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Abstract. Let A be a noetherian AS regular Koszul quiver algebra (if A is commuta-
tive, it is essentially a polynomial ring), and grA the category of finitely generated graded
left A-modules. Following Jørgensen, we define the Castelnuovo-Mumford regularity
reg(M•) of a complex M• ∈ Db(grA) in terms of the local cohomologies or the minimal
projective resolution of M•. Let A! be the quadratic dual ring of A. Then A! is selfin-
jective and Koszul (e.g., if A is the polynomial ring k[x1, . . . , xd], then A

! is the exterior
algebra E =

∧
〈y1, . . . , yd〉). For the Koszul duality functor G : Db(grA) → Db(grA!),

we have reg(M•) = max{ i | Hi(G(M•)) �= 0 }. As an application, we refine results of
Martinez-Villa and Zacharia on weakly Koszul modules over A! (especially, over E).

1. Introduction

Let A :=
⊕

i≥0Ai be a noetherian AS regular Koszul quiver algebra over a field k. Such
a quiver algebra (with relation) has been studied by Martinez-Villa and coworkers (c.f.
[6, 9, 10, 11]). And a connected (i.e., A0 = k) AS regular algebra is very important in
non-commutative algebraic geometry (c.f. [18]). If A is commutative and connected, it is
a polynomial ring k[x1, . . . , xd] with deg xi = 1 for each i.
Let GrA (resp. GrAop) be the category of graded left (resp. right) A-modules, and

grA (resp. grAop) its full subcategory consisting of finitely generated modules. Set
r :=

⊕
i≥1Ai to be the graded Jacobson radical. We have the left exact functor Γr :

GrA → GrA defined by Γr(M) = {x ∈ M | rnx = 0 for n
 0 }, and its right derived
functor RΓr : D

b(GrA)→ Db(GrA). ForM• ∈ Db(GrA), the ith cohomology of RΓr(M
•)

is denoted by H i
r(M

•). Similarly, we have the corresponding functors Γrop, RΓrop, and H
i
rop

for graded right A-modules. When A is a polynomial ring k[x1, . . . , xd], H
i
r(−) is known

as the local cohomology module with support in the graded maximal ideal r.
We have a bounded cochain complex D• of graded A-A bimodules which gives duality

functors RHomA(−,D•) : Db(grA) → Db(grAop) and RHomAop(−,D•) : Db(grAop) →
Db(grA). These functors are quasi-inverse of each other. Moreover, we have “local duality
theorem”

RHomA(−,D•) ∼= RΓr(−)∨ and RHomAop(−,D•) ∼= RΓrop(−)∨,
where (−)∨ stands for the graded k-dual. This is a quiver algebra version of [18].
For M• ∈ Db(grA) and i, j ∈ Z, set βij(M•) := dimk Ext

−i
A (M

•, A/r)−j . Of course,

βij(−) measures the “size” of a minimal projective resolution. Using the above duality, we
can generalize a well-know result of Eisenbud-Goto [5] concerning graded modules over a
polynomial ring.

This note is basically a summary of [17] which has been accepted for publication in J. Pure Appl.
Algebra.
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Definition-Theorem. (c.f. Jørgensen, [8]) For M• ∈ Db(grA), we have

reg(M•) := sup{ i+ j | H i
r(M

•)j �= 0 } = sup{ i+ j | βij(M•) �= 0 } <∞.
We call this value the “Castelnuovo-Mumford regularity” of M•.

For M• ∈ Db(grA), set H(M•) to be the complex such that H(M•)i = H i(M) for
all i and the differential maps are zero. Then reg(H(M•)) ≥ reg(M•). The difference
reg(H(M•))− reg(M•) is a theme of the latter half of this note.

