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Abstract. In this note, we will find a class of rings R satisfying the following property:
for every pair of finitely generated right R-modules M and N , Exti

R(M, N) = 0 for all
i À 0 if and only if Exti

R(N, M) = 0 for all i À 0. In particular, we will show that such
a class of rings includes a group algebra of a finite group and the exterior algebra of odd
degree.

1. Motivation

Throughout, we always assume that k is a field, R is a (right and left) noetherian ring,
mod R is the category of finitely generated right R-modules, and M, N ∈ mod R.

If R is a commutative local ring, then Serre [15] defined the intersection multiplicity of
M,N ∈ mod R by

χ(M,N) :=
∞∑
i=0

(−1)i length TorR
i (M, N).

If R is not commutative, then TorR
i (M, N) do not make sense, but Exti

R(M,N) do, so
Smith and I [14] defined a new intersection multiplicity of M,N ∈ mod R by

M ·N := (−1)codim M

∞∑
i=0

(−1)i length Exti
R(M, N)

in order to develop an intersection theory over a noncommutative ring. (Note that if R
is not commutative, then Exti

R(M,N) are no longer R-modules, so we defined the above
intersection multiplicity in [14] only over a k-algebra R, replacing length Exti

R(M, N) by
dimk Exti

R(M, N).) Fortunately, these two definitions of the intersection multiplicity agree
over reasonably nice commutative rings.

Theorem 1. [5, Theorem 4, Theorem 5] If R is a commutative local complete intersection
ring, or a commutative local Gorenstein ring of Kdim R ≤ 5, then

M ·N = χ(M, N)

for all M, N ∈ mod R such that

• length(M ⊗R N) < ∞,
• pd(M) < ∞, pd(N) < ∞, and
• Kdim M + Kdim N ≤ Kdim R.

This note is basically a summary of [13] which has been accepted for publication in J. Algebra.
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Three conditions on M,N ∈ mod R in the above theorem guarantee that both inter-
section multiplicities χ(M, N) and M · N are well-defined. In order to justify our new
intersection theory, the following questions are natural over more general rings.

Question. Let R be an algebra or a commutative ring, and M,N ∈ mod R.

(1) M ·N = N ·M if both sides are well-defined?
(2) M ·N is well-defined if and only if N ·M is well-defined?

Over a commutative Gorenstein local ring, the first question above is equivalent to
Serre’s vanishing conjecture by [9]. In this note, we will focus on the second question
above. Note that M ·N is well-defined if and only if

• length Exti
R(M,N) < ∞ for all i, and

• Exti
R(M,N) = 0 for all i À 0,

so we can split the second question above into the following two questions:

Question. Let R be an algebra or a commutative ring, and M,N ∈ mod R.

(1) length Exti
R(M,N) < ∞ for all i if and only if length Exti

R(N,M) < ∞ for all i?
(2) Exti

R(M,N) = 0 for all i À 0 if and only if Exti
R(N, M) = 0 for all i À 0?

The first question above was answered affirmatively over a commutative ring.

Theorem 2. [9, Corollary 3.2] Let R be a commutative local ring. Then, for all M, N ∈
mod R,

length Exti
R(M, N) < ∞ for all i ⇔ length Exti

R(N,M) < ∞ for all i.

For the second question above, we will make the following definition.

Definition 3. We say that a ring R satisfies (ee) if, for all M,N ∈ mod R,

Exti
R(M,N) = 0 for all i À 0 ⇔ Exti

R(N, M) = 0 for all i À 0.

First, we will make an easy observation.

Example 4. If R is regular, that is, gldim R < ∞, then, for all M,N ∈ mod R,
Exti

R(M, N) = 0 for all i > gldim R, so R satisfies (ee).
Conversely, if R is a commutative local ring satisfying (ee), then Exti

R(R, k) = 0 for
all i ≥ 1 where k is the residue field of R, so Exti

R(k,R) = 0 for all i À 0, hence R is
Gorenstein, that is, id(R) < ∞.

