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COMPLEXES
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In this note, we review the transition from the notion of Bernstein-Gelfand-Ponomarev
reflection functors to the notion of tilting complexes and triangulated equivalences.

1. Quivers and Path Algebras

Throughout this note, k is a field.

Definition 1.1. A quiver ∆ = (∆0,∆1, h, t) is an oriented graph, where ∆0 is a set of
vertices and ∆1 is a set of arrows between vertices. We use h : ∆1 → ∆0, t : ∆1 → ∆0

the maps defined by h(α) = j, t(α) = i when α : i → j is arrow from the vertex i to the
vertex j. We denote by ∆̄ the underlying graph, that is obtained from ∆ by forgetting
the orientation of the arrows. Moreover, we often write ∆ = (∆̄,Ω)when we give an
orientation Ω to ∆̄. For x ∈ ∆0, let

x≥ = {α ∈ ∆1|h(α) = x} x≤ = {α ∈ ∆1|t(α) = x}

A vertex x in ∆ is called a sink (resp., a source) if x≤ = φ (resp., x≥ = φ). A quiver
∆ = (∆0,∆1, h, t) is called a locally finite quiver if #x≥,#x≤ < ∞ for any x ∈ ∆0, and
it is called a finite quiver if #∆0,#∆1 < ∞. A path w = (b|αr, . . . , α1|a) : a � b from
the vertex a to the vertex b in the quiver ∆ is a sequence of ordered arrows α1, . . . , αr

such that a = t(α1), h(αi) = t(αi+1) (1 ≤ i ≤ r− 1), h(αr) = b. In this case, a (resp., b) is
called the tail t(w) (resp., the head h(w)) of w, and r is called the length of a path w. For
every vertex i, the path ea = (a||a) of length 0 is called the empty path. A non-empty
path w is called an oriented cycle if h(w) = t(w).

Definition 1.2. Let ∆ = (∆0,∆1, h, t) be a finite quiver with ∆0 = {1, · · · , n}. For
x = t(x1, · · · , xn),y = t(y1, · · · , yn) ∈ Zn

≥0, we define a bilinear form, a quadratic form
and a symmetric bilinear form:

< x,y >∆ =
∑

i∈∆0

xiyi −
∑

α∈∆1

xt(α)yh(α)

χ∆̄(x) =
∑

i∈∆0

x2
i −

∑

α∈∆1

xt(α)xh(α)

(x,y)∆̄ =
1

2
(χ∆̄(x + y) − χ∆̄(x) − χ∆̄(y))

Definition 1.3. Let ∆ = (∆0,∆1, h, t) be a quiver. The k-linear path category k∆ of
∆ is an additive category consisting of finite direct sums ⊕a∈∆0a

⊕na of vertices a ∈ ∆ as
objects, matrices of which entries are k-vectors spanned by all paths in ∆ as morphisms,
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and compositions of morphisms are defined by compositions of paths

(c|αs, . . . , αr+1|b) ◦ (b|αr, . . . , α1|a) = (c|αs, . . . , α1|a).

For example, the Hom-set k∆(a, b) for vertices a, b is the k-vector space spanned by all
paths a � b from a to b:

k∆(a, b) =< w| w : a � b >k

Similarly, the path k-algebra k∆ is the k-vector space spanned by the set of all paths
in ∆ together with the multiplication induced by compositions of paths.

We often simply write αr . . . α1 for (b|αr, . . . , α1|a).

Remark 1.4. If #∆0 < ∞, then
∑

x∈∆0
ex = 1 in the k-algebra k∆.

Example 1.5. For a quiver

∆ : 1
α �� 2

β �� 3

we have
e1k∆e1 =< e1 >k e2k∆e1 =< α >k e3k∆e1 =< βα >k

e1k∆e2 = O e2k∆e2 =< e2 >k e3k∆e2 =< β >k

e1k∆e3 = O e2k∆e3 = O e3k∆e3 =< e3 >k

χ∆̄(x) = x2
1 + x2

2 + x2
3 − x1x2 − x2x3

Then we have

k∆ ∼=



k 0 0
k k 0
k k k




Example 1.6. For a quiver

∆ : 1
α ��

β
�� 2

we have
e1k∆e1 =< e1 >k e2k∆e1 =< α, β >k

e1k∆e2 = 0 e2k∆e2 =< e2 >k

χ∆̄(x) = x2
1 + x2

2 − 2x1x2

Then we have

k∆ ∼=
[

k 0
k2 k

]

Example 1.7. For a quiver

∆ : 1
α �� 2 β��

we have
e1k∆e1 =< e1 >k e2k∆e1 =< α, βnα| n ∈ N >k

e1k∆e2 = 0 e2k∆e2 =< e2, β
n| n ∈ N >k

χ∆̄(x) = x2
1 − x1x2

Then we have

k∆ ∼=
[

k 0
k[x] k[x]

]
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2. Representations and BGP reflection

Definition 2.1. Given a quiver ∆ = (∆0,∆1, h, t) (= (∆̄,Ω)), a representation M =
(M(i);M(α)) of ∆ over a field k is a family (M(i))i∈∆0 of k-vector spaces together
with a family (M(α) : M(i) → M(j))

i
α−→j∈∆1

of k-linear maps. A representation M =

(M(i);M(α)) is called a (locally) finite dimensional representation if M(i) is a finite di-
mensional k-vector space for every i ∈ ∆0. For a finite dimensional representation M , the
dimension vector of M is dimM = (dimk M(i))i∈∆0.

For (M(i);M(α)), (N(i);N(α)), a morphism f : (M(i);M(α)) → (N(i);N(α)) is a
family (fi : M(i) → N(i))i∈∆0 of k-linear maps satisfying that we have a commutative
diagram

M(i)
M(α)−−−→ M(j)

fi




fj

N(i)
N(α)−−−→ N(j)

for any i
α−→ j ∈ ∆1.

We denote by Repk ∆ or Repk(∆̄,Ω) (resp., repk ∆ or repk(∆̄,Ω)) the category of rep-
resentations (resp., finite dimensional representations) of ∆ over k.

Remark 2.2. It is easy to see that Repk ∆ (resp., repk ∆) is equivalent to the cate-
gory Funck(k∆,Mod k) (resp., Funck(k∆,mod k)) of k-linear additive functors from k∆
to the category of k-vector spaces (resp., finite dimensional k-vector spaces). There-
fore, Funck(k∆,Mod k) is an abelian category with direct sums and products. Let ha :
k∆ → Funck(k∆,Mod k) (resp., ha : k∆ → Funck(k∆op,Mod k)) be the functor defined
by ha(x) = k∆(a, x) (resp., ha(x) = k∆(x, a)) for any x ∈ ∆0. We often identify Repk ∆
with Funck(k∆,Mod k). We often write Mod k∆ = Funck(k∆,Mod k).