Let A! be the quadratic dual ring of A. Then A! is finite dimensional, Koszul and self-
injective by [10]. (e.g., If A is the polynomial ring k[x1, . . . , xd], then A

! is the exterior
algebra

∧
〈y1, . . . , yd〉). The Koszul duality functors F : Db(grA!) → Db(grA) and

G : Db(grA)→ Db(grA!) give an equivalence Db(grA) ∼= Db(grA!) (c.f. [2]). We have

reg(M•) = max{ i | Hi(G(M•)) �= 0 }.
For N ∈ grA! and n ∈ Z, N〈n〉 denotes the submodule of N generated by the degree n

component Nn. We say N is weakly Koszul, if N〈n〉 has an n-linear projective resolution
(i.e., βij(N〈n〉) �= 0 ⇒ i + j = n) for all n. Martinez-Villa and Zacharia [11] proved that

the ith syzygy Ωi(N) of N ∈ grA! is weakly Koszul for i
 0. Of course, the same is true
for N ∈ gr (A!)op. Set lpd(N) := min{ i ∈ N | Ωi(N) is weakly Koszul }.

Theorem. Let N ∈ grA!, and N ′ := HomA!(N,A
!) ∈ gr (A!)op its dual. Then

lpd(N ′) = reg(H ◦ F(N) ).

If A! is the exterior algebra E =
∧
〈y1, . . . , yd〉, we have an upper bound of lpd(N)

depending only on max{ dimkNi | i ∈ Z } and d. This bound gives huge numbers, and
must be very far from optimal. On the other hand, we have lpd(E/J) ≤ min{1, d − 2}
for a monomial ideal J of E. This slightly improves a result of Herzog and Römer.

2. Preliminaries

First, we sketch basic properties of an algebra of a quiver with relations.
Let Q be a finite quiver. That is, Q = (Q0, Q1) is a finite oriented graph, where Q0

is the set of vertices and Q1 is the set of arrows. The path algebra kQ is a positively
graded algebra with grading given by the lengths of paths. Let J be the graded Jacobson
radical of kQ (i.e., the ideal generated by all arrows). If I ⊂ J2 is a graded ideal, we
say A = kQ/I is a graded quiver algebra. Of course, A =

⊕
i≥0Ai is a graded ring.

The subalgebra A0 is a product of copies of the field k, one copy for each element of
Q0. If A0 = k (i.e., Q has only one vertex), we say A is connected. If a graded algebra
R =

⊕
i≥0Ri with R0 = k is generated by R1 as a k-algebra and dimk R1 < ∞, then it

can be regarded as a graded quiver algebra. Set r :=
⊕

i≥1Ai. Unless otherwise specified,
we assume that A is left and right noetherian throughout this note.
Let GrA (resp. GrAop) be the category of graded left (resp. right) A-modules, and

grA (resp. grAop) its full subcategory consisting of finitely generated modules. Since A
is noetherian, grA and grAop are abelian categories. In the sequel, we will define several
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concepts for GrA, but the corresponding concepts for GrAop can be defined in the similar
way.
The nth shift M(n) of M =

⊕
i∈ZMi ∈ GrA is defined by M(n)i = Mn+i. Set

ι(M) := inf{ i |Mi �= 0 }.
For v ∈ Q0, we have the idempotent ev of A associated with v. Note that 1 =

∑
v∈Q0 ev.

Set Pv := Aev and vP := evA. Then we have AA =
⊕

v∈Q0 Pv and AA =
⊕

v∈Q0(vP ). Each
Pv and vP are indecomposable projectives. Conversely, any indecomposable projective in
GrA (resp. GrAop) is isomorphic to Pv (resp. vP ) for some v ∈ Q0 up to degree shifting.
Set kv := Pv/(rPv) and vk := vP/(vP r). Each kv and vk are simple.
Let Cb(GrA) be the category of bounded cochain complexes in GrA, and Db(GrA) its

derived category. For a complex M• and an integer p, let M•[p] be the pth translation of
M•. That is, M•[p] is a complex with M i[p] =M i+p. A module M can be regarded as a
complex · · ·→ 0→M → 0→ · · · with M at the 0th term.
For M,N ∈ GrA, set HomA(M,N) :=

⊕
i∈ZHomGrA(M,N(i)) to be a graded k-

vector space with HomA(M,N)i = HomGrA(M,N(i)). Similarly, we can also define
Hom•

A(M
•, N •), RHomA(M

•, N •), and ExtiA(M
•, N •) for M•,N • ∈ Db(GrA).