It follows that the class of commutative local rings satisfying (ee) is somewhere between
regular rings and Gorenstein rings. In commutative ring theory, there is a nice class of
rings between them, namely complete intersection rings.

Theorem 5. [2] Every commutative locally complete intersection ring satisfies (ee).

It is not very difficult to find an example of non complete intersection ring which
satisfies (ee). Very recently, Jorgensen and Sega [8] found an example of a commutative
Gorenstein ring that does not satisfy (ee), so the class of commutative rings satisfying
(ee) is strictly between complete intersection rings and Gorenstein rings.
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2. Conjecture of Auslander

We will define another technical condition on a ring.

Definition 6. We say that a ring R satisfies (ac) if, for each M ∈ mod R, there exists
nM ∈ N such that, for all N ∈ mod R,

Exti
R(M,N) = 0 for all i À 0 ⇒ Exti

R(M,N) = 0 for all i > nM .

There was a conjecture in representation theory of finite dimensional algebras.

Conjecture. (Auslander) Every artinian algebra satisfies (ac).

The above conjecture was important since it implies the famous conjecture below.

Conjecture. (Finitistic dimension conjecture) If R is an artinian algebra, then there
exists nR ∈ N such that, for all M ∈ mod R,

pd(M) < ∞⇒ pd(M) ≤ nR.

Although the above conjecture was raised in representation theory of finite dimensional
algebras, it became also interested in commutative ring theory due to the following result.

Theorem 7. [6, Theorem 4.1], [13, Theorem 3.2] Let R be a commutative local Gorenstein
ring. If R satisfies (ac), then R satisfies (ee).

Although the condition (ac) is interesting, it is not easy to find non-trivial examples of
algebras satisfying (ac). In fact, there had been very few examples of algebras satisfying
(ac) until recently.

Theorem 8. [4, Theorem 2.4] Every group algebra of a finite group satisfies (ac).

Theorem 9. [2, Theorem 4.7, Proposition 6.2] Every commutative locally complete in-
tersection ring satisfies (ac).

Due to the above theorem, the following is a natural question.

Question. If R is a noncommutative analogue of a commutative complete intersection
ring, then does R satisfy (ac) and/or (ee)?

On the positive side, we have the following result.

Theorem 10. [13, Corollary 2.3] If R is a regular ring and {x1, . . . , xn} is a regular
central sequence of R, then R/(x1, . . . , xn) satisfies (ac).

The above theorem produces a new example of an algebra satisfying (ac).

Example 11. Every exterior algebra can be written as

Λ(kn) ∼= R/(x2
1, . . . , x

2
n),
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where

R = k〈x1, . . . , xn〉/(xixj + xjxi)1≤i<j≤n

is a regular ring (an anti-commutative polynomial ring), and {x2
1, . . . , x

2
n} is a regular

central sequence of R, so Λ(kn) satisfies (ac).

Jorgensen and Sega [7] found an example of a commutative Frobenius algebra that
does not satisfy (ac), so the Auslander conjecture is false. The following theorem also
shows that the Auslander conjecture is false. In particular, we cannot replace “central”
by “normalizing” in the above theorem.

Theorem 12. [12, Theorem 6.5] Let Λ = k〈x1, . . . , xn〉/(xixj + αijxjxi, x
2
i ) be a skew

exterior algebra where 0 6= αij ∈ k for 1 ≤ i < j ≤ n. Then Λ satisfies (ac) if and only if
αij are roots of unity for all 1 ≤ i < j ≤ n.

3. Stably Symmetric Algebras

In this section, we will define a stably symmetric algebra, which is a generalization of
a symmetric algebra.

Definition 13. Let C be a k-linear Hom-finite category, that is,

dimk HomC(M,N) < ∞
for all M,N ∈ C. A Serre functor on C is an autoequivalence K : C → C such that

HomC(M,N) ∼= D HomC(N,K(M))

for all M,N ∈ C where D(−) is the functor taking the k-vector space dual.

A Serre functor on C is unique if it exists. Moreover, if C is a triangulated category,
then a Serre functor K : C → C is exact, so the following lemma is immediate.

