BGP REFLECTION, TILTING MODULES AND TILTING
COMPLEXES

JUN-ICHI MIYACHI

In this note, we review the transition from the notion of Bernstein-Gelfand-Ponomarev
reflection functors to the notion of tilting complexes and triangulated equivalences.

1. QUIVERS AND PATH ALGEBRAS

Throughout this note, k is a field.

Definition 1.1. A quiver A = (Ag, Ay, h,t) is an oriented graph, where A, is a set of
vertices and A; is a set of arrows between vertices. We use h : Ay — Ay, t : A — Ay
the maps defined by h(a) = j, t(a) =i when « : i — j is arrow from the vertex i to the
vertex j. We denote by A the underlying graph, that is obtained from A by forgetting
the orientation of the arrows. Moreover, we often write A = (A, Q)when we give an
orientation Q to A. For z € A, let

2 ={a € A|h(a) =2} 2= ={a € Ailt(a) =2}

A vertex z in A is called a sink (resp., a source) if = = ¢ (resp., = = ¢). A quiver
A = (Ag, Ay, h,t) is called a locally finite quiver if #x=, #2= < oo for any x € A, and
it is called a finite quiver if #A, #A; < co. A path w = (blay., ..., aq]a) : a ~ b from
the vertex a to the vertex b in the quiver A is a sequence of ordered arrows aq,...,q,
such that a = t(ay), h(a;) = t(air1) (1 <i <r—1),h(a,) = b. In this case, a (resp., b) is
called the tail ¢(w) (resp., the head h(w)) of w, and r is called the length of a path w. For
every vertex i, the path e, = (a||a) of length 0 is called the empty path. A non-empty
path w is called an oriented cycle if h(w) = t(w).

Definition 1.2. Let A = (A, Ay, h,t) be a finite quiver with Ay = {1,--- ,n}. For
X = "w1, -, 20),y = (Y1, Yn) € 2L, we define a bilinear form, a quadratic form
and a symmetric bilinear form:

<X,y >a = Z TilYi — Z Lt(a)Yh(a)

1€AQ acAq
_ _ 2
Xa(X) =) 77 = Y Tiw)Ta
i€Ag [1<VAN]

(. ¥)a = 5(alx+¥) ~ xa 09— xaly)

Definition 1.3. Let A = (Ag, Ay, h,t) be a quiver. The k-linear path category kA of
A is an additive category consisting of finite direct sums @,en,a®" of vertices a € A as
objects, matrices of which entries are k-vectors spanned by all paths in A as morphisms,
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and compositions of morphisms are defined by compositions of paths
(clas, ... apq1]b) o (bla, ..., aq]a) = (c|as, . .., aq]a).

For example, the Hom-set kA(a,b) for vertices a,b is the k-vector space spanned by all
paths a ~~ b from a to b:
EA(a,b) =< w| w:a~>b>y
Similarly, the path k-algebra kA is the k-vector space spanned by the set of all paths
in A together with the multiplication induced by compositions of paths.

We often simply write a, ... aq for (bla,,...,aila).

Remark 1.4. If #Ay < oo, then ) e, = 1 in the k-algebra kA.

r€AQ

Example 1.5. For a quiver

«

A 129y

we have
ertkAe; =< e1 > ekAe; =< a >, eskAe; =< fa >y,
elkAeg =0 62]€A€2 =< ey >k e;;k;Aez =< ﬁ >k
e1kAe; = O eakAe; = O eskAes =< ez >

2 2 2
XA(X) = 2] + 25 + 03 — 2102 — Ta23
Then we have

E 0 0
kA= |k k O
E k k
Example 1.6. For a quiver
A:1_ 2
B

we have
e1tkAe; =< e; > eskAe; =< a, 3 >
elkAeg =0 62]€A€2 =< €9 >k

Xa(x) = 2] + x5 — 2z12,

Tk 0
kA:h?J

Then we have

Example 1.7. For a quiver
A 15—=2)p
we have
erkAey =< e; >, eskAe; =< o, "al n € N >,
61]45A€2 =0 62]€A62 =<< 62,ﬁn’ neN >,

Xa(x) =2t — 129

ha = w] k?]]

Then we have
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2. REPRESENTATIONS AND BGP REFLECTION

Definition 2.1. Given a quiver A = (A, Ay, h,t) (= (A,Q)), a representation M =
(M(i); M(«)) of A over a field k is a family (M(i));en, of k-vector spaces together
with a family (M(«) : M (i) — M(j))iim'em of k-linear maps. A representation M =
(M(i); M(«)) is called a (locally) finite dimensional representation if M (i) is a finite di-
mensional k-vector space for every i € Ag. For a finite dimensional representation M, the
dimension vector of M is dimM = (dimy M (7));cn,-

For (M(i); M(«)), (N (i); N(«)), a morphism f : (M(i); M(«)) — (N(i); N(«)) is a
family (f; : M (i) — N(i))ien, of k-linear maps satisfying that we have a commutative
diagram

. N(a) .
N(i) —— N(j)
for any i = j € Ay, B B
We denote by Rep, A or Rep, (A, ) (resp., rep, A or rep,(A,Q)) the category of rep-
resentations (resp., finite dimensional representations) of A over k.

Remark 2.2. Tt is easy to see that Rep, A (resp., rep, A) is equivalent to the cate-
gory Func,(kA,Mod k) (resp., Funcy(kA, modk)) of k-linear additive functors from kA
to the category of k-vector spaces (resp., finite dimensional k-vector spaces). There-
fore, Func,(kA,Mod k) is an abelian category with direct sums and products. Let h® :
kA — Funcg(kA,Mod k) (resp., hy : kA — Funci(kA°,Mod k)) be the functor defined
by h'(x) = kA(a,x) (resp., ha(x) = kA(z,a)) for any x € Aj;. We often identify Rep, A
with Funcg(kA, Mod k). We often write Mod kA = Func,(kA, Mod k).

