ON DERIVED EQUIVALENCES FOR SELFINJECTIVE ALGEBRAS

HIROKI ABE AND MITSUO HOSHINO

ABSTRACT. We show that if A is a representation-finite selfinjective artin algebra then every $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ with $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}, P^{\bullet}[i]) = 0$ for $i \neq 0$ and $\operatorname{add}(P^{\bullet}) = \operatorname{add}(\nu P^{\bullet})$ is a direct summand of a tilting complex, and that if A, B are derived equivalent representation-finite selfinjective artin algebras then there exists a sequence of selfinjective artin algebras $A = B_0, B_1, \cdots, B_m = B$ such that, for any $0 \leq i < m, B_{i+1}$ is the endomorphism algebra of a tilting complex for B_i of length ≤ 1 .

1. INTRODUCTION

Let A be an artin algebra. Rickard [7, Proposition 9.3] showed that for any tilting complex $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ the number of nonisomorphic indecomposable direct summands of P^{\bullet} coincides with the rank of $K_0(A)$, the Grothendieck group of A, which generalizes earlier results [2, Proposition 3.2] and [6, Theorem 1.19]. He raised a question whether a complex $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ with $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}, P^{\bullet}[i]) = 0$ for $i \neq 0$ is a tilting complex or not if the number of nonisomorphic indecomposable direct summands of P^{\bullet} coincides with the rank of $K_0(A)$ (see also [6]). In case P^{\bullet} is a projective resolution of a module $T \in \operatorname{mod} A$ with proj dim $T_A \leq 1$, Bongartz [1, Lemma of 2.1] has settled the question affirmatively. More precisely, he showe d that every $T \in \operatorname{mod} A$ with proj dim $T_A \leq 1$ and $\operatorname{Ext}^1_A(T,T) = 0$ is a direct summand of a classical tilting module, i.e., a tilting module of projective dimension ≤ 1 . Unfortunetely, this is not true in general (see [7, Section 8]). Our first aim is to show that if A is a representation-finite selfinjective artin algebra then every $P^{\bullet} \in \operatorname{K}^{\mathsf{b}}(\mathcal{P}_A)$ with $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod} A)}(P^{\bullet}, P^{\bullet}[i]) = 0$ for $i \neq 0$ and $\operatorname{add}(P^{\bullet}) = \operatorname{add}(\nu P^{\bullet})$, where ν is the Nakayama functor, is a direct summand of a tilting complex (Theorem 4).

Rickard [8, Theorem 4.2] showed that the Brauer tree algebras over a field with the same numerical invariants are derived equivalent to each other. Subsequently, Okuyama pointed out that for any Brauer tree algebras A, B with the same numerical invariants there exists a sequence of Brauer tree algebras $A = B_0, B_1, \dots, B_m = B$ such that, for any $0 \leq i < m, B_{i+1}$ is the endomorphism algebra of a tilting complex for B_i of length ≤ 1 . These facts can be formulated as follows. For any tilting complex $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ associated with a certain sequence of idempotents in a ring A, there exists a sequence of rings $A = B_0, B_1, \dots, B_m = \operatorname{End}_{\mathsf{K}(\operatorname{Mod} A)}(P^{\bullet})$ such that, for any $0 \leq i < m, B_{i+1}$ is the endomorphism ring of a tilting complex for B_i of length ≤ 1 determined by an idempotent (see [4, Proposition 3.2]). We refer to [3], [5] for other examples of derived equivalences which are iterations of derived equivalences induced by tilting complexes of length ≤ 1 . Our second aim is to show that for any derived equivalent representation-finite selfinjective artin algebras A, B there exists a sequence of selfinjective artin algebras A, B there exists a sequence of selfinjective artin algebras

The detailed version of this paper has been submitted for publication elsewhere.

 $A = B_0, B_1, \dots, B_m = B$ such that, for any $0 \le i < m, B_{i+1}$ is the endomorphism algebra of a tilting complex for B_i of length ≤ 1 (Theorem 5).

2. Derived equivalences for selfinjective algebras

In the following, R is a commutative artinian ring with the Jacobson radical \mathfrak{m} and A is an artin R-algebra, i.e., A is a ring endowed with a ring homomorphism $R \to A$ whose image is contained in the center of A and is finitely generated as an R-module.

For any artin *R*-algebra *A*, we denote by Mod-*A* the category of right *A*-modules and by mod-*A* the full subcategory of Mod-*A* consisting of finitely generated modules. We denote by \mathcal{P}_A the full subcategory of mod-*A* consisting of projective modules. Also, we set $D = \operatorname{Hom}_R(-, E(R/\mathfrak{m}))$, where $E(R/\mathfrak{m})$ is an injective envelope of R/\mathfrak{m} in Mod-*R*, and $\nu = D \circ \operatorname{Hom}_A(-, A)$, which is called the Nakayama functor.

Definition 1. Assume A is selfinjective and let $\{e_1, \dots, e_n\}$ be a basic set of orthogonal local idempotents in A. Then there exists a permutation ρ of the set $I = \{1, \dots, n\}$, called the Nakayama permutation, such that $\nu(e_i A) \simeq e_{\rho(i)} A$ for all $i \in I$.