Definition 2.3. Let ∆ = (∆0,∆1, h, t) (= (∆̄,Ω)) be a quiver a a vertex. We define the
representation (Sa, Sa(α)) by

Sa(x) =

{
k if x = a

0 if x �= a
Sa(α) = 0

We define the representation (Pa(i), Pa(α)) by k∆(a,−) ∈ Funck(k∆,Mod k). In other
words, for any vertex x Pa(x) is the k-vector space spanned by paths from a to x: Pa(x) =
k∆(a, x) =< w| w : a � x >k and Pa(α) is the k-linear map defined by Pa(α)(w) = αw
for any arrow α : x → y and any path w : z � x. Moreover, we define the representation
(Qa(i), Qa(α)) by Homk(k∆(−, a), k) : k∆ → Funck(k∆,Mod k).

Lemma 2.4 (Yoneda’s Lemma). Let a, b ∈ k∆ and M ∈ Funck(k∆,Mod k). then the
following hold.

(1) We have the bijection θ− : M(a) → Homk∆(k∆(a,−),M), where θ− is defined by
(θλ)(b)(f) = M(f)(x) for λ ∈ M(a), f ∈ k∆(a, b).

(2) We have the bijection θ− : k∆(b, a) → Homk∆(k∆(a,−), k∆(b,−)).
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Example 2.5. For a quiver

∆ : 1
α �� 2 3

β��

k∆ =< e1, e2, e3, α, β >k. A representation M of ∆ over k is the following

M(1)
M(α)−−−→ M(2)

M(β)←−−− M(3)

By the standard technique of linear algebra, all indecomposable representations are up to
isomorphisms the following

M1 = P2 : 0 → k ← 0 M2 = P1 : k → k ← 0 M3 = P3 : 0 → k ← k
M4 = Q2 : k → k ← k M5 = Q3 : 0 → 0 ← k M6 = Q1 : k → 0 ← 0

M2

����
��

��
��

M5

M1

���
��

��
��

�

����������
M4

����
��

��
��

����������

M3

����������
M6

Example 2.6. For a quiver

∆′ : 1 2
α�� β �� 3

k∆′ =< e1, e2, e3, α, β >k. A representation M of ∆′ over k is the following

N(1)
N(α)←−−− N(2)

N(β)−−−→ N(3)

By the standard technique of linear algebra, all indecomposable representations are up to
isomorphisms the following

N1 = Q2 : 0 ← k → 0 N2 = P1 : k ← 0 → 0 N3 = P3 : 0 ← 0 → k
N4 = P2 : k ← k → k N5 = Q3 : 0 ← k → k N6 = Q1 : k ← k → 0

N2

���
��

��
��

�
N5

���
��

��
��

�

N4

���
��

��
��

�

����������
N1

N3

����������
N6

����������

Definition 2.7. Let ∆ = (∆̄,Ω) be a locally finite quiver, and a a sink (resp., a source)
of (∆̄,Ω). We define the new orientation σaΩ by reversing all arrows which are connected
to the vertex a. We call σa the reflection. For a sink a in a quiver (∆̄,Ω), we define
the Bernstein-Gelfand-Ponomarev reflection functor (the BGP reflection functor) σ+

a :
Repk(∆̄,Ω) → Repk(∆̄, σaΩ) as follows. For a k-representation M = (M(i);M(α)) of
(∆̄,Ω), let

0 → σ+
a M(a)

(βα)−−→ ⊕α∈a≥M(t(α))
�

α M(α)
−−−−−→ M(a)
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be the canonical exact sequence and

σ+
a M(x) =

{
σ+

a M(a) if x = a

M(x) if x �= a
σ+

a M(α) =

{
βα if α ∈ a≥

α if α /∈ a≥

Then σ+
a M = (σ+

a M(i);σ+
a M(α)) is a representation of (∆̄, σaΩ). Similarly, for a source b

in a quiver (∆̄,Ω), the BGP reflection functor σ−
b : Repk(∆̄,Ω) → Repk(∆̄, σbΩ) is defined.

Theorem 2.8. Let ∆ = (∆̄,Ω) be a locally finite quiver, and a a sink of (∆̄,Ω). Let
Ta (resp., Ya) be the subcategory of Repk(∆̄,Ω) (resp., Repk(∆̄, σaΩ)) consisting repre-
sentations which don’t have Sa as a direct summand. Then the BGP reflection functors
σ+

a : Repk(∆̄,Ω) → Repk(∆̄, σaΩ) and σ−
a : Repk(∆̄, σaΩ) → Repk(∆̄,Ω) induce the equiv-

alence between Ta and Ya. A similar result holds for σ+
a : repk(∆̄,Ω) → repk(∆̄, σaΩ) and

σ−
a : repk(∆̄, σaΩ) → repk(∆̄,Ω).

Proof. By the construction of BGP reflection, we have the canonical functorial morphisms
σ−

a ◦σ+
a → 1Repk(∆̄,Ω) and 1Repk(∆̄,σaΩ) → σ+

a ◦σ−
a . For a representation M = (M(i);M(α))

of (∆̄,Ω), it is easy to see that M ∈ Ta if and only if
∑

α∈a≥ α is an epimorphism. Similarly,
N ∈ Ya if and only if (α)α∈a≤ is a monomorphism for a representation N = (N(i);N(α))
of (∆̄, σaΩ). For M ∈ Ta, we have a short exact sequence

0 → σ+
a M(a)

(σ+
a M(α))α−−−−−−→ ⊕α∈a≥M(t(α))

�
α M(α)

−−−−−→ M(a) → 0

Then we have Im(σ+
a |Ta) ⊂ Ya, and 1Repk(∆̄,Ω) → σ−

a ◦ σ+
a |Ta is an isomorphism. Similarly,

Im(σ−
a |Ya) ⊂ Ta, and σ+

a ◦ σ−
a |Ya → 1Repk(∆̄,σaΩ) is an isomorphism. �

Definition 2.9. Let ∆̄ be underlying graph of a quiver ∆ = (∆0,∆1, h, t) with ∆0 =
{1, · · · , n}, and (−,−)∆̄ the associated symmetric bilinear form. For a vertex a of ∆̄ and
x ∈ Zn, we define the following reflection of Zn

σa(x) = x − 2(x, ea)∆̄ea

Here ea is the a-th fundamental vector. For {a1, · · · , an} = {1, · · · , n}, c = σa1σa2 · · · σan

is called a Coxeter transformation. Moreover, we define the group generated by reflections

W∆̄ = {σa1 · · · σar |r ≥ 0, σa1 , · · · , σar are reflections}
For x ∈ Zn, x is called positive x > 0 if x �= 0 and xi ≥ 0 (1 ≤ i ≤ n), x is called a root
if χ∆̄(x) = 1, and x is called a radical vector if χ∆̄(x) = 0.
In the case that ∆̄ is Dynkin, W∆̄ is called a Weyl group.

Definition 2.10. Let ∆ = (∆̄,Ω) be a quiver with. A sequence of vertices {a1, · · · , an} is
called an absorbing sequence (resp., diverging sequence) for (∆̄,Ω) if ai+1 is a sink (resp.,
source) of (∆̄, σai

· · · σa1Ω) for any 0 ≤ i < n. For a finite quiver ∆ which does not contain
oriented cycles, we have both an absorbing sequence and a diverging sequence which is
coincides with the set of vertices.

Corollary 2.11. Let ∆ = (∆̄,Ω) be a finite quiver, a a sink and b a source of (∆̄,Ω),
and M an indecomposable representation in repk(∆̄,Ω).