Definition 2.3. Let A = (Ag, Ay, h,t) (= (A,Q)) be a quiver a a vertex. We define the
representation (S, Sq(a)) by

kifr=a

Sa(z) = Sa(a) =0
(@) {O if v #a ()

We define the representation (P,(7), P,(«)) by kA(a,—) € Funci(kA, Mod k). In other

words, for any vertex = P,(x) is the k-vector space spanned by paths from a to x: P,(z) =

kA(a,z) =< w| w : a ~ x > and P,(«) is the k-linear map defined by P,(a)(w) = aw

for any arrow « : x — y and any path w : z ~ x. Moreover, we define the representation

(Qa(1), Qu()) by Homy(kA(—,a), k) : kA — Func,(kA, Mod k).
Lemma 2.4 (Yoneda’s Lemma). Let a,b € kA and M € Funci(kA,Modk). then the
following hold.

(1) We have the bijection 0_ : M(a) — Homyua(kA(a, —), M), where 0_ is defined by

(0)(0)(f) = M(f)(x) for A € M(a), f € kA(a,b).
(2) We have the bijection 0_ : kA(b,a) — Homya (kA(a, —), kA(b, —)).

43—



Example 2.5. For a quiver

a B
A:1—=2<—3
kA =< eq,eq,e3,a, 3 >5. A representation M of A over k is the following

M(a)
—_—

M(1) M) M9 hr3)

By the standard technique of linear algebra, all indecomposable representations are up to
isomorphisms the following

Mi=P: 0—-k«—0 My=P,: k—=k+—0 My=PFP;: 00—k« £k
=Qs: k—k+—k M;=Q3: 00—k Mg=Q1: k— 00

/\/
\/\

Example 2.6. For a quiver

A 1E—2-g
EA" =< ey, ey, e3,, 3 > A representation M of A’ over k is the following

N(w)
(————

N(1) NE) Y, N(3)

By the standard technique of linear algebra, all indecomposable representations are up to
isomorphisms the following

=@Qy: 0—k—0 Nog=PFP,: k—0—0 N3=PFP;: 00—k
Ny=PFP: k—k—k Ny=Q3: 0—k—k Ng=Q1: k«—k—0

\/\
/\/

Definition 2.7. Let A = (A, Q) be a locally finite quiver, and a a sink (resp., a source)
of (A, Q). We define the new orientation ¢, by reversing all arrows which are connected
to the vertex a. We call o, the reflection. For a sink a in a quiver (A, ), we define
the Bernstein-Gelfand-Ponomarev reflection functor (the BGP reflection functor) o :
Rep,(A, Q) — Rep,(A,0,0Q) as follows. For a k-representation M = (M(i); M(a)) of
(A, Q), let

), & ews M(t(a)
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be the canonical exact sequence and

JofM(a) if r=a ) Ba i ae€a”
U;FM(x)_{M(x) if z#a U;M(Q)_{a if a¢a”

Then o M = (0 M(i); o5 M(c)) is a representation of (A, 0,£2). Similarly, for a source b
in a quiver (A, Q), the BGP reflection functor o, : Rep, (A, Q) — Rep, (A, 03,12) is defined.

Theorem 2.8. Let A = (A, Q) be a locally finite quiver, and a a sink of (A,Q). Let
T, (resp., V.) be the subcategory of Rep, (A, Q) (resp., Rep, (A, 0,8)) consisting repre-
sentations which don’t have S, as a direct summand. Then the BGP reflection functors
ol : Rep,(A,Q) — Rep,(A,0,9Q) and o, : Repy(A,0,2) — Rep,(A, Q) induce the equiv-
alence between T, and Y,. A similar result holds for o} : repy (A, Q) — rep, (A, 0,8) and
o i repi(A, 0,0) — rep(A, Q).

Proof. By the construction of BGP reflection, we have the canonical functorial morphisms
0,008 = 1gep (a0) AN 1gep (A 5,0) — O 00, . For a representation M = (M (i); M(c))
of (A, Q), it is easy to see that M € T, if and only if Y aca> Cvis an epimorphism. Similarly,

N € ), if and only if (o) 4e,< is a monomorphism for a representation N = (N(7); N(«))
of (A, 0,0). For M € 7,, we have a short exact sequence

o M(a))a o a
0= o M) D 6o M(Ha) =25 M(a) = 0
Then we have Im(o;|7,) C Va, and 1gep (a,0) — 0, © 0. |7, is an isomorphism. Similarly,
Im(o, |y,) C Za, and o 00, |y, — Lgep, (Ar.0) 18 an isomorphism. O

Definition 2.9. Let A be underlying graph of a quiver A = (Ag, Ay, h,t) with Ay =
{1,---,n}, and (—, —)4 the associated symmetric bilinear form. For a vertex a of A and
x € 7", we define the following reflection of Z"

0.(x) =x — 2(x,€e,) x84

Here e, is the a-th fundamental vector. For {ay,--- ,a,} ={1,-+- ,n}, c = 04,04, 0,
is called a Coxeter transformation. Moreover, we define the group generated by reflections

Wi ={04 - 0a.|r >0, 04, ,0,, are reflections}

For x € Z™, x is called positive x > 0 if x # 0 and z; > 0 (1 < i < n), x is called a root
if xa(x) =1, and x is called a radical vector if x5 (x) = 0.
In the case that A is Dynkin, W3 is called a Weyl group.

Definition 2.10. Let A = (A, Q) be a quiver with. A sequence of vertices {a,--- ,a,} is
called an absorbing sequence (resp., diverging sequence) for (A, Q) if a1 is a sink (resp.,
source) of (A, gy, -+ 04,9) for any 0 < i < n. For a finite quiver A which does not contain
oriented cycles, we have both an absorbing sequence and a diverging sequence which is
coincides with the set of vertices.

Corollary 2.11. Let A = (A, Q) be a finite quiver, a a sink and b a source of (A, Q),
and M an indecomposable representation in rep,(A,€).

