SYMMETRY IN THE VANISHING OF EXT-GROUPS

IZURU MORI

ABSTRACT. In this note, we will find a class of rings R satisfying the following property: for every pair of finitely generated right R-modules M and N, $\operatorname{Ext}_{R}^{i}(M, N) = 0$ for all $i \gg 0$ if and only if $\operatorname{Ext}_{R}^{i}(N, M) = 0$ for all $i \gg 0$. In particular, we will show that such a class of rings includes a group algebra of a finite group and the exterior algebra of odd degree.

1. MOTIVATION

Throughout, we always assume that k is a field, R is a (right and left) noetherian ring, mod R is the category of finitely generated right R-modules, and $M, N \in \text{mod } R$.

If R is a commutative local ring, then Serre [15] defined the intersection multiplicity of $M, N \in \text{mod } R$ by

$$\chi(M,N) := \sum_{i=0}^{\infty} (-1)^i \operatorname{length} \operatorname{Tor}_i^R(M,N).$$

If R is not commutative, then $\operatorname{Tor}_{i}^{R}(M, N)$ do not make sense, but $\operatorname{Ext}_{R}^{i}(M, N)$ do, so Smith and I [14] defined a new intersection multiplicity of $M, N \in \operatorname{mod} R$ by

$$M \cdot N := (-1)^{\operatorname{codim} M} \sum_{i=0}^{\infty} (-1)^{i} \operatorname{length} \operatorname{Ext}_{R}^{i}(M, N)$$

in order to develop an intersection theory over a noncommutative ring. (Note that if R is not commutative, then $\operatorname{Ext}_{R}^{i}(M, N)$ are no longer R-modules, so we defined the above intersection multiplicity in [14] only over a k-algebra R, replacing length $\operatorname{Ext}_{R}^{i}(M, N)$ by $\dim_{k} \operatorname{Ext}_{R}^{i}(M, N)$.) Fortunately, these two definitions of the intersection multiplicity agree over reasonably nice commutative rings.

Theorem 1. [5, Theorem 4, Theorem 5] If R is a commutative local complete intersection ring, or a commutative local Gorenstein ring of Kdim $R \leq 5$, then

$$M \cdot N = \chi(M, N)$$

for all $M, N \in \text{mod } R$ such that

- length $(M \otimes_R N) < \infty$,
- $pd(M) < \infty$, $pd(N) < \infty$, and
- Kdim M + Kdim $N \leq$ Kdim R.

This note is basically a summary of [13] which has been accepted for publication in J. Algebra. -79-

Three conditions on $M, N \in \text{mod } R$ in the above theorem guarantee that both intersection multiplicities $\chi(M, N)$ and $M \cdot N$ are well-defined. In order to justify our new intersection theory, the following questions are natural over more general rings.

Question. Let R be an algebra or a commutative ring, and $M, N \in \text{mod } R$.

- (1) $M \cdot N = N \cdot M$ if both sides are well-defined?
- (2) $M \cdot N$ is well-defined if and only if $N \cdot M$ is well-defined?

Over a commutative Gorenstein local ring, the first question above is equivalent to Serre's vanishing conjecture by [9]. In this note, we will focus on the second question above. Note that $M \cdot N$ is well-defined if and only if

- length $\operatorname{Ext}^{i}_{R}(M, N) < \infty$ for all *i*, and
- $\operatorname{Ext}_{R}^{i}(M, N) = 0$ for all $i \gg 0$,

so we can split the second question above into the following two questions:

Question. Let R be an algebra or a commutative ring, and $M, N \in \text{mod } R$.

- (1) length $\operatorname{Ext}_{R}^{i}(M, N) < \infty$ for all *i* if and only if length $\operatorname{Ext}_{R}^{i}(N, M) < \infty$ for all *i*?
- (2) $\operatorname{Ext}_{R}^{i}(M, N) = 0$ for all $i \gg 0$ if and only if $\operatorname{Ext}_{R}^{i}(N, M) = 0$ for all $i \gg 0$?