(1) If σ+
a M = 0, then M ∼= Sa.
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Figure 1. Dynkin graphs

(2) If σ+
a M �= 0, then dimσ+

a M = σa(dimM) and σ−
a σ+

a M ∼= M .
(3) If σ−

b M = 0, then M ∼= Sb.
(4) If σ−

b M �= 0, then dimσ−
b M = σb(dimM) and σ+

b σ−
b M ∼= M .

Example 2.12. In Examples 2.5 and 2.6, ∆′ = (∆̄, σ2Ω), and we have the BGP reflections
σ+

2 : repk ∆ → repk ∆′ and σ−
2 : repk ∆′ → repk ∆ such that σ+

2 M1 = 0, σ−
2 N1 = 0,

σ+
2 Mi

∼= Ni and σ−
2 Ni

∼= Mi (2 ≤ i ≤ 6).

Theorem 2.13 (Root System and Weyl Group). Let ∆ = (∆̄,Ω) be a quiver such that
∆̄ is a Dynkin diagram. Then the following hold.

(1) The Weyl group W∆̄ is a finite group.
(2) There is no radical vector except the zero vector 0.
(3) For any Coxeter transformation c, cv = v implies v = 0.

Corollary 2.14. Let ∆ = (∆̄,Ω) be a quiver such that ∆̄ is a Dynkin diagram. For
any indecomposable representation M repk(∆̄,Ω), there is a absorbing (resp,m diverg-
ing) sequence {a1, · · · , as} and some vertex a such that M ∼= σ+

as
· · · σ+

a1
Sa (resp., M ∼=

σ−
as
· · · σ−

a1
Sa).

Proof. Let ∆0 = {1, · · · , n}, {a1, · · · , an} an absorbing (resp., diverging) sequence with
{a1, · · · , an} = {1, · · · , n}, and c = σan · · · σa1. Since W∆̄ is a finite group, there is an
integer r such that cr = 1. Let v =

∑r
i=1 cidimM , then cv = v. By Theorem 2.13 (3)

v = 0, and therefore cidimM �> 0 for some i. According to Corollary 2.11, we have the
statement. �

Definition 2.15. Let ∆ = (∆̄,Ω) be a finite connected quiver, and a a sink of (∆̄,Ω).
Then we have the canonical exact sequence in Repk(∆̄,Ω):

0 → Pa
(hα)α−−−→

⊕

α∈a≥

Pt(α)

�
α σ(α)

−−−−−→ Ta → 0

We define the representation

T = Ta ⊕
⊕

b�=a

Pb
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Proposition 2.16. Let ∆ = (∆̄,Ω) be a finite quiver, and a a sink of (∆̄,Ω). By
identifying Repk(∆̄,Ω) with Mod k∆, then the following hold.

(1) The functor σ+
a is isomorphic to the functor Homk∆(T,−) : Mod k(∆̄,Ω) →

Mod k(∆̄, σaΩ).
(2) Ta = {M ∈ Repk(∆̄,Ω)|Ext1

k∆(T,M) = 0}

Proof. (1) By Yoneda’s lemma 2.4 we have the following isomorphism between exact
sequences

σ+
a M(a)

(σ+
a M(α))α−−−−−−→ ⊕α∈a≥M(t(α))

�
α M(α)−−−−−→ M(a)
�


�

�

Hom(Ta,M)
Hom(

�
α σ(α),M)

−−−−−−−−−−→ Hom(⊕α∈a≥Pt(α),M)
Hom((hα)α,M)−−−−−−−−→ Hom(Pa,M)

(2) Since Ta is the subcategory consisting representations which don’t have Sa as a direct
summand, M ∈ Ta if and only if

∑
α M(α) : ⊕α∈a≥M(t(α)) → M(a) is an epimorphism if

and only if Hom((hα)α,M) is an epimorphism if and only if Ext1(T,M) ∼= Ext1(Ta,M) =
0. �

Definition 2.17. Let C be an additive category. For M ∈ C, We define Add M (resp.,
add M) the full subcategory of C consisting of objects which are direct summands of
coproducts (resp., finite coproducts) of copies of M .

Proposition 2.18. Let ∆ = (∆̄,Ω) be a finite quiver, and a a sink of (∆̄,Ω), T a
representation of Definition 2.15. Then the following hold.

(1) pdimk∆ T ≤ 1.
(2) Ext1

k∆(T, T ) = 0.
(3) We have an exact sequence 0 →

⊕
x∈∆0

Px → T 0 → T 1 → 0 with T 0, T 1 ∈ add T .

Proof. By the definition of T , we have the exact sequence

0 →
⊕

x∈∆0

Px → (
⊕

x∈∆0\{a}

Px) ⊕ (
⊕

α∈a≥

Pt(α)) → Ta → 0

Then the statements (1) and (3) hold. If Ta has Pa as a direct summand, then so has⊕
α∈a≥ Pt(α). This contradicts in a being a sink. Therefore Ta does not have Pa as a direct

summand. By Proposition 2.16, we have Ext1(Ta, Ta) = 0. Similarly, Ext1(Ta, Pb) = 0 for
b �= a because Pb does not have Pa as a direct summand. �

3. Tilting Modules

For a ring R, we denote by Mod Rop (resp., mod Rop) the category of right (resp., finitely
presented right) R-modules, and denote by ProjRop (resp., projRop, Inj Rop) the category
of projective (resp., finitely projective, injective) R-modules.

Definition 3.1. Let R be a ring. A right R-module T is called a (classical) tilting module
provided that the following hold.
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(1) There is an exact sequence 0 → P1 → P0 → T → 0 with P1, P0 ∈ projRop.
(2) Ext1

R(T, T ) = 0.
(3) There is an exact sequence 0 → R → T 0 → T 1 → 0 with T 0, T 1 ∈ add T .

Lemma 3.2. Let R be a ring, X a right R-module with S = EndR(X), and X ′ ∈ add X.

(1) HomC(X
′, Y )

∼→ HomS(HomR(X,X ′),HomR(X,Y ))
(f �→ HomR(X, f)) for all Y ∈ ModRop.

(2) HomR(X,X ′) ⊗S X
∼→ X ′ (f ⊗ x �→ f(x))

(3) X ′ ∼→ HomS(HomR(X ′, X), X) (x′ �→ (f �→ f(x′)))

Proof. Let q1, · · · qn : X ′ → X and p1, · · · , pn : X → X ′ be morphisms such that∑n
i=1 piqi = 1. Then the following are the inverse of the above:

HomS(HomR(X,X ′),HomR(X,Y )) → HomC(X
′, Y )(φ �→

∑n
i=1 φ(pi)qi)

X ′ → HomR(X,X ′) ⊗S X (x′ �→
∑n

i=1 pi ⊗ qi(x
′))

HomS(HomR(X ′, X), X) → X ′ (ψ �→
∑n

i=1 piψ(qi)) �

Lemma 3.3. Let A be a finite dimensional k-algebra, M,N ∈ mod Aop. Then there exists
a morphism f : M⊕n → N such that Hom(M, f) : HomA(M,M⊕n) → HomA(M,N) is
surjective.

