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ABSTRACT. For a generalized tilting module pT4 and a nilpotent symmetric algebra
(aMa,p,1), under natural assumptions, the stable functors Ker : mod—A(y, @) —
mod—A(e?,4T) and Coker : mod—A(p”,9%T) — mod—A(1), ) has been constructed
and it was proved that they induce an equivalence mod—A(1), ¢) ~ mod—A (7, pT) in
[2]. In this note, it is proved that those functors Ker and Coker preserve the distinguished
triangles and, therefore, the stable categories mod—A(1), ) and mod—A(xT, oT) are
equivalent as triangulated categories.

1. INTRODUCTION

Let A and B be finite dimensional algebras over a field K. A bimodule g7y is called a
generalized tilting module if
(1) B=End(T4) and End(pT) = A, and
(2) Exty(T,T) =0 = Exty(T,T) for any n > 0.
A system (4 My, 1), @) consisting of a bimodule 4 M4 and two homomorphisms ¢ : 4 M ® 4
Mjg— aMyand ¢ gJM @4 Mg — 4DA, is called a nilpotent symmetric algebra if
(1) the algebra (M, ) is associative and nilpotent,
(2) the homomorphism v satisfies
(1) v(p(m1 @ ma) ® m3) = Y(m1 @ p(me @ m3)),
(i) ¥(m1 ® ma)(1a) = P(me @ ma)(1a)
for all elements mq, ms, m3 € M, and
(3) the homomorphism ) is non-degenerate in the sense that the condition ¢ (m® M) =0
implies m = 0 for an element m € M,
where D stands for the canonical duality functor Homg(?, K). Let pT4 is a general-
ized tilting module and (4 M4y, ¢, 1) a nilpotent symmetric algebra. The induced system
(ML, o7 47T) is defined as MT =T ®4 Homu (T, M) and

(LR [1®® fr) =t p(fi(t) ® f2(?) € MT,

Yt ® L@t ® fo) = (filts) ® f2(?1))(14) € DB
for elements t;, t, € T and fy, fo € Homa(T, M). Then, the system (¢, 97) is again a
nilpotent symmetric algebra if the homomorphism

HT,M . BT ®A I‘IOHIA(T7 M)B — BHOHIA(T, T ®A M)B
defined by Orp(t ® f)(t') =t ® f(') for t, ¢’ € T and f € Homu(T, M) is bijective. In
this case, we have two symmetric algebras
Alp, ) =Ad M aeDA

The detailed version of this paper will be submitted for publication elsewhere.
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and
A" ") =Bae MT @ DB.
The multiplication of the algebra A(p, 1)) is defined as
(a,m,s) - (a’,m' ") = (ad',;am’ + ma' + p(m @ m’),as’ + sa’ + Y (m @ m’))

for a,a’ € A,m,m’ € M and s,s’ € DA. In the same way, the multiplication of
the algebra A(p?,¢7T) is defined by using homomorphisms ¢’ and ¥*. For such sym-
metric algebras A(p,v) and A(p?,9yT), assuming several conditions, it is proved that
the kernel functor Ker : mod—A(p,1) — mod—A(eT,9T) and the cokernel functor
Coker : mod—A(p”,¥T) — mod—A(p,1) are defined and that those functors induce
a category equivalence mod—A(p, ) ~ mod—A(pT, 7).

It is known by D. Happel [1] that the stable module category mod—A of any self-
injective algebra A has a natural structure of triangulated category with Qxl as the
translation functor. In this note, we prove that our functor er preserves the distinguished
triangles and, therefore, the stable module categories mod—A(p, 1) and mod—A(p”,¢7T)
are equivalent as triangulated categories.

2. THE STABLE FUNCTOR Ker

In order to check that the functor Ker : mod—A(p, 1) — mod—A(pT, ") preserves
distinguished triangles in the next section, we recall here its definition.

Let (4M a4, ¢, 1) be a nilpotent symmetric algebra and T4 a generalized tilting module.
We call an exact sequence

...... _>T1_>TO_>X_>O

a dominant right 7'4-resolusion of a module X4 if (1) T}, € add(T}) for all k£ > 0 and (2)
the sequence

...... — I—IOI’]JA(Z—'7 Tl) — :[‘IOIT]_A(YHI7 To) — HOH]A(T,X) — 0

is exact again. We denote by gen*(74) the class of all modules X 4 for which there exist
dominant right T'4-resolutions. The notion of dominant left D7 g-resolutions of B-modules
and the class cog*(DTp) are defined in the dual manner. To define the stable functors

Ker : mod—A(p,¢) < mod—A(p”, ") : Coker

and to prove that those induce an equivalence mod—A(p, ) ~ mod—A(p?,¢7T), we
suppose that the following four conditions
(A) the map Or s : T ®4 Homa(T, M) — Homyu (T, T ®4 M) is bijective,
(B) the modules M4 and T'®4 M4 are in the class C(T4),
(C) the class C(T4) is contravariantly finite in the category mod—A, and
(D) the class D(DT%) is covariantly finite in the category mod—B
are satisfied, where C(T) = (Ta)* N gen*(T4) and D(DTg) = +(DTp) N cog*(DTR).