The first question above was answered affirmatively over a commutative ring.

Theorem 2. [9, Corollary 3.2] Let R be a commutative local ring. Then, for all $M, N \in \text{mod } R$,

length $\operatorname{Ext}_{B}^{i}(M, N) < \infty$ for all $i \Leftrightarrow \operatorname{length} \operatorname{Ext}_{B}^{i}(N, M) < \infty$ for all i.

For the second question above, we will make the following definition.

Definition 3. We say that a ring R satisfies (ee) if, for all $M, N \in \text{mod } R$,

 $\operatorname{Ext}_{R}^{i}(M, N) = 0$ for all $i \gg 0 \Leftrightarrow \operatorname{Ext}_{R}^{i}(N, M) = 0$ for all $i \gg 0$.

First, we will make an easy observation.

Example 4. If R is regular, that is, gldim $R < \infty$, then, for all $M, N \in \text{mod } R$, $\text{Ext}_{R}^{i}(M, N) = 0$ for all i > gldim R, so R satisfies (ee).

Conversely, if R is a commutative local ring satisfying (ee), then $\operatorname{Ext}_{R}^{i}(R, k) = 0$ for all $i \geq 1$ where k is the residue field of R, so $\operatorname{Ext}_{R}^{i}(k, R) = 0$ for all $i \gg 0$, hence R is Gorenstein, that is, $\operatorname{id}(R) < \infty$.

It follows that the class of commutative local rings satisfying (ee) is somewhere between regular rings and Gorenstein rings. In commutative ring theory, there is a nice class of rings between them, namely complete intersection rings.

Theorem 5. [2] Every commutative locally complete intersection ring satisfies (ee).

It is not very difficult to find an example of non complete intersection ring which satisfies (ee). Very recently, Jorgensen and Sega [8] found an example of a commutative Gorenstein ring that does not satisfy (ee), so the class of commutative rings satisfying (ee) is strictly between complete intersection rings and Gorenstein rings.

2. Conjecture of Auslander

We will define another technical condition on a ring.

Definition 6. We say that a ring R satisfies (**ac**) if, for each $M \in \text{mod } R$, there exists $n_M \in \mathbb{N}$ such that, for all $N \in \text{mod } R$,

 $\operatorname{Ext}_{R}^{i}(M,N) = 0$ for all $i \gg 0 \Rightarrow \operatorname{Ext}_{R}^{i}(M,N) = 0$ for all $i > n_{M}$.

There was a conjecture in representation theory of finite dimensional algebras.

Conjecture. (Auslander) Every artinian algebra satisfies (**ac**).

The above conjecture was important since it implies the famous conjecture below.

Conjecture. (Finitistic dimension conjecture) If R is an artinian algebra, then there exists $n_R \in \mathbb{N}$ such that, for all $M \in \text{mod } R$,

$$\operatorname{pd}(M) < \infty \Rightarrow \operatorname{pd}(M) \le n_R.$$

Although the above conjecture was raised in representation theory of finite dimensional algebras, it became also interested in commutative ring theory due to the following result.

Theorem 7. [6, Theorem 4.1], [13, Theorem 3.2] Let R be a commutative local Gorenstein ring. If R satisfies (**ac**), then R satisfies (**ee**).

Although the condition (\mathbf{ac}) is interesting, it is not easy to find non-trivial examples of algebras satisfying (\mathbf{ac}) . In fact, there had been very few examples of algebras satisfying (\mathbf{ac}) until recently.

Theorem 8. [4, Theorem 2.4] Every group algebra of a finite group satisfies (ac).

Theorem 9. [2, Theorem 4.7, Proposition 6.2] Every commutative locally complete intersection ring satisfies (ac).

Due to the above theorem, the following is a natural question.

Question. If R is a noncommutative analogue of a commutative complete intersection ring, then does R satisfy (**ac**) and/or (**ee**)?

On the positive side, we have the following result.

Theorem 10. [13, Corollary 2.3] If R is a regular ring and $\{x_1, \ldots, x_n\}$ is a regular central sequence of R, then $R/(x_1, \ldots, x_n)$ satisfies (ac).