If V is a k-vector space, V ∗ denotes the dual space Homk(V, k). For M ∈ GrA (resp.
M ∈ GrAop), M∨ :=

⊕
i∈Z(Mi)

∗ has a graded right (resp. left) A-module structure given
by (fa)(x) = f(ax) (resp. (af )(x) = f(xa)) and (M∨)i = (M−i)

∗. If W is a graded A-A
bimodule, then so is W∨. Note that Iv := (vP )

∨ (resp. vI := (Pv)
∨) is injective in GrA

(resp. GrAop). Moreover, Iv and vI are graded injective hulls of kv and vk respectively.
In particular, the A-A bimodule A∨ is injective both in GrA and in GrAop.
Let W be a graded A-A-bimodule (we mainly concern the cases W = A or W = A∨).

If M ∈ GrA, we can regard HomA(M,W ) as a graded right A-module by (fa)(x) =
f(x)a. We have a natural isomorphism HomA(M,A

∨) ∼= M∨. We can also define
RHomA(M

•,W ) ∈ Db(GrAop) and ExtiA(M
•,W ) ∈ GrAop for M• ∈ Db(GrA).

Let P • be a bounded complex in grA such that each P i is projective. We say P • is
minimal if ∂(P i) ⊂ rP i+1 for all i. Any complex M• ∈ Cb(grA) has a minimal projective
resolution, which is unique up to isomorphism. We denote a graded module A/r by A0.
Set βij(M

•) := dimk Ext
−i
A (M

•, A0)−j. Let P
• be a minimal projective resolution of M•,

and P i :=
⊕m

l=1 T
i, l an indecomposable decomposition. Then we have

βij(M
•) = #{ l | T i, l(j) ∼= Pv for some v }.

Definition 1. Let A be a graded quiver algebra. We say A is Artin-Schelter regular
(AS-regular, for short), if

• A has finite global dimension d.
• ExtiA(kv, A) = ExtiAop(vk,A) = 0 for all i �= d and all v ∈ Q0.
• There are a permutation δ on Q0 and an integer nv for each v ∈ Q0 such that
ExtdA(kv, A)

∼= δ(v)k(nv) (equivalently, Ext
d
Aop(vk,A)

∼= kδ−1(v)(nv) ) for all v.

Remark 2. The AS regularity is a very important concept in non-commutative algebraic
geometry (see for example [18]). But there many authors assume the connectedness of
A. We also remark that Martinez-Villa and coworkers called the rings in Definition 1
generalized Auslander regular algebras.
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Definition 3. For an integer l ∈ Z, we say M• ∈ grA has an l-linear (projective) reso-
lution, if βij(M

•) = 0 for all i, j with i + j �= l. If M• has an l-linear resolution for some
l, we say M• has a linear resolution.

Definition 4. We say A is Koszul, if the graded left A-module A0 has a linear resolution.
(Note that A0 ∼=

⊕
v∈Q0 kv.)

In the above definition, we can regard A0 as a right A-module (we get the equivalent
definition). The next fact is easy to prove.

Lemma 5. If A is AS-regular, Koszul, and has global dimension d, then ExtdA(kv, A)
∼=

δ(v)k(d) and Ext
d
Aop(vk,A)

∼= kδ−1(v)(d) for all v ∈ Q0. Here δ is the permutation of Q0
given in Definition 1.

In the rest of this paper, A is always a noetherian AS-regular Koszul quiver algebra of
global dimension d.