(1) If of M =0, then M = S,,.
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F1GUurE 1. Dynkin graphs

(2) If of M #0, then dimo} M = o,(dimM) and o, of M = M.

(3) If oy, M =0, then M = S,

(4) If oy M # 0, then dimo, M = o,(dimM) and o oy M = M.
Example 2.12. In Examples 2.5 and 2.6, A’ = (A, ,12), and we have the BGP reflections
oy :rep, A — rep, A and o, : rep, A’ — rep, A such that o M} = 0, 0, N; = 0,
Theorem 2.13 (Root System and Weyl Group). Let A = (A, Q) be a quiver such that
A is a Dynkin diagram. Then the following hold.

(1) The Weyl group W is a finite group.

(2) There is no radical vector except the zero vector 0.

(3) For any Cozeter transformation ¢, cv = v implies v = 0.

Corollary 2.14. Let A = (A, Q) be a quiver such that A is a Dynkin diagram. For
any indecomposable representation M rep,(A,€Y), there is a absorbing (resp,m diverg-

mg) sequence {ay,--- ,as} and some vertex a such that M = ot ---0f S, (resp., M =
Oay " 0oy Sa)-

Proof. Let Ag = {1,--- ,n}, {a1, - ,a,} an absorbing (resp., diverging) sequence with

{ai,-- ,a,} = {1,--- ,n}, and ¢ = o,, -+ 0,,. Since W5 is a finite group, there is an

integer 7 such that ¢" = 1. Let v =Y., ¢/dimM, then ¢cv = v. By Theorem 2.13 (3)
v = 0, and therefore c'dimM # 0 for some i. According to Corollary 2.11, we have the
statement. 0

Definition 2.15. Let A = (A, Q) be a finite connected quiver, and a a sink of (A, Q).
Then we have the canonical exact sequence in Repk(A Q)

0— p, U, @Pt(a LT, =0

aca>

T=T.oP

b#a

We define the representation
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Proposition 2.16. Let A = (A, Q) be a finite quiver, and a a sink of (A,Q). By
identifying Rep, (A, Q) with Mod kA, then the following hold.
(1) The functor o} is isomorphic to the functor Homua(T,—) : Modk(A, Q) —
Mod k(A, 0,9).
(2) 7o = {M € Repy(A, Q)| Extya (T, M) = 0}

Proof. (1) By Yoneda’s lemma 2.4 we have the following isomorphism between exact
sequences

N (03 M())a
oy M(a) — Dacaz M (t(a)) - M (a)

I § i

Hom(Ta’ M) Hom(}",, o(a),M) Hom((h*)a,M)

Hom(®yeq> Pi(a), M) —————— Hom(F,, M)
(2) Since 7, is the subcategory consisting representations which don’t have S, as a direct
summand, M € 7, if and only if > M(«) : @peo= M (t(e)) — M(a) is an epimorphism if
and only if Hom((h®),, M) is an epimorphism if and only if Ext' (T, M) = Ext*(T,, M) =
0. ]

Definition 2.17. Let C be an additive category. For M € C, We define Add M (resp.,
add M) the full subcategory of C consisting of objects which are direct summands of
coproducts (resp., finite coproducts) of copies of M.

Proposition 2.18. Let A = (A,Q) be a finite quiver, and a a sink of (A,Q), T a
representation of Definition 2.15. Then the following hold.

(1) pdimy, T < 1.

(2) Extjn(T,T) = 0.

(3) We have an exact sequence 0 — @ P, —T%— T — 0 with T°,T* € addT.

rEAQ
Proof. By the definition of T, we have the exact sequence
0-Pr.—-( P P)o(EP P —Tu—0
€A z€Ao\{a} ac€aZ

Then the statements (1) and (3) hold. If 7, has P, as a direct summand, then so has
@D.co> Pi(a)- This contradicts in a being a sink. Therefore T;, does not have P, as a direct
summand. By Proposition 2.16, we have Ext'(T,,T,) = 0. Similarly, Ext' (T}, P,) = 0 for
b # a because P, does not have P, as a direct summand. O

3. TILTING MODULES

For aring R, we denote by Mod R°P (resp., mod R°P) the category of right (resp., finitely
presented right) R-modules, and denote by Proj R°P (resp., proj R°P, Inj R°P) the category
of projective (resp., finitely projective, injective) R-modules.

Definition 3.1. Let R be aring. A right R-module 7 is called a (classical) tilting module
provided that the following hold.
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(1) There is an exact sequence 0 — P, — Py — T — 0 with Py, Py € proj R°P.
(2) Extp(T,T) = 0.
(3) There is an exact sequence 0 — R — T° — T! — 0 with 7°, 7! € add T'.

Lemma 3.2. Let R be a ring, X a right R-module with S = Endg(X), and X' € add X.
(1) Homc(X’, Y) = HOHls(HOIIlR(X, X’), HOHIR(X, Y))
(f — Hompg(X, f)) for all Y € Mod R°P.
(2) Homp(X, X' ) ®s X 5 X' (f@x— f(x))
(3) X' = Homg(Homp(X', X), X) (2" = (f = f(2')))
Proof. Let qi,---q, : X' — X and py,--- ,p, : X — X’ be morphisms such that
> i pigi = 1. Then the following are the inverse of the above:
Homg(Hompg(X, X"), Homp(X,Y)) — Home (X", Y) (¢ — >0, &(pi)as)
X' — Homp(X, X') @s X (2" 371, pi ® qi(2"))
Homg(Homp (X', X), X) — X" (¢ — 320 pib(ai)) O

Lemma 3.3. Let A be a finite dimensional k-algebra, M, N € mod A°?. Then there exists
a morphism f : M®" — N such that Hom(M, f) : Homa (M, M®") — Homyu (M, N) is
surjective.