The above theorem produces a new example of an algebra satisfying (\mathbf{ac}) .

Example 11. Every exterior algebra can be written as

$$\Lambda(k^n) \cong \frac{R}{(x_1^2, \dots, x_n^2)},$$

-81-

where

$$R = k \langle x_1, \dots, x_n \rangle / (x_i x_j + x_j x_i)_{1 \le i < j \le n}$$

is a regular ring (an anti-commutative polynomial ring), and $\{x_1^2, \ldots, x_n^2\}$ is a regular central sequence of R, so $\Lambda(k^n)$ satisfies (**ac**).

Jorgensen and Sega [7] found an example of a commutative Frobenius algebra that does not satisfy (\mathbf{ac}) , so the Auslander conjecture is false. The following theorem also shows that the Auslander conjecture is false. In particular, we cannot replace "central" by "normalizing" in the above theorem.

Theorem 12. [12, Theorem 6.5] Let $\Lambda = k \langle x_1, \ldots, x_n \rangle / (x_i x_j + \alpha_{ij} x_j x_i, x_i^2)$ be a skew exterior algebra where $0 \neq \alpha_{ij} \in k$ for $1 \leq i < j \leq n$. Then Λ satisfies (**ac**) if and only if α_{ij} are roots of unity for all $1 \leq i < j \leq n$.

3. STABLY SYMMETRIC ALGEBRAS

In this section, we will define a stably symmetric algebra, which is a generalization of a symmetric algebra.

Definition 13. Let C be a k-linear Hom-finite category, that is,

 $\dim_k \operatorname{Hom}_{\mathcal{C}}(M, N) < \infty$

for all $M, N \in \mathcal{C}$. A Serre functor on \mathcal{C} is an autoequivalence $\mathcal{K} : \mathcal{C} \to \mathcal{C}$ such that

 $\operatorname{Hom}_{\mathcal{C}}(M, N) \cong D \operatorname{Hom}_{\mathcal{C}}(N, \mathcal{K}(M))$

for all $M, N \in \mathcal{C}$ where D(-) is the functor taking the k-vector space dual.

A Serre functor on C is unique if it exists. Moreover, if C is a triangulated category, then a Serre functor $\mathcal{K} : C \to C$ is exact, so the following lemma is immediate.

Lemma 14. Let C be a k-linear Hom-finite triangulated category. Then an exact autoequivalence $\mathcal{K} : C \to C$ is a Serre functor on C if and only if

$$\operatorname{Ext}^{i}_{\mathcal{C}}(M, N) \cong D \operatorname{Ext}^{-i}_{\mathcal{C}}(N, \mathcal{K}(M))$$

for all i and all $M, N \in \mathcal{C}$.

The definition of a Serre functor was motivated by the Serre duality.

Example 15. If X is a smooth projective scheme of finite type over k, then the bounded derived category of coherent \mathcal{O}_X -modules $\mathcal{D}^b(X)$ has a Serre functor

$$-\otimes_X \omega_X[d]: \mathcal{D}^b(X) \to \mathcal{D}^b(X)$$

where ω_X is the canonical sheaf on X and $d = \dim X$, so that

$$\operatorname{Ext}_X^i(\mathcal{F},\mathcal{G}) \cong D\operatorname{Ext}_X^{-i}(\mathcal{G},\mathcal{F}\otimes_X\omega_X[d]) \cong D\operatorname{Ext}_X^{d-i}(\mathcal{G},\mathcal{F}\otimes_X\omega_X)$$

for all i and all $\mathcal{F}, \mathcal{G} \in \operatorname{coh} X$. In particular, the classical Serre duality

$$\mathrm{H}^{i}(X,\mathcal{G}) \cong \mathrm{Ext}^{i}_{X}(\mathcal{O}_{X},\mathcal{G}) \cong D \,\mathrm{Ext}^{d-i}_{X}(\mathcal{G},\omega_{X})$$

holds for all i and all $\mathcal{G} \in \operatorname{coh} X$.