Example 6. (1) A polynomial ring k[x1, . . . , xd] is clearly a noetherian AS-regular Koszul
(quiver) algebra of global dimension d.
(2) Let k〈x1, . . . , xd〉 be the free associative algebra, and (qi,j) a d×dmatrix with entries

in k satisfying qi,jqj,i = qi,i = 1 for all i, j. Then A = k〈x1, . . . , xn〉/( xjxi − qi,jxixj | 1 ≤
i, j ≤ d ) is a noetherian AS-regular Koszul algebra with global dimension d. This fact
must be well-known to the specialist, but we will sketch a proof here. Since x1, ..., xd ∈ A1
form a regular normalizing sequence with k = A/(x1, . . . , xd), A is a noetherian ring with
a balanced dualizing complex by [12, Lemma 7.3]. We can construct a free resolution of
k = A/r, which is a “q-analog” of the Koszul complex of a polynomial ring k[x1, . . . , xd].
So A is Koszul and has global dimension d. Since A has finite global dimension and
admits a balanced dualizing complex, it is AS-regular (c.f. [12, Remark 3.6 (3)]).
(3) For examples of non-connected AS regular algebras, see [6].

For M ∈ GrA, set
Γr(M) = lim→

HomA(A/r
n,M) = { x ∈M | An x = 0 for n
 0 } ∈ GrA.

Then Γr(−) gives a left exact functor from GrA to itself. So we have a right derived
functor RΓr : D

b(GrA) → Db(GrA). For M• ∈ Db(GrA), Hi
r(M

•) denotes the ith

cohomology of RΓr(M
•). Similarly, we can define RΓrop and H

i
rop for D

b(GrAop) in the
same way. If M is an A-A bimodule, H i

r(M) and H
i
rop(M) are also.

Since A is AS regular, we haveRΓr(A) ∼= A∨(d)[−d] inDb(grA). By the same argument
as [18, Proposition 4.4], we also have RΓr(A) ∼= A∨(d)[−d] in Db(grAop). It does not
mean that Hd

r (A)
∼= A∨(d) as A-A bimodules. But there is an A-A bimodule L such that

L⊗AHd
r (A)

∼= A∨(d) as A-A bimodules. Here the underlying graded additive group of L
is A, but the bimodule structure is give by A × L × A � (a, l, b) �→ φ(a)lb ∈ A = L for
a (fixed) graded k-algebra automorphism φ of A. In particular, L ∼= A as left A-modules
and as right A-modules (separately). If A is commutative, then φ is the identity map.
Set L′ ∼= HomA(L,A) and D• := L′(−d)[d]. Note that D• belongs both Db(grA) and

Db(grAop). We have Hi
r(D•) = Hi

rop(D•) = 0 for all i �= 0 andH0
r (D•) ∼= H0

rop(D•) ∼= A∨ as
A-A bimodules by the same argument as [18, §4]. Thus (an injective resolution of) D• is a
balanced dualizing complex of A in the sense of [18]. It is easy to check thatRHomA(−,D•)

—66—



and RHomAop(−,D•) give duality functors between Db(grA) and Db(grAop), which are
quasi-inverse of each other.

Theorem 7 (c.f. Yekutieli [18] and Martinez-Villa [9]). For M• ∈ Db(grA), we have

RΓr(M
•)∨ ∼= RHomA(M

•,D•). In particular, (H i
r(M

•)j)
∗ ∼= Ext−iA (M•,D•)−j .

The above result was proved by Yekutieli in the connected case. (In some sense,
Martinez-Villa proved a more general result than ours, but he did not concern complexes.)
The proof of [18, Theorem 4.18] also works in our case.

Definition 8 (Jørgensen, [8]). For M• ∈ Db(grA), we say

reg(M•) := sup{ i+ j | Hi
r(M

•)j �= 0 }
is the Castelnuovo-Mumford regularity of M•.

By Theorem 7 and the fact that RHomA(M
•,D•) ∈ Db(grAop), we have reg(M•) <∞

for all M• ∈ Db(grA).

