
J(a, s)⊗ J(0, t) ≡ J(0, t)⊕s.
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(3) a = 0 = b : By taking {1, x, . . . , xs−1, y, y2, . . . , yt−1};

J(0, s)⊗ J(0, t) ≡ J(0, s)⊕t−s+1 ⊕
s−1⊕
i=1

J(0, s− i)⊕2.

2.2. An algorithm for computing a JCF of J(a, s) ⊗ J(b, t). Next, we show there
exists a good way to compute a JCF of J(a, s) ⊗ J(b, t). To compute it, we find the
lengths and the leading degrees of the leading modules.

For each 0 6 i 6 s− 1, we define a function such as

Dp(i) =

{
0 (if the map ×θs+t−2−2i : Ri → Rs+t−2−i is bijective)
1 (if the map ×θs+t−2−2i : Ri → Rs+t−2−i is not bijective)

.

And we put

∆p = (Dp(0), Dp(1), . . . , Dp(s− 1)).

Remark 10. By Lemma 6 (1), we have known the map ×θt−s : Rs−1 → Rt−1 is always
injective (hence, bijective) independently of the value of characteristic p. So Dp(s−1) = 0
holds.

By Theorem 3, we may assume that R is of the form of
⊕s−1

i=0 K[θ]ωi, i.e. any base of
R is of the form of θjωi. This procedures the following lemmas:

Lemma 11. If an indecomposable summand K[θ]ωi is a leading module and Dp(i) = 0.
Then we have the following:

(1) σ(K[θ]ωi) = s + t − 2 − i. Hence the length and the leading degree of K[θ]ωi are
s + t− 1− 2i and one respectively.

(2) The next indecomposable summand K[θ]ωi+1 is a leading module if i + 1 < s.

Lemma 12. If an indecomposable summand K[θ]ωi is a leading module, Dp(i) = Dp(i +
1) = · · · = Dp(i + f − 1) = 1, and Dp(i + f) = 0 (f > 0). Then we have the following:

(1) σ(K[θ]ωi) = s + t− 2− i− f . Hence the length and the leading degree of K[θ]ωi

are s + t− 1− 2i− f and f + 1 respectively.
(2) The indecomposable summand K[θ]ωi+f+1 is a leading module if i + f + 1 < s.

Since the indecomposable summand K[θ]ω0 is a leading module, we can apply Lemma
11 and 12 to the components of an arbitrary ∆p inductively. Thus, via the sequence ∆p,
we can compute the lengths and the leading degrees of the leading modules concretely:

Theorem 13. We can compute a JCF of J(a, s)⊗ J(b, t) by using the sequence ∆p.

We can compute the determinant D(i) of the linear map ×θs+t−2−2i : Ri → Rs+t−2−i

by using elementary techniques of linear algebra:

Theorem 14. For each 0 6 i 6 s− 1, we have

D(i) =
i∏

k=0

(
s+t−2−2i+k

t−1−i

)
(

t−1−i+k
t−1−i

) .

By Theorem 13 and 14, we get an algorithm for computing a JCF of J(a, s)⊗ J(b, t):
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Theorem 15. We can compute a JCF of J(a, s)⊗ J(b, t) by taking the following steps:
Step 1: Computing D(i) for each 0 6 i 6 s− 1.
Step 2: Computing the sequence ∆p. Dp(i) = 0 iff D(i) 6≡ 0 ( mod p ).
Step 3: Applying Theorem 13.

Example 16. Let us compute a JCF of J(a, 4) ⊗ J(b, 5) (ab 6= 0). The determinants
D(i) are

D(0) =

(
7
4

)
(
4
4

) = 5 · 7, D(1) =

(
5
3

)(
6
3

)
(
3
3

)(
4
3

) = 2 · 52, D(2) =

(
3
2

)(
4
2

)(
5
2

)
(
2
2

)(
3
2

)(
4
2

) = 2 · 5, D(3) = 1.

So the sequence ∆p is
∆p = (0, 0, 0, 0) (p 6= 2, 5, 7),
∆2 = (0, 1, 1, 0),
∆5 = (1, 1, 1, 0),
∆7 = (1, 0, 0, 0).

Therefore

J(a, 4)⊗ J(b, 5) ≡





J(ab, 8)⊕ J(ab, 6)⊕ J(ab, 4)⊕ J(ab, 2) (p 6= 2, 5, 7)
J(ab, 8)⊕ J(ab, 4)⊕3 (p = 2)
J(ab, 5)⊕4 (p = 5)
J(ab, 7)⊕2 ⊕ J(ab, 4)⊕ J(ab, 2) (p = 7)

.

If p = 0 or p > s + t− 2, then the determinants D(i) are clearly all non-zero. Hence:

Corollary 17. If p = 0 or p > s + t− 2, then

J(a, s)⊗ J(b, t) ≡
s−1⊕
i=0

J(ab, s + t− 1− 2i).
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