Lemma 14. Let C be a k-linear Hom-finite triangulated category. Then an exact autoe-
quivalence K : C → C is a Serre functor on C if and only if

Exti
C(M,N) ∼= D Ext−i

C (N,K(M))

for all i and all M, N ∈ C.
The definition of a Serre functor was motivated by the Serre duality.

Example 15. If X is a smooth projective scheme of finite type over k, then the bounded
derived category of coherent OX-modules Db(X) has a Serre functor

−⊗X ωX [d] : Db(X) → Db(X)

where ωX is the canonical sheaf on X and d = dim X, so that

Exti
X(F ,G) ∼= D Ext−i

X (G,F ⊗X ωX [d]) ∼= D Extd−i
X (G,F ⊗X ωX)

for all i and all F ,G ∈ coh X. In particular, the classical Serre duality

Hi(X,G) ∼= Exti
X(OX ,G) ∼= D Extd−i

X (G, ωX)

holds for all i and all G ∈ coh X.
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We will apply the theory of a Serre functor to the triangulated category defined as
follows. Let mod R be the stable category of mod R by projective modules. In general,
mod R is not a triangulated category, but there is a natural way of making it a triangulated
category. We define the category S(mod R), called the stabilization of mod R, whose
objects are of the form ΩiM where M ∈ mod R and i ∈ Z modulo M ∼= N in S(mod R)
if ΩiM ∼= ΩiN in mod R for all i À 0. It turns out that S(mod R) is a triangulated
category with the translation functor

Ω−1 : S(mod R) → S(mod R).

We refer to [3] for more details on this construction. If R is a regular algebra, then, for
all M ∈ mod R, ΩiM ∼= 0 for all i > gldim R, so S(mod R) is trivial. On the other
hand, if R is a Frobenius algebra, then mod R is already a triangulated category, so
S(mod R) ∼= mod R.

Definition 16. Let R be an algebra. We say that R is stably symmetric if

K = Ω−d : S(mod R) → S(mod R)

is a Serre functor for some d ∈ Z.

In other words, R is stably symmetric if and only if S(mod R) is Calabi-Yau. However,
we will see later that the definition of stably symmetric does not coincide with that of
Calabi-Yau in the graded case. Note that if R is a regular ring, then S(mod R) is trivial,
so R is stably symmetric. The following result is well known.

Lemma 17. If R is a Frobenius algebra, then S(mod R) ∼= mod R has a Serre functor

K = ΩN : mod R → mod R

where

N (−) = D HomR(−, R) : mod R → mod R

is the Nakayama functor.

If R is a symmetric algebra, then R is Frobenius such that the Nakayama functor is
the identity, so we have the following.

Corollary 18. Every symmetric algebra is stably symmetric.

Example 19. The algebras below are examples of symmetric algebras, so they are stably
symmetric by the above corollary.

• A commutative local Frobenius algebra.
• A semi-simple algebra.
• The trivial extension of an artinian algebra.
• The group algebra of a finite group.
• The exterior algebra Λ(kn) when n is odd.
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4. Vogel Cohomology

In this section, we will interpret the two conditions (ac) and (ee) in terms of Vogel
cohomologies. For M, N ∈ mod R, the i-th Vogel cohomology is defined by

Êxt
i

R(M,N) := lim
n→∞

HomR(Ωn+iM, ΩnN).

Note that Êxt
i

R(M,N) are defined for all integers i ∈ Z. The below are two main results
of this note.

Theorem 20. [13, Theorem 3.2] Let R be a Gorenstein ring. Then the following condi-
tions are equivalent:

(1) R satisfies (ac).
(2) For all M,N ∈ mod R,

(∗) Êxt
i

R(M,N) = 0 for all i À 0 ⇒ Êxt
i

R(M,N) = 0 for all i.

Theorem 21. [13, Theorem 4.6] Let R be a stably symmetric Gorenstein algebra. Then
the following conditions are equivalent:

(1) R satisfies (ee).
(2) For all M,N ∈ mod R,

(∗∗) Êxt
i

R(M, N) = 0 for all i À 0 ⇒ Êxt
i

R(M, N) = 0 for all i ¿ 0.