Let Xz (pp) be a module over the symmetric algebra A(p,v) = A& M ®DA. Since A is
a subalgebra of A(p,1), X can be seen as a module over A, which we call the underlying
module of X}, ) and denote by X4. Then, the multiplication X x A(y,v) — X defines
two homomorphisms ax : X ®4 M4 — X4 and Bx : X ®4 DA4 — X4 and they satisfy
the four conditions
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ﬂX : (OéX X DA) = 0, and
(ax @ M) =ax - (X @)+ 0x - (X @)

Conversely, for a module X4 and two homomorphisms ax : X ®4 My — X4 and By :
X ®4 DA4 — X4 satisfying the four conditions above, we can define a A(p, 1)-module
structure on X by x - (a,m,s) = za + p(x ® m) + ¥(x ® s) for elements x € X and
(a,m,s) € A(p,v). In this way, we may identify any module Xy, ) with the triple
(Xa,ax,fx). Similarly, a homomorphism of A(p,v)-modules f : Xxuw) — Yaew)
is a homomorphism of underlying modules X4 — Y4 which satisfies the following two
conditions
(H-1) frax =ay - (f® M) and
(H-2) f-Bx =By - (f @ DA).

Let (X4, ax,fx), (Ya,ay,By) be A(p,1)-modules and f : X p) — Ya(pw) & homo-
morphism. By condition (C), there exist exact sequences of the form

0=V =Wy 232X >0 and 0=Vy =Wy ZY —0

such that Vx, V3 € C(T4) and Wy, Wy € +C(T4). Since Ext!y(Wx, V3) = 0, we get two
homomorphisms Wy : Wy — Wy and V; : Vx — V3 over A such that the diagram

0 Vy Wy = X 0
o wl
0 Vy Wy Y 0
Yy

is commutative.
It is checked that there is an isomorphism A(p?,¥T)@pT =2 T @4 A(p, 1)) of K-spaces
and this defines a (A(p”,¥"), A(p,v))-bimodule, which we denote by A7 7\ Or(su)-

Then, the A(p?, T)-modules Ker(X), Ker(Y) and a A(p?, T)-homomorphism Ker(f) :
Ker(X) — Ker(Y) are defined by the following commutative diagram

0 —— Ker(X) —— Homp(A(eT, 91, Wx ®4 DT) Ax Homy () (0, X) —— 0
Ker(f)l J{Hom(A(wT,sz),Wf@DT) J{Hom(@,f)
0 —— Ker(Y) —— Homp(A(eT,T), Wy ®4 DT) - Homy () (©,Y) —— 0

Y

where the homomorphism Ay is defined as follows: First the underlying module of
Hom (4.4 (©, X) is Hom (T, X') since Homp ) (0, X) = Homa ) (T ®a A, ¢), X) =
Hom (T, X). Second, the underlying module of the A(p,T)-module

Homp(A(o",¢"), Wx ®4 DT) = Homg(B @ T ®4 Homa(T, M) ® DB, Wx @4 DT)
is isomorphic to a direct sum of three modules
Homp (DB, Wx ®4 DT') = Homg(T ®4 DT, Wx ®4 DT') =2 Homp(T, Wx),
Homp (T ® 4 Homa(T, M),Wx ®4 DT) = D(Hom (T, DHom (T, M)) @ Hom, (Wx,T))
=~ DHomy,(Wx, DHomA(T,g]\S/[)) = Wx ®4 Homa(T, M)



and
Homp(B,Wx @4 DT) = Wx ®4 DT.

Using those modules, the map Ax is defined by giving its three components

Ax.1 = Hom(T,~x) : Hom(T, Wy) — Hom (T, X),

)\X,Q = Oé} : (’}/X & HOHIA(T, M)) . WX XA HOHIA(T, M) — HOHIA<T,X)
and
)\X,3 = 6}'} . ("}/X &® DT) . WX Xa DT — HOIIlA(T,X),

where o% : X ®4 Homa(T, M) — Homu (T, X) and % : X ®4 DT — Homu (T, X) are
the adjoint maps of the structure maps ax and (x, respectively.

