INTEGRAL GROUP ALGEBRAS AND CYCLOTOMIC POLYNOMIALS !
Kaoru MOTOSE

Recently, using cyclotomic polynomials, Z. Marciniak and S. K. Sehgal [3] obtained
excellent results about units in integral group rings of cyclic groups. In this paper, we
shall give some improvements and alternative proofs of their results.

Let ZG be the group algebra of a finite abelian group G over the ring Z of rational
integers. It is well known that the units of finite order in ZG have the form +g for some
g € G (see [1], p. 262). We study the form of units of infinite order in ZG where G = (o).

Let ®,,(x) be cyclotomic polynomial of order m defined inductively by

X" —1=]]®alx).
dlm

Z. Marciniak and S.K. Sehgal [3] construct many units of infinite order using cyclotomic
polynomials. These units cover the alternative units, the Hoechsmann units [3] and
Yamauchi’s results [4].

In this paper, we study the Euclidean algorithm for cyclotomic polynomials in Z[z],
and we have easy applications to some their results in [3]. The following are well known
units. Units in 1, 2 are covered by cyclotomic polynomials.

1. The alternating units:
Pyp(0)=1—0c+0% — -+ (=1)kc"
where k is odd and (2k, |G|) = 1.

2. The Hoechsmann units (the constructible units) (see also K. Yamauchi [4]).
ok —1 ot—1 140402+ ---+ot!
where k, ¢ > 2, (k(,|G|) =1 and (k,¢) = 1.
3. Bass cyclic units,
(1+0+...+0k—1)m_£(1+g+...+0|0\—1)
where k > 1 and k™ = 1+ ¢|G]|.
Since the group algebra ZG are isomorphic to Z[z|/(z™ — 1)Z|x], our study on units in
ZG is equivalent to find polynomials f(z) € Z[z] satisfying
f(@)u(z) + (2™ — Dv(z) = 1, where u(z),v(z) € Z[z].

For relatively prime polynomials f(z) and g(z) over a field K, it is easy to compute
polynomials u(z),v(z) € K[z| by Euclidean algorithm such that

f(@)u(z) + g(z)v(z) = 1.
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However, over Z[x], situation is different from this. Of course we can compute
u(z),v(x) € Q[z] by Euclidean algorithm for relatively prime polynomials f(x),g(z) €
Z[z]. Thus we have

f(@)uo(z) + g(x)vo(z) = a
where ug(x),vo(x) € Z[z] and 0 # a € Z.
For example, we obtain for cyclotomic polynomials
O3(z) =2 +z+1,P6(z) =2 —z+1,
P3(z)(1—2)+ P(z)(x+1)=1—2>+1+2° =2
and we can easily show there is no polynomials u(x),v(z) € Z[z] such that
O3(z)u(z) + Pg(z)v(z) = 1.
In fact 1 = Pg(w)v(w) = —2wv(w) = —2wv(w) for two roots w,w of P3(z). We have a
contradiction such that 1 =4 - v(w)v(w) and v(w)v(w) is an integer.
Thus it is natural to consider the next problem.
For given polynomials f(x), g(z) € Zlx], does there exist polynomials u(x), v(x) € Z[x]
such that
f@)u(z) + g(x)v(z) =17
It is easy for f(z) = x and g(x) = 2™ — 1. But in general, it seems to be difficult for me
because the ring Z[x] is not Euclidean though it is a unique factorization ring. In this
paper, we shall answer to this problem in case f(z) and g(z) are cyclotomic polynomials
for units in ZG.

If m # n, then we have ®,,(x)u(z) + ®,(x)v(x) = 1 in Q[x] since ®,,(z), P, (x) are
distinct irreducible polynomials in Q[z]. Over Z[z], we can see the next theorem.
Theorem 1. Assumen > m > 1. Then we have
(1) If m is not a devisor of n, then there exist u(z),v(z) € Z[x] such that
D, (z)u(x) + @, (x)v(x) = 1.

(2) If m is a divisor of n, then we set n = mk and ko is the product of all distinct prime
divisors k. There exist u(z),v(z) € Z[x] such that

D, (2)u(z) + Dp(z)v(z) = Pk (1).
Proof. (1) If we set n =mq +r, 0 <r < m, then we have easily
™ —1
zm—1
Hence, we can use Euclidean algorithm in Z[z] and so
(2" — 1)s(z) + (2™ — Dt(z) = 2% — 1, for some s(x),t(x) € Z[z]
where d = (n,m). Thus we have

" —1 ™ —1
xd—ls(x)+ xd —1

v —=1=(zm-1)( )+ " — 1.

t(z) = 1.

Therefore, we obtain the next equation excluding cases m|n
D, (z)u(z) + Pp(z)v(z) = %gfor some u(zx),v(x) € Zx].