Proof. Since Homy (M, N) is a finite dimensional k-vector space, we can take a k-basis
fi,-+ fn of Homa(M, N), and then f = (fi,- -, fn) : M®" — N. O

Definition 3.4. Let A be a finite dimensional k-algebra, T4 a tilting right A-module.
We define a pair of full subcategories of mod A°P

T(T) ={X € mod A : Ext!(T, X) = 0},
F(T)={X € mod A°? : Hom (T, X) = 0}.
For any X € mod A°P, we define a subobject of X

tr(X) = ZfeHomA(T,X) Im f

and an exact sequence in mod A°P
(ex): 0 = tp(X) 25 X — fp(X) — 0.

Definition 3.5. A pair (7, F) of full subcategories in an abelian category A is called a
torsion pair of A provided that the following conditions are satisfied:
(i) TnF={0}
(ii) 7 is closed under factor objects;
(iii) F is closed under subobjects;
(iv) for any object X of A, there exists an exact sequence 0 — X' — X — X” — 0 in

Awith X' €7 and X" € F.

Proposition 3.6. Let A be a finite dimensional k-algebra, Ty a tilting right A-module.
Then (T(T'),F(T)) is a torsion pair of mod A°° such that T (T') is the category of finitely
generated right A-modules which are generated by T .
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Proof. 1Tt is clear that F(T) is closed under submodules. Since Ext% (T, —) =0, 7(T) is
closed under factor modules. For any X € mod A°?, we have an exact sequence

0 — Hom(T, t7(X)) = Hom(T, X) — Hom(T, fr(X)) — Ext! (T, trX)
Since Ext*(T,tX) = 0, we have Hom(T, f+(X)) = 0, and hence t+(X) € T(T), fr(X) €
F(T). For any Y € mod AP, we have an exact sequence
0 — Hom(7T",Y) — Hom(7°,Y) — Hom(A,Y) — Ext'(T",Y)

If Y € T(T) N F(T), then Hom(7T°,Y) = Ext'(T",Y) = 0. Therefore Y = Hom(A,Y) =
0. O

Proposition 3.7. Let A be a finite dimensional k-algebra, Ts a tilting right A-module
with B = End4(T). Then the following hold for M, N € T (T).

(1) We have an ezact sequence --- — Ty — Ty — M — 0 (T; € addT) such that
- — Homu (T, T1) — Homy (T, Ty) is a projective resolution of Homy (T, M).

(2) Tor? (Hom(T, M), T) = 0.

(3) Homa(T, M) ®@p T = M.

(4) BExt’y (M, N) = Exty(Homu (T, M), HomA(T, N)) for any i.

Proof. By Lemma 3.3, We have exact sequences 0 — M;.; — T; — M; — 0 such that
My= M, T, € addT and M; € T(T) for any i. Then we have exact sequences

0 — Homa (7', M;41) — Homa (T, T;) — Homy (T, M;) — 0

Therefore, the resolution T, — M satisfies that Homa (7', T,) — Homy (T, M) is a projec-
tive resolution. By Lemma 3.2 we have a commutative diagram

Homu (T, T,) @5 T ——— Homu(T, M) ®@p T
| |
T, — M
For N € T(T), we have an exact sequence and an isomorphism
0 — Hom(M;, N) — Homu(Tj, N) — Homu (M1, N) — Exty (M;, N) — 0
Ext/,"" (Miy1, N) = Ext’,”*(M;, N)
for any 2,5 > 0. By Lemma 3.2 we have
Ext’;(Homy (T, M), Hom (T, N)) = H'(Homp(Hom (T, T, ), Hom (T, N))
>~ H'(Homu(T,, N))
N {HomA(M, N) (i=0)
| Exty(M;, N) =2 Ext',(M,N) (i>0)
O

Proposition 3.8. Let A be a finite dimensional k-algebra, Ty a tilting right A-module
with B = End4(T"). Then the following hold for M € mod A°® and N € mod B°P.
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(1) 0 — Hom(T, M) @p T % M — Tor? (Ext!y(T, M), T) — 0
Exty (T, M)®@pT =0

(2) 0 — Ext (T, TorP (N, T)) — N — Homu (T, N @5 T) — 0
Hom (T, Tor? (N, T)) =0

Proof. By applying Hom4(—,T) to the exact sequence 0 — A — T° — T' — 0, we have
a projective resolution of g7: 0 — Q1 — Qo — T — 0.

(1) Let M — I* be an injective resolution and F' := Homy(7, —), then by Proposition
3.7 we have the exact sequence

0— F(I*)®p Q1 — F(I') @5 Qo — F(I°) @p T — 0
By Proposition 3.7 we have F'(I*) @ T' = I*. Therefore we have the exact sequence
0— F(M)®p Q1 — F(M)®p Qo — M — Exty(T, M) ©p Q1
— Exty (T, M) ®@p Qo — 0

(2) Let Ly — N be a projective resolution. Applying Hom(—, L, ®5T') to the projective
resolution 0 — P, — Py — T —, we have the exact sequence

0 — Homy (7T, Le ®p T') — Homy(Py, Le @5 T) — Homyu(P1, Le @5 T) — 0
Since Hom (7T, Le @5 T') = L,, we have the exact sequence
0 — Hom(Py, Tor? (N, T)) — Homy(Py, Tor? (N, T)) — N
— Homa (P, Le ®p T') — Homa(Py, Le @5 T) — 0
[

For a finite dimensional k-algebra A, let Si,---S, be a complete set of simple right
A-modules. Let F(A) be the free abelian group generated by isomorphism classes [X| of
right A-modules X € mod A°?, R(A) the subgroup of F(A) generated by [Y] — [X] — [Z]
for all exact sequence 0 — X — Y — Z — 0, and the Grothendieck group of A is
Ko(A) = F(A)/R(A). Then Ky(A) is generated by Sy, - - - S, and hence Ko(A) = Z". For
M € mod A°? we define dimM := (#S;-composition factor of M);.