This defines a K-linear functor Ker : mod—A(yp,v) — mod—A(p”,%T) and it in-
duces a stable functor Ker : mod—A(p, ) — mod—A(p?,4T). Similarly, by using the
condition (D), the functor Coker : mod—A(p”,9?) — mod—A(p,v) is defined. Fi-
nally, by the condition (B), it is ckecked that those functors define the stable equivalence
Il’l_Od—A(gO, w) ~ m_Od_A((pTv ¢T)

3. EQUIVALENCES OF TRIANGULATED CATEGORIES

A distinguished triangle
/ -1
X1 — X2 — Cf S QA(gp,w)(Xl)

in the stable module category mod—A(y,v) is given by the push-out diagram

0 X E(X)) — QX(l%w(Xl) — 0
/| l H
0 X2 Of E— QX(l%w)(Xl) E— O

in the module category mod—A(¢p, 1), where X; — F(X) is an injection into an injective

module F(X;) and X 2 X, an arbitrary homomorphism of A(g,1)-modules. We have
to prove that the sequence

Ker(X) ferld) Ker(Xy) — Ker(Cy) — lCer(QX(l%w)(Xl))

is again a distinguished triangle in the category mod—A(p”, 1),
We start with the following result:

Lemma 1. Let 0 — X LY % Z 0 be an exact sequence of A(p,10)-modules. Then
there exist right -C(Tx)-approzimations Wy 3 X — 0, Wy XY -0 and Wy, 2 Z — 0



such that all the rows and columns are exact in the diagram

0 0 0
0 —— Vi 25 W 2y, 0
0 —— WX L Wy Ws WZ 0
00 VY Yz
0o— X 1, v 2. 7 0
0 0 0

Proof. We choose first any right ~C (74 )-approximations Wx 3 X and W7 XY and
get the commutative diagram

0 Vy —— Wy —25 X 0
vlooml
0 vy Wy Y 0
t ’)’{/

In the diagram, W} may not be injective, but since Wx € +C(Ta) C cog*(Ta), we can
take a left add(7)-approximation 0 — Wy — Ty and, by setting

Vi W t 0
Vf:<u_f5)a Wf:< uf) and’YY:<’Y§/70)> t,:<0 idTo)’

we have the commutative diagram

0 0 0
| | |
0 —— Vy — Wy X, X 0

a w) /|
0 — Vol —— W.oTy 2 Y 0
Here we put Wy = Wy, @ T, Vy = V§. @ Ty, W, = Coker(W;), V; = Coker(Vy) and
denote the cokernels of the maps Wy and Vy by Wy VE Wy — 0 and V5 ﬁ Vy; — 0,
respectively. Then, by the snake lemma, we get an exact sequence
0 Vz Wy, —2 Z 0

in which V; € C(T) and W, € +C(T4) hold as easily seen. It is now obvious that those
modules and homomorphisms make the diagram as stated in the lemma. q.e.d




For a short exact sequence of A(p,)-modules

0 x 1.y 2,7 0
we choose three +C(Ty)-approximations vx : Wy — X,y : Wy = Y, vz : Wy — Z
and two homomorphisms Wy : Wx — Wy, W, : Wy — Wy as stated in the lemma. By
making use of those modules and homomorphisms, the sequence

Ker(X) Kerld), Ker(Y) Lerlo), Ker(Z)

is defined in the module category mod—A(¢”,7) by the following commutative diagram
with exact rows

0 —— Ker(X) —— Homp(A(p?,¢7T), Wx @4 DT) Ax Hom (4 (©,X) —— 0
llCer(f) JHom(Ang,wT),Wf@DT) lHom(@,f)

0 —— Ker(Y) —— Homp(A(g”,¥7), Wy ®4 DT) —— Homp(,u)(0,Y) —— 0
llCer(g) lHom(A(cpT,wT),Wgé?DT) lHom(@,g)

0 —— Ker(Z) —— Hompg(A(pT, 1), W, 04 DT) AN Homp (4, (©,2) —— 0

and we get the following lemma.

Lemma 2. When we choose right ~C(T4)-approxvimations Wy XX, Wy ZY and
Wy 22 Z as in the previous lemma, the sequence

KLerlh), Ker(Y) Kerlg), Ker(Z) —— 0

0 —— Ker(X)
is exact in the module category mod—A (T, yT).
Proof. Applying the functor Homy(, 4)(0,7) to the exact sequence
0 Xty 4.z 0
we have the following commutative diagram with exact rows.