(2) Since = — 1 divides @y, (z) — @y, (1) in Z[z], we have "™ — 1 and so ®,,(x) divides
®y, (™) — @y, (1) where h = k—'z Let ng be the product of all distinct prime divisors n.
We set ng = kg and

(I)ko (1) - (I)ko (mhm)

u(x) = S and v(x H Byya(z0)
dle, d<t
Then u(z) and v(z) € Z[z]. Noting ;-£ = —m hm and (E ko) = 1, we have
B (2)u(x) + Bu(2)v(z) = Bm(@)u() + Epy(e™) [ Prpale
dle, d<t
= By (1) = By (") + Dy (270)")
= P (1).

Let m be a natural number and let ¢ be a power of a prime with (¢, m) = 1. Then we
can see from Theorem 1 (2) that there exist u(x),v(x) € Z[z| such that
D, (2)u(z) + Ppg(x)v(z) = p.

However, the next proposition shows that p is the smallest positive integer satisfying the
above equation.

Proposition 1. There exist no s(x),t(x) € Z[z] such that

O (2)5(2) + Prng(2)t(2) =1
for a natural number m and a power q of a prime p with (qg,m) = 1.

Proof. Let A be the set of roots of ®,,(z). Using [],, Pas(z) = ®4(2™) , we have the

next
[ 2a(n) = @,(n™) = ,(1) =p
dlm

where n € A. Thus

P =TT T ®a(m =TT T el

neA djm djm neA
We set ag = Hne A Paq(n). Then aq is an integer because a4 is a symmetric polynomial in
Z[n € A] and so aq € Z|coefficients of ®,,(z)]. Hence we have from the above equation.

p* =[] laal and |ag| = p*@
dlm
where a(d) is a nonnegative integer. Therefore we have
p(m) =1A] = a(d).
dm
Using Mobius inversion formula, we obtain

= pldu(~

dlm
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For a prime 7,

. . o re2(r — 1)2 for e > 2,
a(r) = o(r) — o(r 1)_{r_é ) for e = 1.

Since (i) is multiplicative, a(i) is also multiplicative. Thus if «(i) = 0, then ¢ = 25 and
7 is odd.

On the other hand, it follows from the assumption that ®,,,(n)t(n) =1 for n € A and
80 am = [[,cpn Pmq(n) = £1. Thus |a,| = 1, and so a(m) = 0. This implies m = 2¢, £ is
odd, and ¢ > 2. Hence we have a contradiction for £ > 3 by above arguments

1 = ®op(—z)s(—x) + Pogy(—x)t(—2) = Pp(x)s(—2) + Dyy()t(—2).
We have also a contradiction for £ =1 by ®3(—1) =0
1= ®y(—1)s(—1) + Doy (—1)t(—1) = pt(—1).
Remark 1. It follows from ®,,(z?") = ®p,pe (€)@, (27" ) for (p,m) = 1 that
s () = @, (z)” = or ®,,(z)”" mod p.

We can see from Theorem 1 and the above that the ideal of Z[z] generated by
®,,(z), P, (x) (m < n) can be calculated as follows:

_J (p,®wm(z)) if m|n and 2 is a power of a prime p,
(@), #o(a)) = { PO i

The first part is an alternative proof of Proposition 1.

In the remainder of this paper, we consider our problem about 2™ — 1 and ®,,(z).

Theorem 2. Let mg be the product of distinct prime divisors of m. If my is not a
divisor of n, then there exist u(x),v(x) € Z[x] such that

(2" — Du(x) + By H O (1)
[(mg,n)
Proof. We may assume that m = my from
(zm)70 ~1
-1

We assume d is a divisor of n. If d is not a divisor of m, there exist uq(x),v4(z) € Z|x]
from Theorem 1 (1) such that

Q4(z)ug(z) + @ (x)v4(z) = 1.

v4(z) € Z[x] from Theorem 1 (2) such that
P4(z)ua(r) + P (w)va(z) = Pm(1).
Thus we have from z" — 1 =[], ®a(z)

(" — Du(z) + Do H dm
gy e

®,,(7) = By (z70) and (z70)" — 1 = (2" — 1) -

If d is a divisor of m, there exist u4(x),



Theorem 3 (Marciniak and Sehgal [3]). Let mg be the product of distinct prime divisors
of m. If t = 2 > 1 is not a prime, there exist integral polynomials u(z), v(z) € Zlx]
such that

O, (z)u(x) + (2™ — v(z) = 1.
Proof. We may assume m = my from the same reason in Theorem 2.

If ¢ is not a prime, we have ®= (1) = 1 for all d|(m,n) because %7 = Ty is 10t a prime
since t = (mmn) is a divisor of (W’L” D= .

Remark 2. If ¢ is a prime p, then we have
D, (z)u(z) + (2" — L)v(z) = P4(1) = p.
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