Theorem 3.9. Let A be a finite dimensional k-algebra, Ty a tilting right A-module with
B = Endu(T). Let F = Homy(T,—), F’ = Ext4y(T,~),G = — @5 T,G" = Tor?(—,T),
and X (T) = Ker G, Y(T') = Ker G’ Then the following hold.

(1) (X(T),Y(T)) is a torsion pair of mod B°P.

(2) F and G induce the equivalence between T (T') and Y(T).

(3) F' and G' induce the equivalence between F(T) and X (T).

(4) FG'=F'G=0and GF'=G'F =0.

(5) BT is a tilting left B-module with A°® = Endg(T).

(6) Let f : Ko(A) — Ko(B) be a function defined by f(dimM) = dimF (M) —

dimF'(M) for M € mod A°P, then f is a group isomorphism.

Proof. (4) G(N) € T implies F'G = 0. By Proposition 3.7 G'F = 0. By Proposition
3.8 FG' =0 and GF' =0.
(1) By Proposition 3.8, N € X(T) N Y(T') implies N = 0. By (4) and Proposition 3.8
(X(T),)Y(T)) is a torsion pair of mod B°P
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(2), (3) By Proposition 3.8.
(5) Applying (—)* = Hompg(Homu(—,7),T) to 0 - A — T° — T' — 0, by Lemma
3.2 we have a commutative diagram

Oo— A — 7% — 7" — 0

L I
0 — A" —— TO —— T & Extp(T,T) —— 0

where all vertical arrows are isomorphisms. It is easy to see that the composition A =

A** — Endg(T) is an anti-ring isomorphism.
(6) For an exact sequence 0 — X — Y — Z — 0 in mod A°P, we have an exact sequence

0—->FX)—>FY)—>FZ)—-F(X)—>F(Y)—>F((Z) -0

Then f(dimY) = f(dimX) + f(dimZ) and f is a group morphism. By Lemma 3.8,
f is an epimorphism, and rank Ko(A) > rank Ko(B). By (5) we have rank Ky(A°) <
rank Ko (B°P). Therefore f is an isomorphism. O

Theorem 3.10. Let A be a finite dimensional k-algebra, Ty a tilting right A-module with
B = End4(T). Then the following hold.
(1) For M € T(T), idim F(M) < idim M + 1.
(2) For N € F(T), idim F'(N) < idim N and Exty(F (=), F'(N)) = 0 if idim N = n.
(3) For a right injective A-module I, we have a functorial isomorphism Homy —, I)| 7
Exty (F'(=), F(I)| )

Proof. Let 0 — M — I° — ... — I"™ — 0 be an injective resolution.

(1) Since any injective right A-module belong to 7 (7') and 7 (T') is closed under factor
modules, we have an exact sequence 0 — F(M) — F(I°) — --- — F(I") — 0. F(AY) &
TV implies idim F(AY) < 1. By F(I) € add F(AY), we have idm F(M) <n + 1.

(2) Assume that idim N <n. Let 0 = N — @ — K — 0 be an exact sequence with @)
being injective, then we have an exact sequence 0 — F(Q) — F(K) — F'(N) — 0. Since
idim F(Q) <1 and idim F(K) <n —1+1, idim F'(N) < n. For M € 7(T'), we have an
exact sequence

Exth(F(M), F(K)) — Exty(F(M), F'(N)) — Ext3™ (F(M), F(Q))

By (1) and Ext(F(M), F(K)) = Exty (M, K) = 0, we have Extl;(F(M),
F'(N))=0.
(3) By Proposition 3.7 we have a commutative diagram

I

Homa(K,I) ———— > Homa(Q,I) ——— Homa (N, I) 0

y u -

Homp (F(K), F(I)) — Homp(F(Q), F(I)) — Exth(F'(N), F(I)) — ExthL (F(K), F(I))

Since Extp(F(K), F(I)) = Ext} (K, I) = 0, ay is an isomorphism. O
Corollary 3.11. gldim B < gldim A + 1.
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Corollary 3.12. If gldim A < 1, then (X(T),Y(T)) splits, that is
Extp(X(T),Y(T)) =0
Lemma 3.13 (Bongartz’s lemma). Let A be a finite dimensional k-algebra, T4 a finitely

generated right A-module such that pdim T < 1 and Ext’,(T,T) = 0. Then there exists a
finitely generated right A-module T" such that T & T" is a tilting module.

Proof. Let ey, -- e, be a k-basis of Ext!,(T, A). Consider the push-out diagram

erie: 0 —— A —— X, —— T —— 0

| l H

e: 0 —_ A — T —— T 50

then we have an exact sequence
Hom (T, T") % Ext} (T, A) — Exty(T,T") — 0
By the construction of e, § is an epimorphism, and hence Ext! (T, 7") = 0. Moreover we
have exact sequences
0 = Exty(T%",T) — Ext}(T",T) — Ext4(A,T) =0
0= Exty(T%", T') — Ext (T, T') — Ext}(A,T") =0

Therefore we have Ext) (T @ T",T @ T') = 0. It is clear that pdim 7" < 1. Hence T & T"
is a tilting module. 0

Theorem 3.14. Let A be a finite dimensional k-algebra, Tx a finitely generated right
A-module such that pdim T < 1 and Ext)y(T,T) = 0. Then the following are equivalent.
(1) T is a tilting A-module.
(2) The number of non-isomorphic indecomposable modules which are direct summand
of T is the number of non-isomorphic simple A-modules.