Theorem 9 (Jørgensen, [8]). If M• ∈ Cb(grA), then
reg(M•) = max{ i+ j | βij(M•) �= 0 }.(2.1)

When A is a polynomial ring and M• is a module, the above theorem is a funda-
mental result obtained by Eisenbud and Goto [5]. In the non-commutative case, under
the assumption that A is connected but not necessarily regular, this has been proved by
Jørgensen [8]. (If A is not regular, we have reg(A) > 0 in many cases. So one has to
assume that regA = 0 there.) In our case (i.e., A is AS-regular), we have a much simpler
proof. So we will give it here. This proof is also different from one given in [5].

Proof. Set Q• := Hom•
A(P

•, L′(−d)[d] ). Here P • is a minimal projective resolution ofM•,
and L′ is the A-A bimodule given in the construction of the dualizing complex D•. Note
that HomA(Pv, L

′) ∼= δ−1(v)P for all v ∈ Q0. Let s be the right hand side of (2.1), and l
the minimal integer with the property that βls−l(M

•) �= 0. Then ι(Q−d−l) = l− s+d, and
ι(Q−d−l+1) ≥ l − s+ d. Since Q• is a minimal complex, we have

0 �= H−d−l(Q•)l−s+d = Ext
−d−l
A (M•,D•)l−s+d = (Hd+l

r (M•)−l+s−d)
∗.

Thus reg(M•) ≥ s. The opposite inequality can be proved similarly and more easily.

3. Koszul duality

In this section, we study the relation between the Castelnuovo-Mumford regularity of
complexes and the Koszul duality. For precise information of this duality, see [2, §2].
Recall that A = kQ/I is a graded quiver algebra over a finite quiver Q. Let Qop be the

opposite quiver of Q. That is, Qop0 = Q0 and there is a bijection from Q1 to Q
op
1 which

sends an arrow α : v → u in Q1 to the arrow α
op : u → v in Qop1 . Consider the bilinear

form 〈−,−〉 : (kQ)2 × (kQop)2 → A0 defined by

〈αβ, γopδop〉 =
{
ev if α = δ and β = γ,

0 otherwise
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for all α, β, γ, δ ∈ Q1. Here v ∈ Q0 is the vertex with β ∈ Aev. Let I⊥ ⊂ kQop be the ideal
generated by { y ∈ (kQop)2 | 〈x, y〉 = 0 for all x ∈ I2 }. We say kQop/I⊥ is the quadratic
dual ring of A, and denote it by A!. Clearly, (A!)0 = A0. Since A is Koszul, so is A!.

Since A is AS regular, A! is a finite dimensional selfinjective algebra with A =
⊕d

i=0Ai
by [10, Theorem 5.1]. If A is a polynomial ring, then A! is the exterior algebra

∧
(A1)

∗.

Let V be a finitely generated left A0-module. Then HomA0(A
!, V ) is a graded left

A!-module with (af)(a′) = f(a′a) and HomA0(A
!, V )i = HomA0((A

!)−i, V ). Since A
! is

selfinjective, we have HomA0(A
!, A0) ∼= A!(d). Hence HomA0(A

!, V ) is a projective (and
injective) left A!-module for all V . If V has degree i (e.g., V = Mi for some M ∈ grA),
then we set HomA0(A

!, V )j = HomA0(A
!
−j−i, V ).

For M• ∈ Cb(grA), let G(M•) := HomA0(A
!,M•) ∈ Cb(grA!) be the total complex

of the double complex with G(M•)i,j = HomA0(A
!,M i

j) whose vertical and horizontal
differentials d′ and d′′ are defined by

d′(f)(x) =
∑

α∈Q1

αf(αopx), d′′(f)(x) = ∂M•(f(x))

for f ∈ HomA0(A
!,M i

j) and x ∈ A!. The grading of G(M•) is given by

G(M•)pq :=
⊕

p=i+j, q=−l−j

HomA0((A
!)l,M

i
j).