Hom(®, f) Hom(©,9)
_— —_—

0 —— HOHIA(%w) (@, X) HOIIIA(%w)(@, Y) HOIIIA(%w)(@, Z)

~| =| «|

0 ——  Homu(T,X) ——— Homu(T,Y) ——— Homu(T,Z) —— Exti(T,X) -
Hom(T,f) Hom(T,g)

Similarly, applying the functor

Hompg(B,?)
s>
Homp(A(e”,47),?7) = Homp(T ®4 Homu(T, M),?)
s>
Hompg(DB,?)

to the exact sequence

0 —— Wy o, DT 2220 Wy 24 DT WD W @A DT —— 0



we have two exact sequences

0 — Homp(B, Wy ®4 DT) — Homp (B, Wy ®4 DT) — Homp (B, Wz ©4 DT) —— 0
and

0 —— Homp(N,Wx ®4 DT) —— Homp(N,Wy ® 4 DT) —— Homp(N,Wz @4 DT) —— 0,
where N =T ®4 Hom (T, M), and the commutative diagram with exact rows

0 ——— Homp(DB,Wx ®4 DT) ———— Homp(DB,Wy ®4rmDT) ———— Homp(DB,Wz ®4 DT)

0 —— Hom 4 (T, Wx) e Hom 4 (T, Wy) ————  Homy(T,Wz) — ---
Hom (T ,Wy) Hom(T,Wy)

Then, combining those diagrams, we get the following commutative diagram with exact
rows and columns

——— Homp(A(eT,¢T), Wy @4 DT) —— Exty{(T,Wx) — ---

l
s I x
| |

|

|

—_— Hom(y, (0, Z) — Ext4(T,X) — -

l

0 0 0

On the other hand, from the exact sequence 0 — Vxy — Wiy X X — 0 with Vy € C(Ta),

we have an isomorphism Ext!(T,vx) : Ext} (T, Wx) = Ext! (T, X). Therefore, to prove
the surjectivity of the map Ker(g) : Ker(Y) — Ker(Z), it is enough to show that the
diagram

Homp (A(¢”,¥7), Wz ®4 DT) —— Exty(T, W)

,\Zl lExtl(T,'yX)
Homy (p,4)(©, Z) —— Ext}(T, X)

is commutative. It is easyto see that the commutativity of the above diagram is equivalent
to the following two assertions:

(1) The composition maps
7 @4 Hom(T, M) °% Ext!(T, Z) 2 Exty(T, X)
and
Z 4 DT % Hom(T, Z) 2 Ext!y(T, X)

are the zero maps, where Homu (T, Z) B Ext! (T, X) satands for the connecting

homomorphism corresponding to the exact sequence 0 — X Ly %z 0.



(2) The diagram

Homp(T @4 DT, Wy, 04 DT) 220 Homy, (T,W,) —2— Exth(T, W)

ng ElExtl(T,'yx)

Homa (T, Wy) ———— Homyu(T,Z) —— Ext}(T,X)
Hom(T,vz) A

is commutative, where the vertical map ( in the left hand side is the composition

DT
Hom(T,nWZ) can

Hom 4 (T, W)

Hom 4 (T, Homp (DT, Wz ® o4 DT)

HOInB(T ®Ra DT, Wz ®a DT)

]

and the map Homu (T, Wy) ES Ext! (T, Wx) stands for the connecting homomor-
w
phism corresponding to the exact sequence 0 — W Wy s Wz — 0.
Proof of the assertion (1): For any element y € Y and u € Homa (T, M), the element

Ala(g(y) ®u)) € Ext!y(T, X) is determined by the diagram

0 X FE T 0
H l la*z(g(y)@?u)
0 X Y A 0
f g

and it is easily verified that the homomorphism a7, (g(y)®u) is lifted to the homomorphism
a3 (y ® u) through the surjective map g. Therefore, the upper sequence in the diagram
splits and we have A - o}, = 0. We can prove A - 3 = 0 in the same way.

Proof of the assertion (2): It is checked that the map ( coincides with (? ® DT) :
Homy (T, Wz) — Homp(T ® 4 DT, W, ®4 DT). Hence, the commutativity of the diagram
follows from the naturality of the connecting homomorphisms. q.e.d

Theorem 3. The stable equivalence functor Ker : mod—A(p,v) — mod—A(¢”, ¥T) is
an equivalence of triangulated categories.

Proof. Applying Lemma 2 to the diagram

0 X, B(X1) —— QX)) —— 0
/| | |
0 X, Cy —— QX(lgo,w(Xl) — 0

we have the commutative diagram with exact rows

0 — Ker(Xy) —— Ker(E(X;)) — lCer(QX(l%w)(Xl)) — 0

! l H

0 —— Ker(Xy) ——  Ker(Cf) —— Ker(Q,}
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We know that the module Ker(Q) over the algebra A(p?, ") is projective for any pro-
jective module @) over the algebra A(y, 1) by the construction. Therefore, we see that
the equality

ICer(QX(l%w) (X1)) = QX({PTWT)(ICW(XI))
holds and the sequence

Ker(X,) “ Ker(Xz) —— Ker(Cp) —— Ker(Qyl, ) (X1))
is again a distinguished triangle in the stable category mod—A(p?,4T). This completes
the proof. q.e.d.
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