Proof. Since HomA(M,N) is a finite dimensional k-vector space, we can take a k-basis
f1, · · · , fn of HomA(M,N), and then f = (f1, · · · , fn) : M⊕n → N . �

Definition 3.4. Let A be a finite dimensional k-algebra, TA a tilting right A-module.
We define a pair of full subcategories of mod Aop

T (T ) = {X ∈ mod Aop : Ext1
A(T,X) = 0},

F(T ) = {X ∈ mod Aop : HomA(T,X) = 0}.
For any X ∈ mod Aop, we define a subobject of X

tT (X) =
∑

f∈HomA(T,X)
Im f

and an exact sequence in mod Aop

(eX) : 0 → tT (X)
jX−→ X → fT (X) → 0.

Definition 3.5. A pair (T ,F) of full subcategories in an abelian category A is called a
torsion pair of A provided that the following conditions are satisfied:

(i) T ∩ F = {0};
(ii) T is closed under factor objects;
(iii) F is closed under subobjects;
(iv) for any object X of A, there exists an exact sequence 0 → X ′ → X → X ′′ → 0 in

A with X ′ ∈ T and X ′′ ∈ F .

Proposition 3.6. Let A be a finite dimensional k-algebra, TA a tilting right A-module.
Then (T (T ),F(T )) is a torsion pair of mod Aop such that T (T ) is the category of finitely
generated right A-modules which are generated by T .
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Proof. It is clear that F(T ) is closed under submodules. Since Ext2
A(T,−) = 0, T (T ) is

closed under factor modules. For any X ∈ mod Aop, we have an exact sequence

0 → Hom(T, tT (X))
∼→ Hom(T,X) → Hom(T, fT (X)) → Ext1(T, tT X)

Since Ext1(T, tX) = 0, we have Hom(T, fT (X)) = 0, and hence tT (X) ∈ T (T ), fT (X) ∈
F(T ). For any Y ∈ mod Aop, we have an exact sequence

0 → Hom(T 1, Y ) → Hom(T 0, Y ) → Hom(A, Y ) → Ext1(T 1, Y )

If Y ∈ T (T ) ∩ F(T ), then Hom(T 0, Y ) = Ext1(T 1, Y ) = 0. Therefore Y ∼= Hom(A, Y ) =
0. �

Proposition 3.7. Let A be a finite dimensional k-algebra, TA a tilting right A-module
with B = EndA(T ). Then the following hold for M,N ∈ T (T ).

(1) We have an exact sequence · · · → T1 → T0 → M → 0 (Ti ∈ add T ) such that
· · · → HomA(T, T1) → HomA(T, T0) is a projective resolution of HomA(T,M).

(2) TorB
1 (HomA(T,M), T ) = 0.

(3) HomA(T,M) ⊗B T ∼= M .

(4) Exti
A(M,N)

∼→ Exti
B(HomA(T,M),HomA(T,N)) for any i.

Proof. By Lemma 3.3, We have exact sequences 0 → Mi+1 → Ti → Mi → 0 such that
M0 = M , Ti ∈ add T and Mi ∈ T (T ) for any i. Then we have exact sequences

0 → HomA(T,Mi+1) → HomA(T, Ti) → HomA(T,Mi) → 0

Therefore, the resolution T• → M satisfies that HomA(T, T•) → HomA(T,M) is a projec-
tive resolution. By Lemma 3.2 we have a commutative diagram

HomA(T, T•) ⊗B T −−−→ HomA(T,M) ⊗B T
�

�

T• −−−→ M

For N ∈ T (T ), we have an exact sequence and an isomorphism

0 → HomA(Mi, N) → HomA(Ti, N) → HomA(Mi+1, N) → Ext1
A(Mi, N) → 0

Extj+1
A (Mi+1, N) ∼= Extj+2

A (Mi, N)

for any i, j ≥ 0. By Lemma 3.2 we have

Exti
B(HomA(T,M),HomA(T,N)) ∼= Hi(HomB(HomA(T, T•),HomA(T,N))

∼= Hi(HomA(T•, N))

∼=

{
HomA(M,N) (i = 0)

Ext1
A(Mi, N) ∼= Exti

A(M,N) (i > 0)

�

Proposition 3.8. Let A be a finite dimensional k-algebra, TA a tilting right A-module
with B = EndA(T ). Then the following hold for M ∈ mod Aop and N ∈ mod Bop.
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(1) 0 → HomA(T,M) ⊗B T
εM−→ M → TorB

1 (Ext1
A(T,M), T ) → 0

Ext1
A(T,M) ⊗B T = 0

(2) 0 → Ext1A(T,TorB
1 (N,T )) → N → HomA(T,N ⊗B T ) → 0

HomA(T,TorB
1 (N,T )) = 0

Proof. By applying HomA(−, T ) to the exact sequence 0 → A → T 0 → T 1 → 0, we have
a projective resolution of BT : 0 → Q1 → Q0 → T → 0.
(1) Let M → I• be an injective resolution and F := HomA(T,−), then by Proposition
3.7 we have the exact sequence

0 → F (I•) ⊗B Q1 → F (I•) ⊗B Q0 → F (I•) ⊗B T → 0

By Proposition 3.7 we have F (I•) ⊗B T ∼= I•. Therefore we have the exact sequence

0 → F (M) ⊗B Q1 → F (M) ⊗B Q0 → M → Ext1
A(T,M) ⊗B Q1

→ Ext1
A(T,M) ⊗B Q0 → 0

(2) Let L• → N be a projective resolution. Applying Hom(−, L•⊗B T ) to the projective
resolution 0 → P1 → P0 → T →, we have the exact sequence

0 → HomA(T, L• ⊗B T ) → HomA(P0, L• ⊗B T ) → HomA(P1, L• ⊗B T ) → 0

Since HomA(T, L• ⊗B T ) ∼= L•, we have the exact sequence

0 → HomA(P0,TorB
1 (N,T )) → HomA(P1,TorB

1 (N,T )) → N

→ HomA(P0, L• ⊗B T ) → HomA(P1, L• ⊗B T ) → 0

�

For a finite dimensional k-algebra A, let S1, · · ·Sn be a complete set of simple right
A-modules. Let F(A) be the free abelian group generated by isomorphism classes [X] of
right A-modules X ∈ mod Aop, R(A) the subgroup of F(A) generated by [Y ] − [X] − [Z]
for all exact sequence 0 → X → Y → Z → 0, and the Grothendieck group of A is
K0(A) = F(A)/ R(A). Then K0(A) is generated by S1, · · ·Sn, and hence K0(A) ∼= Zn. For
M ∈ mod Aop, we define dimM := (#Si-composition factor of M)i.

Theorem 3.9. Let A be a finite dimensional k-algebra, TA a tilting right A-module with
B = EndA(T ). Let F = HomA(T,−), F ′ = Ext1A(T,−), G = − ⊗B T,G′ = TorB

1 (−, T ),
and X (T ) = KerG, Y(T ) = KerG′ Then the following hold.