Similarly, for a complex N • ∈ Cb(grA!), we can define a new complex F(N•) :=
A⊗A0N • ∈ Cb(grA) as the total complex of the double complex with F(N •)i,j = A⊗A0N i

j

whose vertical and horizontal differentials d′ and d′′ are defined by

d′(a⊗ x) =
∑

α∈Q1

aα⊗ αopx, d′′(a⊗ x) = a⊗ ∂N•(x)

for a⊗ x ∈ A⊗A0 N i. The gradings of F(N•) is given by

F(N•)pq :=
⊕

p=i+j, q=l−j

Al ⊗A0 N i
j .

Clearly, each term of F(N •) is a projective A-module. For a module N ∈ grA!, F(N) is
a minimal complex. Hence we have

βij(F(N)) =
{
dimkNi if i+ j = 0,

0 otherwise.

The operations F and G define functors F : Db(grA!)→ Db(grA) and G : Db(grA)→
Db(grA!), and they give an equivalence Db(grA) ∼= Db(grA!) of triangulated categories.
This equivalence is called the Koszul duality. When A is a polynomial ring, this equiva-
lence is called Bernstein-Gel’fand-Gel’fand correspondence. See, for example, [4].

Proposition 10 (c.f. [4, Proposition 2.3]). In the above situation, we have

βij(M
•) = dimkH

i+j(G(M•))−j .
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Proof.

ExtiA!(A0,N
•)j ∼= HomDb(grA!)(A0, N

•[i](j))
∼= HomDb(grA)(F(A0), F(N •[i](j)) )
∼= HomDb(grA)(A, F(N•)[i+ j](−j) )
∼= H i+j(F(N•))−j .

The next result immediately follows from Theorem 9 and Proposition 10.

Corollary 11. reg(M•) = max{ i | H i(G(M•)) �= 0 }.

For M• ∈ Db(grA), set H(M•) to be the complex such that H(M•)i = H i(M) for all
i and all differential maps are zero. By a spectral sequence argument, we see that

reg(H(M•)) ≥ reg(M•).(3.1)

In the next section, we will see that the difference reg(M•)−reg(H(M•)) can be arbitrary
large. For N • ∈ Db(grA!), we can define H(N•) is the same way.
We can refine Proposition 10 using the notion of linear strands of projective resolutions,

which was introduced by Eisenbud et. al. ([4, §3]). Let P • be a minimal projective
resolution of M• ∈ Db(grA). Consider the decomposition P i :=

⊕
j∈Z P

i,j such that

any indecomposable summand of P i,j is isomorphic to a summand of A(−j). For an
integer l, we define the l-linear strand proj. linl(M

•) of a projective resolution of M• as
follows: The term proj. linl(M

•)i of cohomological degree i is P i,l−i and the differential
P i,l−i → P i+1,l−i−1 is the corresponding component of the differential P i → P i+1 of P •.
So the differential of proj. linl(M

•) is represented by a matrix whose entries are elements
in A1. Set proj. lin(M

•) :=
⊕

l∈Z proj. linl(M
•). Clearly, βij(M

•) = βij(proj. lin(M
•)) for

all i, j.

Proposition 12 (c.f. [4, Corollary 3.6]). For N • ∈ Db(grA!), we have

proj. linl(F(N•)) = F(H l(N•))[−l], in particular, proj. lin(F(N•)) = F(H(N •)).

4. Weakly Koszul Modules

Let B be a noetherian Koszul algebra with the graded Jacobson radical r. ForM ∈ grB
and i ∈ Z,M〈i〉 denotes the submodule ofM generated by its degree i componentMi. The
next result naturally appears in the study of Koszul algebras, and might be a folk-theorem
(see [17] for further information).

Proposition 13. In the above situation, the following are equivalent.