Proof. (1) = (2) By Theorem 3.10. (2) = (1) By Lemma 3.13. O

4. TRIANGULATED CATEGORIES

Definition 4.1. A triangulated category C is an additive category together with
(1) an autofunctor ¥ : C = C (i.e. there is X! such that Lo X1 = %710 X = 1)
called the translation (or suspension), and
(2) a collection 7 of sextuples (X, Y, Z, u, v, w):
X5y 575 %X)
called (distinguished) triangles. These data are subject to the following four axioms:
(TR1) (1) For a commutative diagram of which all vertical arrows are isomorphisms

X =Y =7 —50(X)
Lf Lg lh lE(f)
X ey Y M S(XY)



if (X,Y,Z,u,v,w) is a (distinguished) triangle, then (X', Y, 7/,
u' v’ w') is a (distinguished) triangle.
(2) Every morphism u : X — Y is embedded in a (distinguished) triangle

Z
m// \\

X

X575 7% %(X)

Y

(3) For any X € C,
X5 X—0—5(X)

is a (distinguished) triangle
(TR2) A sextuple

X5y 575 %X)
is a (distinguished) triangle if and only if

Y %oz s 2

(YY)
is a (distinguished) triangle.

(TR3) For any (distinguished) triangles (X, Y, Z, u, v, w), (X', Y’ 7/,
v, v, w') and a commutative diagram

X sy =7 5% NX)
T
X ey e M (XY

(TR4) (Octahedral axiom) For any two consecutive morphisms v : X — Yand v :
Y — Z, if we embed u, vu and v in (distinguished) triangles (X,Y, 7' u,i,i’),
(X, Z,)Y" vu, k, k") and (Y, Z, X' v, j, j'), respectively, then there exist morphisms
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f:Z'—=Y' g:Y' — X'such that the following diagram commute

-/

Xty — g B(X)
|
|
vu k v k'
X 7 Yy’ %(X)
|
J 19 lZ(u)
Y j/
X' ==X ——=%(Y)
5 OV

s(v) — L w71
and the third column is a triangle.
Sometimes, we write X[i] for ¥/(X).

Definition 4.2 (0-functor). Let C, C' be triangulated categories. An additive functor
F : C — (' is called a 0-functor (sometimes ezxact functor) provided that there is a
functorial isomorphism « : F¥e = Y F such that

£(u)

FX) 2, peyy 29

ax F(w)
—_

F(2) Yer(F(X))

is a triangle in C’ whenever X = Y % Z % Y¢(X) is a triangle in C. Moreover, if a
O-functor F' is an equivalence, then F' is called a triangulated equivalence . In this case,

we denote by C é C'.
For (F,a),(G,B) : C — C' O-functors, a functorial morphism ¢ : F' — G is called a
0-functorial morphism if
(Xerg)oa = fodXc
We denote by O(C,C’) the collection of all d-functors from C to C’, and denote by
0 Mor(F, G) the collection of d-functorial morphisms from F' to G.

Proposition 4.3. Let F' : C — C' be a O-functor between triangulated categories. If
G : C"— C is a right (or left) adjoint of F', then G is also a O-functor.

Definition 4.4. A contravariant (resp., covariant) additive functor H : C — A from a
triangulated category C to an abelian category A is called a homological functor (resp., a
cohomological functor), if for any triangle (X, Y, Z, u,v,w) in C the sequence

H(X(X)) = H(Z) = H(Y) — H(X)
(resp., H(X) - HY) — H(Z) — H(X(X)) )
is exact. Taking H(X!(X)) = H'(X), we have the long exact sequence:
v HYX) - H(Z) - H(Y) — H'(X) — - -
(resp., -+ — H(X) — H'(Y) — H (Z) - H™(X) — ---)
Proposition 4.5. The following hold.
(1) If (XY, Z, u,v,w) is a triangle, then vu =0, wv = 0 and X(u)w = 0.
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(2) For any X € C, Home(—, X) : C — b (resp., Home(X,—) : C — Ab) is a
homological functor (resp., a cohomological functor).
(3) For any homomorphism of triangles

X -y 2 7 2 %(X)

bbb

X My s g Y R(XY)

if two of f, g and h are isomorphisms, then the rest is also an isomorphism.

Proof. First, consider the following morphism between triangles

X oy ' 7 Y N(X)

Lol b

(1) Taking M = Z,3 = v,y = 1, we get the statement by (TR1) (3), (TR2), (TR3).
(2) Take 8 with 3 owu = 0, then there is v by (TR2), (TR3) .
(3) By (2), we have a morphism between long exact sequences

he hs (u)

hyr —— hy — hy = hE(X’) - hE(Y’)

Here hy; = Home(—, M) for any object M. O

Proposition 4.6. A triangle (X,Y, Z,u,v,0) is isomorphic to (X, Z&X,
Z,[%],[10],0).

Proof.  Since Home(Z, Z) N Home(Z,%(X)), by Proposition 4.5, there is s : Z — Y
such that vs = 1. Then we have a commutative diagram
0

X+t Zox - Z Y(X)
|l H |
X s vy 2z, 5X)
where =[], 7 =[10], @« = [su]. O

Definition 4.7 (Compact Object). Let C be a triangulated category. An object C' € C
is called a compact object in C if the canonical morphism

H Hom¢(C, X;) = Home(C, H X;)

i€l el

is an isomorphism for any set {X;};e; of objects (if [],., X; exists in C).
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For a triangulated category C, a set S of compact objects is called a generating set if
Home(S,X) =0 = X =0, and if ¥(S) = S. A triangulated category C is compactly
generated if C contains arbitrary coproducts, and if it has a generating set.

5. DERIVED CATEGORIES

Throughout this section, A is an abelian category and B, C are additive subcategories

of A.

Definition 5.1 (Complex). A (cochain) complex is a collection X* = (X", d% : X" —
X", ¢z of objects and morphisms of B such that d™'d% = 0. A complex X* = (X", d% :
X" — Xt 7 is called bounded below (resp., bounded above, bounded) if X™ = 0 for
n < 0 (resp., n >0, n < 0 and n > 0).

we define an objects of A for all n € Z

Zn(X) = Ker dT)L( Bn(X) = Im d?(_l
C"(X*) = Cokdl™" H'(X") = Z"(X")/ B"(X")
the nth cohomology,

A complex X* = (X", d%) is called a null complex if H*(X*) = 0 for all n € Z.

A morphism f : X° — Y~ of complexes is a collection of morphisms ™ : X" — Y™
satisfying df f* = f"*1d% for any n € Z.