(1) (X (T ),Y(T )) is a torsion pair of mod Bop.
(2) F and G induce the equivalence between T (T ) and Y(T ).
(3) F ′ and G′ induce the equivalence between F(T ) and X (T ).
(4) FG′ = F ′G = 0 and GF ′ = G′F = 0.
(5) BT is a tilting left B-module with Aop ∼= EndB(T ).
(6) Let f : K0(A) → K0(B) be a function defined by f(dimM) = dimF (M) −

dimF ′(M) for M ∈ mod Aop, then f is a group isomorphism.

Proof. (4) G(N) ∈ T implies F ′G = 0. By Proposition 3.7 G′F = 0. By Proposition
3.8 FG′ = 0 and GF ′ = 0.
(1) By Proposition 3.8, N ∈ X (T ) ∩ Y(T ) implies N = 0. By (4) and Proposition 3.8
(X (T ),Y(T )) is a torsion pair of mod Bop
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(2), (3) By Proposition 3.8.
(5) Applying (−)∗∗ = HomB(HomA(−, T ), T ) to 0 → A → T 0 → T 1 → 0, by Lemma
3.2 we have a commutative diagram

0 −−−→ A −−−→ T 0 −−−→ T 1 −−−→ 0
�

�


�

�

0 −−−→ A∗∗ −−−→ T 0∗∗ −−−→ T 1∗∗ −−−→ Ext1B(T, T ) −−−→ 0

where all vertical arrows are isomorphisms. It is easy to see that the composition A
∼→

A∗∗ ∼→ EndB(T ) is an anti-ring isomorphism.
(6) For an exact sequence 0 → X → Y → Z → 0 in mod Aop, we have an exact sequence

0 → F (X) → F (Y ) → F (Z) → F ′(X) → F ′(Y ) → F ′(Z) → 0

Then f(dimY ) = f(dimX) + f(dimZ) and f is a group morphism. By Lemma 3.8,
f is an epimorphism, and rank K0(A) ≥ rank K0(B). By (5) we have rank K0(A

op) ≤
rank K0(B

op). Therefore f is an isomorphism. �

Theorem 3.10. Let A be a finite dimensional k-algebra, TA a tilting right A-module with
B = EndA(T ). Then the following hold.

(1) For M ∈ T (T ), idim F (M) ≤ idim M + 1.
(2) For N ∈ F(T ), idim F ′(N) ≤ idim N and Extn

B(F (−), F ′(N)) = 0 if idim N = n.
(3) For a right injective A-module I, we have a functorial isomorphism HomA −, I)|F(T )

∼=
Ext1

A(F ′(−), F (I))|F(T ).

Proof. Let 0 → M → I0 → · · · → In → 0 be an injective resolution.
(1) Since any injective right A-module belong to T (T ) and T (T ) is closed under factor
modules, we have an exact sequence 0 → F (M) → F (I0) → · · · → F (In) → 0. F (A∨) ∼=
T∨ implies idim F (A∨) ≤ 1. By F (I) ∈ add F (A∨), we have idm F (M) ≤ n + 1.
(2) Assume that idim N ≤ n. Let 0 → N → Q → K → 0 be an exact sequence with Q
being injective, then we have an exact sequence 0 → F (Q) → F (K) → F ′(N) → 0. Since
idim F (Q) ≤ 1 and idim F (K) ≤ n − 1 + 1, idim F ′(N) ≤ n. For M ∈ T (T ), we have an
exact sequence

Extn
B(F (M), F (K)) → Extn

B(F (M), F ′(N)) → Extn+1
B (F (M), F (Q))

By (1) and Extn
B(F (M), F (K)) ∼= Extn

A(M,K) = 0, we have Extn
B(F (M),

F ′(N)) = 0.
(3) By Proposition 3.7 we have a commutative diagram

HomA(K, I) ��

�

��

HomA(Q, I) ��

�

��

HomA(N, I) ��

αN

��

0

HomB(F (K), F (I)) �� HomB(F (Q), F (I)) �� Ext1B(F ′(N), F (I)) �� Ext1B(F (K), F (I))

Since Ext1
B(F (K), F (I)) ∼= Ext1

A(K, I) = 0, αN is an isomorphism. �

Corollary 3.11. gldim B ≤ gldim A + 1.
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Corollary 3.12. If gldim A ≤ 1, then (X (T ),Y(T )) splits, that is

Ext1B(X (T ),Y(T )) = 0

Lemma 3.13 (Bongartz’s lemma). Let A be a finite dimensional k-algebra, TA a finitely
generated right A-module such that pdim T ≤ 1 and Ext1

A(T, T ) = 0. Then there exists a
finitely generated right A-module T ′ such that T ⊕ T ′ is a tilting module.

Proof. Let e1, · · · , en be a k-basis of Ext1
A(T,A). Consider the push-out diagram

⊕n
i=1ei : 0 −−−→ A⊕n −−−→ ⊕Xi −−−→ T⊕n −−−→ 0




∥∥∥

e : 0 −−−→ A −−−→ T ′ −−−→ T⊕n −−−→ 0
then we have an exact sequence

HomA(T, T⊕n)
δ−→ Ext1

A(T,A) → Ext1A(T, T ′) → 0

By the construction of e, δ is an epimorphism, and hence Ext1A(T, T ′) = 0. Moreover we
have exact sequences

0 = Ext1
A(T⊕n, T ) → Ext1

A(T ′, T ) → Ext1A(A, T ) = 0

0 = Ext1
A(T⊕n, T ′) → Ext1

A(T ′, T ′) → Ext1
A(A, T ′) = 0

Therefore we have Ext1
A(T ⊕ T ′, T ⊕ T ′) = 0. It is clear that pdim T ′ ≤ 1. Hence T ⊕ T ′

is a tilting module. �

Theorem 3.14. Let A be a finite dimensional k-algebra, TA a finitely generated right
A-module such that pdim T ≤ 1 and Ext1A(T, T ) = 0. Then the following are equivalent.

(1) T is a tilting A-module.
(2) The number of non-isomorphic indecomposable modules which are direct summand

of T is the number of non-isomorphic simple A-modules.

Proof. (1) ⇒ (2) By Theorem 3.10. (2) ⇒ (1) By Lemma 3.13. �

4. Triangulated Categories

Definition 4.1. A triangulated category C is an additive category together with
(1) an autofunctor Σ : C ∼→ C (i.e. there is Σ−1 such that Σ ◦ Σ−1 = Σ−1 ◦ Σ = 1C)

called the translation (or suspension), and
(2) a collection T of sextuples (X,Y, Z, u, v, w):

X
u−→ Y

v−→ Z
w−→ Σ(X)

called (distinguished) triangles. These data are subject to the following four axioms:

(TR1) (1) For a commutative diagram of which all vertical arrows are isomorphisms

X

f

��

u �� Y

g

��

v �� Z

h

��

w �� Σ(X)

Σ(f)
��

X ′ u′
�� Y ′ v′

�� Z ′ w′
�� Σ(X ′)
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if (X,Y, Z, u, v, w) is a (distinguished) triangle, then (X ′, Y ′, Z ′,
u′, v′, w′) is a (distinguished) triangle.
(2) Every morphism u : X → Y is embedded in a (distinguished) triangle