Proposition 2. Assume A is selfinjective and has a cyclic Nakayama permutation. Let B be a selfinjective artin R-algebra derived equivalent to A. Then B is Morita equivalent to A.

For a cochain complex X^{\bullet} over an abelian category \mathcal{A} , we denote by $H^n(X^{\bullet})$ the *n*-th cohomology of X^{\bullet} . For an additive category \mathcal{B} , we denote by $\mathsf{K}(\mathcal{B})$ (resp., $\mathsf{K}^+(\mathcal{B}), \mathsf{K}^-(\mathcal{B}), \mathsf{K}^b(\mathcal{B})$) the homotopy category of complexes (resp., bounded below complexes, bounded above complexes, bounded complexes) over \mathcal{B} . As usual, we consider objects of \mathcal{B} as complexes over \mathcal{B} concentrated in degree zero.

Definition 3. For any nonzero $P^{\bullet} \in \mathsf{K}^{-}(\mathcal{P}_{A})$ we set

$$a(P^{\bullet}) = \max\{i \in \mathbb{Z} \mid \mathrm{H}^{i}(P^{\bullet}) \neq 0\},\$$

and for any nonzero $P^{\bullet} \in \mathsf{K}^+(\mathcal{P}_A)$ we set

$$b(P^{\bullet}) = \min\{i \in \mathbb{Z} \mid \operatorname{Hom}_{\mathsf{K}(\operatorname{Mod} - A)}(P^{\bullet}[i], A) \neq 0\}.$$

Then for any nonzero $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ we set $l(P^{\bullet}) = a(P^{\bullet}) - b(P^{\bullet})$ and call it the length of P^{\bullet} . For the sake of convenience, we set $l(P^{\bullet}) = 0$ for $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ with $P^{\bullet} \simeq 0$.

For an object X in an additive category \mathcal{B} , we denote by $\operatorname{add}(X)$ the full subcategory of \mathcal{B} whose objects are direct summands of finite direct sums of copies of X and by $X^{(n)}$ the direct sum of n copies of X.

Theorem 4. Assume A is selfinjective and representation-finite. Let $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ be a complex with $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}, P^{\bullet}[i]) = 0$ for $i \neq 0$ and $\operatorname{add}(P^{\bullet}) = \operatorname{add}(\nu P^{\bullet})$. Then there exists some $Q^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ such that $Q^{\bullet} \oplus P^{\bullet}$ is a tilting complex. In particular, if the number of nonisomorphic indecomposable direct summands of P^{\bullet} coincides with the rank of the Grothendieck group $K_0(A)$, then P^{\bullet} is a tilting complex.

Theorem 5. Assume A is selfinjective and representation-finite. Then for any selfinjective artin R-algebra B derived equivalent to A the following hold.

- (1) There exists a sequence of selfinjective artin R-algebras $A = B_0, B_1, \cdots, B_m = B$ such that for any $0 \le i < m, B_{i+1}$ is the endomorphism algebra of a tilting complex for B_i of length ≤ 1 .
- (2) The Nakayama permutation of B coincides with that of A.

The proofs of Theorems 4 and 5 follow by induction on the length of P^{\bullet} . But, in Theorem 5, we set P^{\bullet} to be a tilting complex with $\operatorname{End}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}) \cong B$. The key of the induction is the following Lemma 6.

Lemma 6. Assume A is selfinjective and representation-finite. Let $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ be a complex of length ≥ 1 with $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}, P^{\bullet}[i]) = 0$ for $i \neq 0$ and $\operatorname{add}(P^{\bullet}) = \operatorname{add}(\nu P^{\bullet})$. Then there exists a tilting complex $T^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ of length 1 such that

- (1) $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod} A)}(T^{\bullet}, P^{\bullet}[i]) = 0 \text{ for } i \ge l(P^{\bullet}),$
- (2) $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}[i], T^{\bullet}) = 0$ for i < 0, and
- (3) $\operatorname{End}_{\mathsf{K}(\operatorname{Mod}-A)}(T^{\bullet})$ is a selfinjective artin *R*-algebra whose Nakayama permutation coincides with that of *A*.

References

- K. Bongartz, Tilted algebras, in: Representations of algebras (Puebla, 1980), 26–38, Lecture Notes in Math., 903, Springer, Berlin.
- [2] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), no. 2, 399–443.
- [3] D. Happel, J. Rickard and A. Schofield, Piecewise hereditary algebras, Bull. London Math. Soc. 20 (1988), no. 1, 23–28.
- [4] M. Hoshino and Y. Kato, Tilting complexes associated with a sequence of idempotents, J. Pure Appl. Algebra 183 (2003), no. 1-3, 105–124.
- [5] S. König and A. Zimmermann, Tilting selfinjective algebras and Gorenstein orders, Quart. J. Math. Oxford Ser. (2) 48 (1997), no. 191, 351–361.
- [6] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986), no. 1, 113–146.
- [7] J. Rickard, Morita theory for derived categories, J. London Math. Soc. (2) **39** (1989), no. 3, 436–456.
- [8] J. Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989), 303–317.

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA IBARAKI 305-8571 JAPAN *E-mail address*: abeh@math.tsukuba.ac.jp

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA IBARAKI 305-8571 JAPAN *E-mail address*: hoshino@math.tsukuba.ac.jp