We will apply the theory of a Serre functor to the triangulated category defined as follows. Let $\underline{\text{mod}} R$ be the stable category of mod R by projective modules. In general, $\underline{\text{mod}} R$ is not a triangulated category, but there is a natural way of making it a triangulated category. We define the category $\mathcal{S}(\underline{\text{mod}} R)$, called the stabilization of $\underline{\text{mod}} R$, whose objects are of the form $\Omega^i M$ where $M \in \underline{\text{mod}} R$ and $i \in \mathbb{Z}$ modulo $M \cong N$ in $\mathcal{S}(\underline{\text{mod}} R)$ if $\Omega^i M \cong \Omega^i N$ in $\underline{\text{mod}} R$ for all $i \gg 0$. It turns out that $\mathcal{S}(\underline{\text{mod}} R)$ is a triangulated category with the translation functor

$$\Omega^{-1}: \mathcal{S}(\underline{\mathrm{mod}}\,R) \to \mathcal{S}(\underline{\mathrm{mod}}\,R).$$

We refer to [3] for more details on this construction. If R is a regular algebra, then, for all $M \in \text{mod } R$, $\Omega^i M \cong 0$ for all i > gldim R, so $\mathcal{S}(\underline{\text{mod }} R)$ is trivial. On the other hand, if R is a Frobenius algebra, then $\underline{\text{mod }} R$ is already a triangulated category, so $\mathcal{S}(\underline{\text{mod }} R) \cong \underline{\text{mod }} R$.

Definition 16. Let R be an algebra. We say that R is stably symmetric if

$$\mathcal{K} = \Omega^{-d} : \mathcal{S}(\underline{\mathrm{mod}}\,R) \to \mathcal{S}(\underline{\mathrm{mod}}\,R)$$

is a Serre functor for some $d \in \mathbb{Z}$.

In other words, R is stably symmetric if and only if $S(\underline{\text{mod}} R)$ is Calabi-Yau. However, we will see later that the definition of stably symmetric does not coincide with that of Calabi-Yau in the graded case. Note that if R is a regular ring, then $S(\underline{\text{mod}} R)$ is trivial, so R is stably symmetric. The following result is well known.

Lemma 17. If R is a Frobenius algebra, then $\mathcal{S}(\operatorname{mod} R) \cong \operatorname{mod} R$ has a Serre functor

$$\mathcal{K} = \Omega \mathcal{N} : \underline{\mathrm{mod}} \, R \to \underline{\mathrm{mod}} \, R$$

where

 $\mathcal{N}(-) = D \operatorname{Hom}_R(-, R) : \operatorname{mod} R \to \operatorname{mod} R$

is the Nakayama functor.

If R is a symmetric algebra, then R is Frobenius such that the Nakayama functor is the identity, so we have the following.

Corollary 18. Every symmetric algebra is stably symmetric.

Example 19. The algebras below are examples of symmetric algebras, so they are stably symmetric by the above corollary.

- A commutative local Frobenius algebra.
- A semi-simple algebra.
- The trivial extension of an artinian algebra.
- The group algebra of a finite group.
- The exterior algebra $\Lambda(k^n)$ when n is odd.

-83-

4. Vogel Cohomology

In this section, we will interpret the two conditions (ac) and (ee) in terms of Vogel cohomologies. For $M, N \in \text{mod } R$, the *i*-th Vogel cohomology is defined by

$$\widehat{\operatorname{Ext}}_{R}^{i}(M,N) := \lim_{n \to \infty} \underline{\operatorname{Hom}}_{R}(\Omega^{n+i}M,\Omega^{n}N).$$

Note that $\widehat{\operatorname{Ext}}_{R}^{i}(M, N)$ are defined for all integers $i \in \mathbb{Z}$. The below are two main results of this note.