X
u−→ Y

v−→ Z
w−→ Σ(X) Z

(1)
w

		��
��

��
�

X
u �� Y

v


�������

(3) For any X ∈ C,

X
1−→ X → 0 → Σ(X)

is a (distinguished) triangle
(TR2) A sextuple

X
u−→ Y

v−→ Z
w−→ Σ(X)

is a (distinguished) triangle if and only if

Y
v−→ Z

w−→ Σ(X)
−Σ(u)−−−→ Σ(Y )

is a (distinguished) triangle.
(TR3) For any (distinguished) triangles (X, Y, Z, u, v, w), (X ′, Y ′, Z ′,

u′, v′, w′) and a commutative diagram

X

f

��

u �� Y

g

��

v �� Z
w �� Σ(X)

X ′ u′
�� Y ′ v′

�� Z ′ w′
�� Σ(X ′)

there exists h : Z → Z ′ which makes a commutative diagram

X

f

��

u �� Y

g

��

v �� Z

h

��

w �� Σ(X)

Σ(f)
��

X ′ u′
�� Y ′ v′

�� Z ′ w′
�� Σ(X ′)

(TR4) (Octahedral axiom) For any two consecutive morphisms u : X → Y and v :
Y → Z, if we embed u, vu and v in (distinguished) triangles (X,Y, Z ′, u, i, i′),
(X,Z, Y ′, vu, k, k′) and (Y, Z,X ′, v, j, j′), respectively, then there exist morphisms
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f : Z ′ → Y ′, g : Y ′ → X ′ such that the following diagram commute

X
u �� Y

v

��

i �� Z ′

f

���
�
�

i′ �� Σ(X)

X
vu �� Z

j

��

k �� Y ′

g

���
�
�

k′
�� Σ(X)

Σ(u)
��

X ′

j′

��

X ′

Σ(i)j′

��

j′ �� Σ(Y )

Σ(Y )
Σ(i)

�� Σ(Z ′)

and the third column is a triangle.

Sometimes, we write X[i] for Σi(X).

Definition 4.2 (∂-functor). Let C, C ′ be triangulated categories. An additive functor
F : C → C ′ is called a ∂-functor (sometimes exact functor) provided that there is a

functorial isomorphism α : FΣC
∼→ ΣC′F such that

F (X)
F (u)−−→ F (Y )

F (v)−−→ F (Z)
αXF (w)−−−−→ ΣC′(F (X))

is a triangle in C ′ whenever X
u−→ Y

v−→ Z
w−→ ΣC(X) is a triangle in C. Moreover, if a

∂-functor F is an equivalence, then F is called a triangulated equivalence . In this case,

we denote by C
∆∼= C ′.

For (F, α), (G, β) : C → C ′ ∂-functors, a functorial morphism φ : F → G is called a
∂-functorial morphism if

(ΣC′φ) ◦ α = β ◦ φΣC

We denote by ∂(C, C ′) the collection of all ∂-functors from C to C ′, and denote by
∂ Mor(F,G) the collection of ∂-functorial morphisms from F to G.

Proposition 4.3. Let F : C → C ′ be a ∂-functor between triangulated categories. If
G : C ′ → C is a right (or left) adjoint of F , then G is also a ∂-functor.

Definition 4.4. A contravariant (resp., covariant) additive functor H : C → A from a
triangulated category C to an abelian category A is called a homological functor (resp., a
cohomological functor), if for any triangle (X,Y, Z, u, v, w) in C the sequence

H(Σ(X)) → H(Z) → H(Y ) → H(X)

(resp., H(X) → H(Y ) → H(Z) → H(Σ(X)) )

is exact. Taking H(Σi(X)) = H i(X), we have the long exact sequence:

· · · → H i+1(X) → H i(Z) → H i(Y ) → H i(X) → · · ·
(resp., · · · → H i(X) → H i(Y ) → H i(Z) → H i+1(X) → · · · )

Proposition 4.5. The following hold.

(1) If (X,Y, Z, u, v, w) is a triangle, then vu = 0, wv = 0 and Σ(u)w = 0.
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(2) For any X ∈ C, HomC(−, X) : C → Ab (resp., HomC(X,−) : C → Ab) is a
homological functor (resp., a cohomological functor).

(3) For any homomorphism of triangles

X
u−−−→ Y

v−−−→ Z
w−−−→ Σ(X)
f


g


h


Σ(f)

X ′ u′
−−−→ Y ′ v′

−−−→ Z ′ w′
−−−→ Σ(X ′)

if two of f , g and h are isomorphisms, then the rest is also an isomorphism.

Proof. First, consider the following morphism between triangles

X
u−−−→ Y

v−−−→ Z
w−−−→ Σ(X)



β


γ



0 −−−→ M M

w−−−→ 0

(1) Taking M = Z, β = v, γ = 1Z , we get the statement by (TR1) (3), (TR2), (TR3).
(2) Take β with β ◦ u = 0, then there is γ by (TR2), (TR3) .
(3) By (2), we have a morphism between long exact sequences

hX
hu−−−→ hY

hv−−−→ hZ
hw−−−→ hΣ(X)

hΣ(u)−−−→ hΣ(Y )
hf


hg


hh


hΣ(f)


hΣ(g)

hX′
hu′−−−→ hY ′

hv′−−−→ hZ′
hw′−−−→ hΣ(X′)

hΣ(u′)−−−→ hΣ(Y ′)

Here hM = HomC(−,M) for any object M . �

Proposition 4.6. A triangle (X,Y, Z, u, v, 0) is isomorphic to (X,Z⊕X,
Z, [ 0

1 ] , [ 1 0 ] , 0).

Proof. Since HomC(Z,Z)
0−→ HomC(Z, Σ(X)), by Proposition 4.5, there is s : Z → Y

such that vs = 1Z . Then we have a commutative diagram

X
µ−−−→ Z⊕X

π−−−→ Z
0−−−→ Σ(X)∥∥∥ α



∥∥∥

∥∥∥

X
u−−−→ Y

v−−−→ Z
0−−−→ Σ(X)

where µ = [ 0
1 ], π = [ 1 0 ], α = [ s u ]. �

Definition 4.7 (Compact Object). Let C be a triangulated category. An object C ∈ C
is called a compact object in C if the canonical morphism

∐

i∈I

HomC(C,Xi)
∼→ HomC(C,

∐

i∈I

Xi)

is an isomorphism for any set {Xi}i∈I of objects (if
∐

i∈I Xi exists in C).
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For a triangulated category C, a set S of compact objects is called a generating set if
HomC(S, X) = 0 ⇒ X = 0, and if Σ(S) = S. A triangulated category C is compactly
generated if C contains arbitrary coproducts, and if it has a generating set.

5. Derived Categories

Throughout this section, A is an abelian category and B, C are additive subcategories
of A.

Definition 5.1 (Complex). A (cochain) complex is a collection X � = (Xn, dn
X : Xn →

Xn+1)n∈� of objects and morphisms of B such that dn+1
X dn

X = 0. A complex X � = (Xn, dn
X :

Xn → Xn+1)n∈� is called bounded below (resp., bounded above, bounded) if Xn = 0 for
n � 0 (resp., n � 0, n � 0 and n � 0).

we define an objects of A for all n ∈ Z

Zn(X �) = Ker dn
X Bn(X �) = Im dn−1

X

Cn(X �) = Cok dn−1
X Hn(X �) = Zn(X �)/ Bn(X �)

the nth cohomology,

A complex X � = (Xn, dn
X) is called a null complex if Hn(X �) = 0 for all n ∈ Z.