Since the condition (*) above is stronger than the condition (**) above, the following
is immediate.

Corollary 22. [13, Theorem 4.7] Let R be a stably symmetric Gorenstein algebra. If R
satisfies (ac), then R satisfies (ee).

The above corollary produces a few more examples of algebras satisfying (ee).

Example 23. Every group algebra of a finite group is a symmetric algebra satisfying
(ac), so it satisfies (ee).

Example 24. The exterior algebra Λ(kn) where n is odd is a symmetric algebra satisfying
(ac), so it satisfies (ee).

5. AS-Gorenstein Koszul Algebras

In this last section, we will make similar analysis for AS-Gorenstein Koszul algebras.
From now on, we will assume that A is a connected graded algebra over k, grmod A is
the category of finitely generated graded right A-modules, and M, N ∈ grmod A.

If A is a Koszul algebra, then A is a quadratic algebra, that is, A = T (V )/(W ) where
T (V ) is the tensor algebra on the finite dimensional vector space V over k, W ⊂ V ⊗k V
is a subspace, and (W ) is the two-sided ideal of T (V ) generated by W . It is known that
its quadratic (Koszul) dual A! = T (V ∗)/(W⊥) is also Koszul where

W⊥ = {λ ∈ V ∗ ⊗k V ∗ | λ(w) = 0 for all w ∈ W ⊂ V ⊗k V }.
Clearly, (A!)! ∼= A as graded algebras.
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Example 25. An exterior algebra Λ(kn) is a Koszul algebra whose Koszul dual is a
polynomial algebra Λ(kn)! ∼= S(kn).

The class of algebras defined below plays an important role in noncommutative algebraic
geometry.

Definition 26. A connected graded algebra A is called AS-Gorenstein if

• id(A) = d < ∞, and

• Exti
A(k,A) =

{
k if i = d,

0 if i 6= d.

The following are versions of the Koszul duality.

Theorem 27. [10, Proposition 4.5], [11, Theorem 5.3] If A is a noetherian AS-Gorenstein
Koszul algebra such that A! is noetherian, then there is a duality

E : Db(grmod A) → Db(grmod A!),

which induces a duality
E : S(grmod A) → Db(Proj A!)

as triangulated categories.

We refer to [1] for the definition of Proj A! when A! is not commutative. We modify
the definition of a stably symmetric algebra in the graded case.

Definition 28. Let A be a connected graded algebra. We say that A is stably symmetric
in the graded sense if

K = Ω−d(−)(`) : S(grmod A) → S(grmod A)

is a Serre functor for some d ∈ Z and ` ∈ Z where (`) : grmod A → grmod A is the functor
shifting degree by `.

The theorem below produces many examples of stably symmetric graded algebras.

Theorem 29. [13, Corollary 5.7] Let A be a noetherian AS-Gorenstein Koszul algebra
such that A! is commutative. Then A is stably symmetric in the graded sense if and only
if Proj A! is smooth.

Example 30. If Λ(kn) is an exterior algebra, then Λ(kn) is a noetherian AS-Gorenstein
Koszul algebra such that Λ(kn)! ∼= S(kn) is a commutative polynomial algebra. Since
Proj Λ(kn)! ∼= Pn−1 is a projective space, Λ(kn) is stably symmetric in the graded sense
whether n is odd or even.

It follows that Λ(kn) satisfies (ee) in the graded sense, that is, the symmetry in the
vanishing of Ext-groups holds for any pair of graded right modules over every exterior
algebra.

We can construct many stably symmetric graded algebras which are not even artinian.

Example 31. If

A = k〈x, y, z〉/(xz + zx, yz + zy, xy + yx + z2, x2, y2),
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then A is a noetherian AS-Gorenstein Koszul algebra such that

A! ∼= k[x, y, z]/(xy − z2)

is commutative. Since Proj A! ∼= P1 is smooth, A is stably symmetric in the graded sense.
It is easy to see that A is not artinian.
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