(1) M〈i〉 has a linear projective resolution for all i.
(2) Hi(proj. lin(M)) = 0 for all i �= 0.
(3) grrM :=

⊕∞
i=0 r

i−1M/riM has a linear resolution as a B (∼= grrB)-modules.

Definition 14 (Martinez-Villa et.al., c.f. [11]). We say M ∈ grB is weakly Koszul, if it
satisfies the equivalent conditions of Proposition 13.
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If M ∈ grB has a linear resolution, then it is weakly Koszul. Moreover, if M is weakly
Koszul, then the ith syzygy Ωi(M) is also for all i ≥ 1.

Let A be a noetherian AS-regular Koszul quiver algebra of global dimension d, and A!

its quadratic dual, as in the previous sections.

Theorem 15 (Martinez-Villa and Zacharia, [11]). If N ∈ grA! (or N ∈ gr (A!)op), then
the ith syzygy Ωi(N) is weakly Koszul for i
 0.

Definition 16 (Herzog et. al., [7, 14]). For 0 �= N ∈ grA! (or N ∈ gr (A!)op), set

lpd(N) := inf{ i ∈ N | Ωi(N) is weakly Koszul }.

Remark 17. Herzog and Iyengar ([7]) studied the invariant lpd over noetherian commuta-
tive Koszul algebras. Among other things, they proved that lpd(M) is always finite over
some “nice” rings (e.g., graded complete intersections which are Koszul).

The next result follows from Corollary 11 and Proposition 12.

Theorem 18. Let N ∈ grA!, and N ′ := HomA!(N,A
!) ∈ gr (A!)op its dual. Then we

have

lpd(N ′) = reg(H ◦ F(N) )
= max{ reg(H i(F(N))) + i | i ∈ Z }.

Note that reg(H ◦ F(N)) ≥ reg(F(N)) = max{ i | Hi(G ◦ F(N)) �= 0 } = 0 by the
inequality (3.1) and Corollary 11.
If lpd(N) ≥ 1 for some N ∈ grA!, then sup{ lpd(L) | L ∈ grA! } = ∞. In fact, if

Ω−i(N) is the i
th cosyzygy of N (since A! is selfinjective, we can consider cosyzygies), then

lpd(Ω−i(N)) > i. But when A is the polynomial ring S = k[x1, . . . , xd] and A
! is the

exterior algebra E =
∧
〈y1, . . . , yd〉, we have an upper bound of lpd(N) for N ∈ grE

depending only on max{ dimkNi | i ∈ Z } and d. But before stating this, we recall a
result on a upper bound of reg(M) for M ∈ grS.

Theorem 19 (Brodmann and Lashgari, [3]). Let S == k[x1, . . . , xd] be a polynomial
ring. Assume that a graded submodule M ⊂ S⊕n is generated by elements whose de-
grees are at most δ. Then we have reg(M) ≤ nd!(2δ)(d−1)!.

When n = 1 (i.e., when M is an ideal), the above bound is given by Bayer and
Mumford [1], and sharper than it seems. In fact, for each m ∈ N, there is an ideal
I ⊂ k[x1, . . . , x10m+1] which is generated by elements of degree at most four but satisfies
reg(I) ≥ 22

m
+ 1. For our study on lpd(N), the case when δ = 1 (but n is general) is

essential. When n = δ = 1, we have reg(M) = 1 in the situation of Theorem 19. So I
believe that the bound can be largely improved (at least) when δ = 1.

Theorem 20. Let E =
∧
〈y1, . . . , yd〉 be an exterior algebra, and N ∈ grE. Set n :=

max{dimkNi | i ∈ Z }. Then lpd(N) ≤ nd!2(d−1)!.