A morphism f : X · → Y · of complexes is a collection of morphisms fn : Xn → Y n

satisfying dn
Y fn = fn+1dn

X for any n ∈ Z.
We denote by C(B) (resp., C+(B), C−(B), Cb(B)) the category of complexes (resp.,

bounded below complexes, bounded above complexes, bounded complexes) of B. An
autofunctor Σ : C(B) → C(B) is called translation if (Σ(X �))n = Xn+1 and (Σ(dX))n =
−dn+1

X for any complex X � = (Xn, dn
X).

In C(A), a morphism u : X · → Y · is called a quasi-isomorphism if Hn(u) is an isomor-
phism for any n.

In this section, “∗” means “nothing”, “+”, “−” or “b”.

Definition 5.2 (Truncations). For a complex X � = (X i, di), we define the following
truncations:

τ≥nX
� : . . . → 0 → Xn → Xn+1 → Xn+2 → . . . ,

τ≤nX
� : . . . → Xn−2 → Xn−1 → Xn → 0 → . . . .

Then we have exact sequences in C(A)

O → τ≥n(X �) → X � → τ≤n+1(X
�) → O

Definition 5.3 (Mapping Cone). For u ∈ HomC(B)(X
�, Y �), the mapping cone of u is a

complex M�(u) with

Mn(u) = Xn+1⊕Y n,

dn
M�(u) =

[
−dn+1

X 0

un+1 dn
X

]
: Xn+1⊕Y n → Xn+2⊕Y n+1.
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X ·

u

��

· · · �� Xn
dn

X ��

un

��

Xn+1 ��

un+1

��

· · ·

Y ·

v
��

· · · �� Y n
dn

Y ��

( 0
1 )

��

Y n+1 ��

( 0
1 )

��

· · ·

M·(u)

w

��

· · · �� Xn+1 ⊕ Y n
dn
M�(u)��

( 1 0 )

��

Xn+2 ⊕ Y n+1 ��

( 1 0 )

��

· · ·

Σ(X ·) · · · �� Xn+1
−dn+1

X �� Xn+2 �� · · ·

Definition 5.4 (Homotopy Category). Two morphisms f, g ∈ HomC(B)(X
�, Y �) is said

to be homotopic (denote by f �
h

g) if there is a collection of morphisms h = (hn),

hn : Xn → Y n−1 such that

fn − gn = dn−1
Y hn + hn+1dn

X

for all n ∈ Z. The homotopy category K∗(B) of B is defined by

(1) Ob(K∗(B)) = Ob(C∗(B)),
(2) HomK∗(B)(X

·, Y ·) = HomC∗(B)(X
·, Y ·)/ �

h
for X ·, Y · ∈ Ob(K∗(B)).

Proposition 5.5. A category K∗(B) is a triangulated category whose distinguished trian-
gles are defined to be isomorphic to

X · u−→ Y · v−→ M·(u)
w−→ Σ(X ·)

for any u : X · → Y · in K∗(B).

Definition 5.6 (Derived Category). The derived category D∗(A) of an abelian category
A is the quotient category by quasi-isomorphisms, that is the category satisfying

(1) Ob(D∗(A)) = Ob(K∗(A)).
(2) For X,Y ∈ Ob(D∗(A)), let V (X ·, Y ·) = {(s, Y ′·, f)|s : Y · → Y ′· ∈ Qis, f : X · →

Y ·}. In V (X ·, Y ·), we define (s, Y ′·, f) ∼ (s′, Y ′′·, f ′) if there is (s′′, Y ′′′·, f ′) such
that all triangles are commutative in the following diagram:

Y ′·

���
�
�

X ·

f
���������� f ′′

��			

f ′ ��













Y ′′′· Y ·

s












s′′��	 	 	

s′����
��

��
��

Y ′′·

���
�
�

Then we define a morphism from X · to Y · by an equivalence class s−1f of (s, Y ′, f).
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(3) For s−1f : X · → Y ·, t−1g : Y · → Z ·, there are s′ : Z ′· → Z ′′· ∈ Qis and g′ : Y ′· →
Z ′′· such that s′ ◦ g = g′ ◦ s. Then we define (t−1g) ◦ (s−1f) = (s′ ◦ t)−1g ◦ f .

X ·

f

���
��

��
��

� Y ·

s

��

g

��













Z ·

t
��

Y ′·

g′

��







 Z ′·

s′

���
�
�

Z ′′·

Moreover, we define the quotient functor Q : K∗(A) → D∗(A) by

(Q1) Q(X ·) = X · for X · ∈ K∗(A).
(Q2) Q(f) = 1−1

Y · f for a morphism f : X · → Y · in D∗(A).

Proposition 5.7. The following hold.

(1) D∗(A) is a triangulated category, and the canonical functor Q : K∗(A) → D∗(A)
is a ∂-functor.

(2) The i-th cohomology of complexes is a cohomological functor in the sense of Defi-
nition 4.4.

Lemma 5.8. Let A be a ring. For X � ∈ K(ModA) and I � ∈ K+(InjA) (resp., P � ∈
K−(Proj A)), if X � is null, then we have

HomK(Mod A)(X
�, I �) = 0.

(resp., HomK(Mod A)(P
�, X �) = 0)

Proposition 5.9. The following hold for a ring A.

(1) K−(ProjA)
�∼= D−(ModA).

(2) K+(InjA)
�∼= D+(Mod A).

6. Tilting Complexes

Definition 6.1. Let C be a triangulated category. A subcategory B of C is said to
generates C as a triangulated category if C is the smallest triangulated full subcategory
which is closed under isomorphisms and contains B.

Theorem 6.2. Let A, B be rings. The following are equivalent.

(1) D−(ModA)
�∼= D−(Mod B).

(2) Db(Mod A)
�∼= Db(Mod B).

(3) Kb(ProjA)
�∼= Kb(Proj B).

(4) Kb(projA)
�∼= Kb(projB).

(5) There exists T � ∈ Kb(projA) with B ∼= HomKb(proj A)(T
�) such that

(a) HomK(Mod A)(T
�, T �[i]) = 0 for i �= 0,

(b) add T �

A generates Kb(projA).
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(6) There exists T � ∈ Kb(projA) with B ∼= HomKb(proj A)(T
�) such that

(a) HomK(Mod A)(T
�, T �[i]) = 0 for i �= 0,

(b) For X � ∈ K−(ProjA), X � = O whenever HomK−(Proj A)(T
�, X �[i])

= 0 for all i.

Definition 6.3. A complex T �

A ∈ Kb(projA) is called a tilting complex for A provided
that

(1) HomK(ModA)(T
�, T �[i]) = 0 for i �= 0.

(2) add T �

A generates Kb(projA).

We say that B is derived equivalent to A if there is a tilting complex T �

A such that
B ∼= EndK(Mod A)(T

�).