We denote by C(B) (resp., C*(B), C(B), C"(B)) the category of complexes (resp.,
bounded below complexes, bounded above complexes, bounded complexes) of B. An
autofunctor X : C(B) — C(B) is called translation if (X(X*))" = X" and (X (dx))" =
—d%™ for any complex X = (X", d%).

In C(A), a morphism u : X* — Y is called a quasi-isomorphism if H"(u) is an isomor-
phism for any n.

Wy”

In this section, “x” means “nothing”, “47, “—=" or “b”.

Definition 5.2 (Truncations). For a complex X* = (X' d'), we define the following
truncations:

Topn X .. > 00— X" — X xn2

Tan':...—>X”_2HX”_1—>X”—>O—>....
Then we have exact sequences in C(.A)
O — 71, (X) = X' = 71 (X)) = O

Definition 5.3 (Mapping Cone). For u € Homcg) (X", Y"), the mapping cone of u is a
complex M*(u) with

Mn<u) _ Xn—&-l@yn’
71\1/[(,@ _ [*d}Jrl 0 :| :Xn+1@yn N Xn+2@Yn+1.

n+1 n
u d%
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X' . Xn Xn+1
u um unJrl
Y- Yn d? Yn+1—>...
; Gl @)
. . It ) )
M(U) cer—s Xl Yy s Yt @Yn+1_>
w (10) (10)
| g
X(X) Xl X2

Definition 5.4 (Homotopy Category). Two morphisms f,g € Homcg) (X", Y") is said
to be homotopic (denote by f = g) if there is a collection of morphisms h = (h"),

h"™ : X™ — Y™ ! such that
fn o gn — d’;z/—lhn + hn—&—ld}

for all n € Z. The homotopy category K*(B) of B is defined by
(1) Ob(K*(B)) = Ob(C*(B)),
(2) Homg=g)(X",Y") = Homcxg) (X", Y")/ = for X', Y € Ob(K*(B)).

Proposition 5.5. A category K*(B) is a triangulated category whose distinguished trian-
gles are defined to be isomorphic to

X LYy S M@u) S 2(X)
foranyu: X — Y in K(B).

Definition 5.6 (Derived Category). The derived category D*(A) of an abelian category
A is the quotient category by quasi-isomorphisms, that is the category satisfying
(1) Ob(D*(A)) = Ob(K"(A)).
(2) For X,Y € Ob(D*(A)), let V(X,Y") ={(s,Y", f)ls: Y =YY" €Qis,f: X —
Y} In V(X,Y"), we define (s,Y", f) ~ (s, Y, f') if there is (s",Y"", f') such
that all triangles are commutative in the following diagram:

Y”
F Y "

s

X -==ym <oy

N

Y//-
Then we define a morphism from X to Y by an equivalence class s f of (s, Y”, f).
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(3) For s 'f: X =Y ,t7'g:Y — Z thereare s’ : 7" — Z" € Qisand ¢ : Y" —
Z" such that s’ o g = ¢’ o s. Then we define (t7'g) o (s7'f) = (s'ot) 'go f.

X Y A
NN

S t

Y” A

\\g/ : )

\§ ‘VS

Z//-

Moreover, we define the quotient functor @ : K*(A) — D*(A) by
(Ql) Q(X') =X for X € K*(A).
(Q2) Q(f) =1y f for a morphism f: X* — Y in D*(A).

Proposition 5.7. The following hold.

(1) D*(A) is a triangulated category, and the canonical functor @ : K*(A) — D*(A)
s a O-functor.

(2) The i-th cohomology of complexes is a cohomological functor in the sense of Defi-
nition 4.4.

Lemma 5.8. Let A be a ring. For X* € K(Mod A) and I € K™ (InjA) (resp., P €

K™ (Proj A)), if X* is null, then we have
Homgmod 4) (X", I") =
(resp., Homgmod 4y (P, X*) = 0)

Proposition 5.9. The following hold for a ring A.
A
(1) K (ProjA) = D™ (Mod A).
A
(2) K+(Inj A) = D+(Mod A).

6. TiLTING COMPLEXES

Definition 6.1. Let C be a triangulated category. A subcategory B of C is said to
generates C as a triangulated category if C is the smallest triangulated full subcategory
which is closed under isomorphisms and contains B.

Theorem 6.2. Let A, B be rings. The following are equivalent.
(1) D~(Mod A) = D~ (Mod B).
(2) D" (Mod A) S D®(Mod B).
(3) K"(Proj A) S K"(Proj B).
(4) K (proj A) = K*(proj B).
(5) There exists T- € K (proj A) with B = Homyw (07 4)(1") such that

(a) HOIHK(MOdA)(T', T[Z]) =0 fO’/’i 7& 0,
(b) add T generates K"(proj A).
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(6) There exists T* € Kb(prpj A) with B = Homyo (o5 4) (1) such that
(a) Homg mod 4y (1", T"[i]) = 0 for i # 0,
(b) For X+ € K™(ProjA), X* = O whenever Homy- p,o; 4)(T", X[i])
=0 for all 1.

Definition 6.3. A complex T4 € K’(proj A) is called a tilting complex for A provided
that
(1) Homgmod 4y (T, T+[i]) = 0 for i # 0.
(2) add T, generates K”(proj A).
We say that B is derived equivalent to A if there is a tilting complex 7% such that
B = EndK(Mod A)(T').

Remark 6.4. Miyashita defined a tilting module of finite projective dimension as follows.
Let R be a ring. A right R-module T is called a tilting module of projective dimension n
provided that the following hold.

(1) There is an exact sequence 0 — P, — -+ —— Py — T — 0 with Fy,--- , P, €
proj R°P.

(2) Ext%(T,T) =0 (i > 0).

(3) There is an exact sequence 0 — R — T° — «-. — T" — 0 with 7%, ... | T" €
add T'.