Theorem 20. [13, Theorem 3.2] Let R be a Gorenstein ring. Then the following conditions are equivalent:

- (1) R satisfies (ac).
- (2) For all $M, N \in \text{mod } R$,

(*)
$$\widehat{\operatorname{Ext}}_{R}^{i}(M,N) = 0 \text{ for all } i \gg 0 \Rightarrow \widehat{\operatorname{Ext}}_{R}^{i}(M,N) = 0 \text{ for all } i.$$

Theorem 21. [13, Theorem 4.6] Let R be a stably symmetric Gorenstein algebra. Then the following conditions are equivalent:

- (1) R satisfies (ee).
- (2) For all $M, N \in \text{mod } R$,

(**)
$$\widehat{\operatorname{Ext}}_{R}^{i}(M,N) = 0 \text{ for all } i \gg 0 \Rightarrow \widehat{\operatorname{Ext}}_{R}^{i}(M,N) = 0 \text{ for all } i \ll 0.$$

Since the condition (*) above is stronger than the condition (**) above, the following is immediate.

Corollary 22. [13, Theorem 4.7] Let R be a stably symmetric Gorenstein algebra. If R satisfies (ac), then R satisfies (ee).

The above corollary produces a few more examples of algebras satisfying (ee).

Example 23. Every group algebra of a finite group is a symmetric algebra satisfying (ac), so it satisfies (ee).

Example 24. The exterior algebra $\Lambda(k^n)$ where *n* is odd is a symmetric algebra satisfying (ac), so it satisfies (ee).

5. AS-GORENSTEIN KOSZUL ALGEBRAS

In this last section, we will make similar analysis for AS-Gorenstein Koszul algebras. From now on, we will assume that A is a connected graded algebra over k, grmod A is the category of finitely generated graded right A-modules, and $M, N \in \text{grmod } A$.

If A is a Koszul algebra, then A is a quadratic algebra, that is, A = T(V)/(W) where T(V) is the tensor algebra on the finite dimensional vector space V over $k, W \subset V \otimes_k V$ is a subspace, and (W) is the two-sided ideal of T(V) generated by W. It is known that its quadratic (Koszul) dual $A^! = T(V^*)/(W^{\perp})$ is also Koszul where

$$W^{\perp} = \{ \lambda \in V^* \otimes_k V^* \mid \lambda(w) = 0 \text{ for all } w \in W \subset V \otimes_k V \}.$$

Clearly, $(A^!)^! \cong A$ as graded algebras.

Example 25. An exterior algebra $\Lambda(k^n)$ is a Koszul algebra whose Koszul dual is a polynomial algebra $\Lambda(k^n)! \cong S(k^n)$.

The class of algebras defined below plays an important role in noncommutative algebraic geometry.

Definition 26. A connected graded algebra A is called AS-Gorenstein if

• $id(A) = d < \infty$, and

•
$$\operatorname{Ext}_{A}^{i}(k, A) = \begin{cases} k & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$$

The following are versions of the Koszul duality.

Theorem 27. [10, Proposition 4.5], [11, Theorem 5.3] If A is a noetherian AS-Gorenstein Koszul algebra such that $A^{!}$ is noetherian, then there is a duality

 $E: \mathcal{D}^b(\operatorname{grmod} A) \to \mathcal{D}^b(\operatorname{grmod} A^!),$

which induces a duality

$$E: \mathcal{S}(\operatorname{grmod} A) \to \mathcal{D}^b(\operatorname{Proj} A^!)$$

as triangulated categories.

We refer to [1] for the definition of $\operatorname{Proj} A^!$ when $A^!$ is not commutative. We modify the definition of a stably symmetric algebra in the graded case.

Definition 28. Let A be a connected graded algebra. We say that A is stably symmetric in the graded sense if

$$\mathcal{K} = \Omega^{-d}(-)(\ell) : \mathcal{S}(\operatorname{grmod} A) \to \mathcal{S}(\operatorname{grmod} A)$$

is a Serre functor for some $d \in \mathbb{Z}$ and $\ell \in \mathbb{Z}$ where $(\ell) : \operatorname{grmod} A \to \operatorname{grmod} A$ is the functor shifting degree by ℓ .

The theorem below produces many examples of stably symmetric graded algebras.