Proof. Set L := N ′ ∈ grE. (For graded E-modules, we do not have to distinguish left
modules form right ones.) By Theorem 18, it suffices to prove reg(Hi(F(L))) + i ≤
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nd!2(d−1)! for each i. We may assume that i = 0. Note that H0(F(L)) is the cohomology
of the sequence

S ⊗k L−1
∂−1−→ S ⊗k L0

∂0−→ S ⊗k L1.
Since im(∂0)(−1) is a submodule of S⊕dimk L1 generated by elements of degree 1, we have
reg(im(∂0)) < n

d!2(d−1)! by Theorem 19. Consider the short exact sequence 0→ ker(∂0)→
S ⊗k L0 → im(∂0) → 0. Since reg(S ⊗k L0) = 0, we have reg(ker(∂0)) ≤ nd!2(d−1)!.
Similarly, we have reg(im(∂−1)) ≤ nd!2(d−1)! by Theorem 19. By the short exact sequence
0→ im(∂−1)→ ker(∂0)→ H0(F(L))→ 0, we have reg(H0(F(L))) ≤ nd!2(d−1)!.

In a special case, there is much more reasonable bound for lpd(N).

Definition 21 (Römer, [13]). We say an integer vector a = (a1, . . . , ad) ∈ Zd is square-
free, if ai = 0, 1 for all i. Let N =

⊕
a∈Zd Na be a finitely generated Zd-graded modules

over the exterior algebra E =
∧
〈y1, . . . , yd〉. We say N is squarefree, if Na �= 0 implies

that a is squarefree.

This concept naturally appears in the study of combinatorial commutative algebra (c.f.
[14, 16]). For example, all monomial ideals of E are squarefree.

Proposition 22 (Herzog and Römer, [14]). If N is a squarefree E-module, then we have
lpd(N) ≤ d− 1.

In [17], we describe lpd(N) for a squarefree E-module N in terms of combinatorial
commutative algebra. We will show it below in the case when N is a monomial ideal. We
also remark that there is a squarefree E-module N with lpd(N) = d− 1.
Set [d] := {1, . . . , d}. Let ∆ ⊂ 2[d] be an (abstract) simplicial complex (i.e., F ∈ ∆

and G ⊂ F imply G ∈ ∆). It is easy to see that ∆∨ := {F ⊂ [d] | [d] \ F �∈ ∆ } is a
simplicial complex again. We also have ∆∨∨ = ∆. Set J∆ = (

∏
i∈F yi | F ⊂ [d], F �∈ ∆ )

to be a monomial ideal of E. Any monomial ideal of E is given in this way. Similarly,
set I∆ = (

∏
i∈F xi | F ⊂ [d], F �∈ ∆ ) to be a monomial ideal of S, and call it the

Stanley-Reisner ideal of ∆. Any squarefree monomial ideal of S is given in this way.

Proposition 23. For a simplicial complex ∆ ⊂ 2[d], we have
lpd(J∆) = max{ i− depthS( Extd−iS (S/I∆∨ , S) ) | 0 ≤ i ≤ d }.(4.1)

Here we set the depth of the 0 module to be +∞.

If Extd−iS (S/I∆∨ , S) �= 0, then we have i− depthS( Extd−iS (S/I∆∨ , S) ) ≥ 0. One might
think the right side of the equality (4.1) is strange. But the right side of (4.1) equals
0 if and only if S/I∆∨ is sequentially Cohen-Macaulay (see [15]). In this sense, lpd(J∆)
measures “how is S/I∆∨ far from sequentially Cohen-Macaulay?”.

Corollary 24 (Römer, [13]). For a simplicial complex ∆ ⊂ 2[d], the following are equiv-
alent.

(1) J∆ ⊂ E is weakly Koszul.
(2) I∆ ⊂ S is weakly Koszul.
(3) S/I∆∨ is sequentially Cohen-Macaulay.
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We remark that there are many examples of Stanley-Reisner ideals I∆ ⊂ S which
are weakly Koszul (dually, Stanley-Reisner rings S/I∆ which are sequentially Cohen-
Macaulay).

Corollary 25. If d ≥ 3, then we have lpd(E/J∆) ≤ d− 2.
In this moment, I have no idea whether the above bound is (nearly) sharp for large d.
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