Then the projective resolution of T' is a tilting complex. Happel and Cline-Parshall-
Scott showed that the derived functor R” Hompg(T,—) : D"(Mod R) — D"(Mod S) is an
equivalence.

Lemma 6.5. For X* € D™ (Mod A), the following are equivalent.
(1) X* € D*(Mod A).
(2) For any Y € D™ (Mod A), there is n such that Hompmoed a (Y™, X"[i])
=0 for all i < n.
Proof. 1=2. We may assume X* € C’(Mod A), Y* € K~ (Proj A). Then Hompwiod (Y, X*[i]) =
HomK(Mod A) (Y, X[Z]) '
2 = 1. Since Hompyoq ar) (A, X [i]) = H'(X"), it is easy. O

For an additive category B and m < n, we write K[m’"](B) for the full subcategory of
K(B) consisting of complexes X* with X’ = O for i < m, n < i.
Lemma 6.6. For X* € D*(Mod A), the following are equivalent.

(1) X* is isomorphic to an object of K®(Proj A).
(2) For any Y" € D"(Mod A), there is n such that Hompvod (X", Y"[i])
=0 for all i > n.

Proof. 1 = 2. It is trivial. ' '
2= 1. We may assume X* € K™ (Proj A). Let M = [],., C'(X"). If Homgmod ) (X", C*(X*)[—i]) =
0, then we have exact sequences

Hom 4 (X CY(X")) — Homyu (C1(X"),C(X")) — O.
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This means that the canonical morphisms C*(X*) — X! are split monomorphisms.
Hom - (mog 4) (X7, M[i]) = 0 for all @ > n if and only if X* is isomorphic to an object in
KI=) (Proj A). O

Definition 6.7 (Perfect Complex). A complex X* € D(Mod A) is called a perfect complex
if X is isomorphic to a complex of K(proj A) in D(Mod A). We denote by D(Mod A) et
the triangulated full subcategory of D(Mod A) consisting of perfect complexes.

Lemma 6.8. For X* € Kb(Proj A), the following are equivalent.
(1) X* is a compact object in K°(Proj A).
(2) X* is isomorphic to an object of K®(proj A).

Proof. 2 = 1. It is easy.

1= 2 Let X* = X% X' X" with X' € ProjA. By adding P 5 P
to X, we may assume that X° is a free A-module AY). If I is a finite set, then by 2
= 1 X° is also compact, and hence 751 X" is compact. by induction on n, we get the
assertion. Otherwise, since we have Homywmod 4)(X*, AD) = Homywmod 4)(X", A)D), the
canonical morphism X+ — AU factors through a direct summand 1 : A™ — AU for some
m € N. Then there is a homotopy morphism h : X' — AU such that 1,0 — pug = hd®
with some g : AD — A™ Let A = A"®AY) be the canonical decomposition, then

dO|
A A e P A 14, where p : AU — AW) is the canonical projection.

Therefore X+ 22 M:(14)[—1] ® X", where X" : A™ — X'' — ... — X" with X'" being
a direct summand of X!. Then we reduce the case of X° being a finitely generated free
A-module. OJ

Lemma 6.9. Let T+ € K"(proj A) with Hommod 4)(T+, T*[i]) = 0 for i # 0, and B =
Endkmod 4)(T). Then there exists a fully faithful O-functor F' : K~ (Proj B) — K™ (Proj A)
such that

(1) FB=T-.

(2) F preserves coproducts.

(3) F has a right adjoint G : K~ (Proj A) — K™ (Proj B).

Proof. [Skip| This lemma is important. But the proof is out of the methods of derived
categories. U

Lemma 6.10. If T" satisfies the condition (G), then F': K (Proj B) —
K™ (Proj A) is an equivalence.
(G) For X+ € K™ (ProjA), X* = O whenever Homy- pq; 4)(T", X*[i])
=0 for all 1.
Proof. Let X* € K™ (Proj A) such that GX* = O. Then Homy- p,q; 4)(T",
X:[i]) = Homy- (p,oip)(B,GX"[i]) = 0 for all i. Therefore KerG = {O}. By the left

version of Proposition 6.11, G and F' are equivalences. U
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Proposition 6.11. Let C and C' be triangulated categories, F' : C — C' a O-functor
which has a fully faithful left adjoint S : C' — C. Then F induces an equivalence between
C/Ker F and C'.

Proof. By the universal property of @) : C — C/ Ker F', we have the following commutative
diagram

C

o| N

C/KerFF/—>C’

If f: X — Y is a morphism in C, then Ff is an isomorphism if and only if Qf is
an isomorphism. For every object M € C, FSFM — FM is an isomorphism, and
then QSFM — QM is an isomorphism. Therefore QSF — () is an isomorphism. By
the universal property of Q and QSF = QSF'Q), we have l¢/kar = QSF'. Since,
F'QS = FS = 1¢, F' is an equivalence. O

Remark 6.12. Let C be a triangulated category. For an additive subcategory B of C,
we can construct the smallest triangulated full subcategory £B which is closed under
isomorphisms and contains B as follows.

Let £°B = B. For n > 0, let £"B be the full subcategory of C consisting of objects X
there exist U,V € £"1B satisfying that either of (X, U, V,*,x, %) or (U, V, X, *, %, %) is a
triangle in C. Then it is easy to see that E8 =, ,£"B is the smallest triangulated full
subcategory which is closed under isomorphisms and contains B

Theorem 6.13. Let T+ be a complex of K®(proj A) such that

(a) Homgmod a) (T, T"[i]) = 0 fori # 0,

(b) add T generates K"(proj A).
Then F : K~ (Proj B) — K™ (Proj A) is an equivalence.
Proof. It suffices to show that 7" satisfies the condition of Lemma 6.10. Since add 7%
generates K”(proj A), if Homy - (pyo; 4) (1%, X*[i]) = 0 for all i, then Homy- (p,o; 4)(A, X*[i]) =
0 for all 2. Thus X* = O. O
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