Theorem 29. [13, Corollary 5.7] Let A be a noetherian AS-Gorenstein Koszul algebra such that $A^{!}$ is commutative. Then A is stably symmetric in the graded sense if and only if Proj $A^{!}$ is smooth.

Example 30. If $\Lambda(k^n)$ is an exterior algebra, then $\Lambda(k^n)$ is a noetherian AS-Gorenstein Koszul algebra such that $\Lambda(k^n)! \cong S(k^n)$ is a commutative polynomial algebra. Since $\operatorname{Proj} \Lambda(k^n)! \cong \mathbb{P}^{n-1}$ is a projective space, $\Lambda(k^n)$ is stably symmetric in the graded sense whether n is odd or even.

It follows that $\Lambda(k^n)$ satisfies (ee) in the graded sense, that is, the symmetry in the vanishing of Ext-groups holds for any pair of graded right modules over every exterior algebra.

We can construct many stably symmetric graded algebras which are not even artinian.

Example 31. If

$$A = k \langle x, y, z \rangle / (xz + zx, yz + zy, xy + yx + z^2, x^2, y^2),$$

then A is a noetherian AS-Gorenstein Koszul algebra such that

$$A^! \cong k[x, y, z]/(xy - z^2)$$

is commutative. Since $\operatorname{Proj} A^! \cong \mathbb{P}^1$ is smooth, A is stably symmetric in the graded sense. It is easy to see that A is not artinian.

References

- [1] M. Artin and J.J. Zhang, Noncommutative Projective Schemes, Adv. Math. 109 (1994), 228-287.
- [2] L.L. Avramov and R. Buchweitz, Support Varieties and Cohomology over Complete Intersections, Invent. Math. 142 (2000), 285-318.
- [3] A. Beligiannis, The Homological Theory of Contravariantly Finite Subcategories: Auslander-Buchweitz Contexts, Gorenstein Categories and (Co-)Stabilization, Comm. Algebra 28 (2000), 4547-4596.
- [4] D.J. Benson, J.F. Carlson and G.R. Robinson, On the Vanishing of Group Cohomology, J. Algebra 131 (1990), 40-73.
- [5] C.J. Chan, An Intersection Multiplicity in Terms of Ext-modules, Proc. Amer. Math. Soc. 130 (2001), 327-336.
- [6] C. Huneke and D.A. Jorgensen, Symmetry in the Vanishing of Ext over Gorenstein Rings, Math. Scand. 93 (2003), 161-184.
- [7] D.A. Jorgensen and L.M. Sega, Nonvanishing Cohomology and Classes of Gorenstein Rings, Adv. Math. 188 (2004), 470-490.
- [8] D.A. Jorgensen and L.M. Sega, Asymmetric Complete Resolutions and Vanishing of Ext over Gorenstein Rings, Int. Math. Res. Not. 56 (2005), 3459–3477.
- [9] I. Mori, Serre's Vanishing Conjecture for Ext-groups, J. Pure Appl. Algebra 187 (2004), 207-240.
- [10] I. Mori, Rationality of the Poincaré Series for Koszul Algebras, J. Algebra 276 (2004), 602-624.
- [11] I. Mori, Riemann-Roch Like Theorem for Triangulated Categories, J. Pure Appl. Algebra 193 (2004), 263-285.
- [12] I. Mori, Co-point Modules over Koszul Algebras, J. Lond. Math. Soc., to appear.
- [13] I. Mori, Symmetry in the Vanishing of Ext over Stably Symmetric Algebras, J. Algebra, to appear.
- [14] I. Mori and S.P. Smith, Bézout's Theorem for Non-commutative Projective Spaces, J. Pure Appl. Algebra 157 (2001), 279-299.
- [15] J.P. Serre, Algèbre Locale Multiplicités, Springer-Verlag, LNM No. 11 (1961).

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE SHIZUOKA UNIVERSITY SHIZUOKA 422-8529 JAPAN *E-mail address*: simouri@ipc.shizuoka.ac.jp