Remark 6.4. Miyashita defined a tilting module of finite projective dimension as follows.
Let R be a ring. A right R-module T is called a tilting module of projective dimension n
provided that the following hold.

(1) There is an exact sequence 0 → Pn → · · · →→ P0 → T → 0 with P0, · · · , Pn ∈
projRop.

(2) Exti
R(T, T ) = 0 (i > 0).

(3) There is an exact sequence 0 → R → T 0 → · · · → T n → 0 with T 0, · · · , T n ∈
add T .

Then the projective resolution of T is a tilting complex. Happel and Cline-Parshall-
Scott showed that the derived functor Rb HomR(T,−) : Db(Mod R) → Db(Mod S) is an
equivalence.

Lemma 6.5. For X � ∈ D−(ModA), the following are equivalent.

(1) X � ∈ Db(ModA).
(2) For any Y � ∈ D−(ModA), there is n such that HomD(Mod A(Y �, X �[i])

= 0 for all i < n.

Proof. 1 ⇒ 2. We may assume X � ∈ Cb(Mod A), Y � ∈ K−(ProjA). Then HomD(Mod A)(Y
�, X �[i]) ∼=

HomK(Mod A)(Y
�, X �[i]).

2 ⇒ 1. Since HomD(Mod Ab)(A,X �[i]) ∼= Hi(X �), it is easy. �

For an additive category B and m ≤ n, we write K[m,n](B) for the full subcategory of
K(B) consisting of complexes X � with X i = O for i < m, n < i.

Lemma 6.6. For X � ∈ Db(Mod A), the following are equivalent.

(1) X � is isomorphic to an object of Kb(ProjA).
(2) For any Y � ∈ Db(Mod A), there is n such that HomD(Mod A(X �, Y �[i])

= 0 for all i > n.

Proof. 1 ⇒ 2. It is trivial.
2 ⇒ 1. We may assume X � ∈ K−(ProjA). Let M =

∏
i∈� Ci(X �). If HomK(Mod A)(X

�,Ci(X �)[−i]) =
0, then we have exact sequences

HomA(X i+1, Ci(X �)) → HomA(Ci(X �), Ci(X �)) → O.
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This means that the canonical morphisms Ci(X �) → X i+1 are split monomorphisms.
HomK−(Mod A)(X

�,M [i]) = 0 for all i > n if and only if X � is isomorphic to an object in

K[−n,∞)(Proj A). �

Definition 6.7 (Perfect Complex). A complex X � ∈ D(ModA) is called a perfect complex
if X � is isomorphic to a complex of Kb(projA) in D(ModA). We denote by D(ModA)perf

the triangulated full subcategory of D(Mod A) consisting of perfect complexes.

Lemma 6.8. For X � ∈ Kb(Proj A), the following are equivalent.

(1) X � is a compact object in Kb(ProjA).
(2) X � is isomorphic to an object of Kb(projA).

Proof. 2 ⇒ 1. It is easy.

1 ⇒ 2. Let X � = X0 d0

−→ X1 → . . . → Xn, with X i ∈ Proj A. By adding P
1−→ P

to X �, we may assume that X0 is a free A-module A(I). If I is a finite set, then by 2
⇒ 1 X0 is also compact, and hence τ≥1X

� is compact. by induction on n, we get the
assertion. Otherwise, since we have HomK(Mod A)(X

�, A(I)) ∼= HomK(Mod A)(X
�, A)(I), the

canonical morphism X � → A(I) factors through a direct summand µ : Am ↪→ A(I) for some
m ∈ N. Then there is a homotopy morphism h : X1 → A(I) such that 1A(I) − µg = hd0

with some g : A(I) → Am. Let A(I) = Am⊕A(J) be the canonical decomposition, then

A(J)
d0|

A(J)−−−−→ X1 ph−→ A(J) = 1A(J), where p : A(I) → A(J) is the canonical projection.
Therefore X � ∼= M�(1A(J))[−1] ⊕ X ′�, where X ′� : Am → X ′1 → . . . → Xn with X ′1 being
a direct summand of X1. Then we reduce the case of X0 being a finitely generated free
A-module. �

Lemma 6.9. Let T � ∈ Kb(projA) with HomK(Mod A)(T
�, T �[i]) = 0 for i �= 0, and B =

EndK(ModA)(T ). Then there exists a fully faithful ∂-functor F : K−(ProjB) → K−(ProjA)
such that

(1) FB ∼= T �.
(2) F preserves coproducts.
(3) F has a right adjoint G : K−(ProjA) → K−(ProjB).

Proof. [Skip] This lemma is important. But the proof is out of the methods of derived
categories. �

Lemma 6.10. If T � satisfies the condition (G), then F : K−(ProjB) →
K−(ProjA) is an equivalence.

(G) For X � ∈ K−(ProjA), X � = O whenever HomK−(Proj A)(T
�, X �[i])

= 0 for all i.

Proof. Let X � ∈ K−(ProjA) such that GX � = O. Then HomK−(Proj A)(T
�,

X �[i]) ∼= HomK−(Proj B)(B,GX �[i]) = 0 for all i. Therefore KerG = {O}. By the left
version of Proposition 6.11, G and F are equivalences. �
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Proposition 6.11. Let C and C ′ be triangulated categories, F : C → C ′ a ∂-functor
which has a fully faithful left adjoint S : C ′ → C. Then F induces an equivalence between
C/ KerF and C ′.

Proof. By the universal property of Q : C → C/ KerF , we have the following commutative
diagram

C
Q

��

F

�������������

C/ KerF
F ′

�� C ′

If f : X → Y is a morphism in C, then Ff is an isomorphism if and only if Qf is
an isomorphism. For every object M ∈ C, FSFM → FM is an isomorphism, and
then QSFM → QM is an isomorphism. Therefore QSF → Q is an isomorphism. By
the universal property of Q and QSF = QSF ′Q, we have 1C/ Ker F

∼= QSF ′. Since,
F ′QS = FS ∼= 1C′ , F ′ is an equivalence. �

Remark 6.12. Let C be a triangulated category. For an additive subcategory B of C,
we can construct the smallest triangulated full subcategory EB which is closed under
isomorphisms and contains B as follows.

Let E0B = B. For n > 0, let EnB be the full subcategory of C consisting of objects X
there exist U, V ∈ En−1B satisfying that either of (X,U, V, ∗, ∗, ∗) or (U, V,X, ∗, ∗, ∗) is a
triangle in C. Then it is easy to see that EB =

⋃
n≥0EnB is the smallest triangulated full

subcategory which is closed under isomorphisms and contains B

Theorem 6.13. Let T � be a complex of Kb(projA) such that

(a) HomK(ModA)(T
�, T �[i]) = 0 for i �= 0,

(b) add T �

A generates Kb(projA).

Then F : K−(ProjB) → K−(ProjA) is an equivalence.

Proof. It suffices to show that T � satisfies the condition of Lemma 6.10. Since add T �

A

generates Kb(projA), if HomK−(Proj A)(T
�, X �[i]) = 0 for all i, then HomK−(Proj A)(A,X �[i]) =

0 for all i. Thus X � = O. �
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