
The 38th Symposium On Ring and Representation Theory (2005)

ABSTRACT

Aichi Institute of Technology
Yachigusa-chou Yachigusa 1247 Toyota Nagoya 470-0392, JAPAN September

2(Friday) — 4(Sunday), 2005





i

Algebras arising from Schur-Weyl type dualities (I) (II) (III)

Susum Ariki (有木 進)

The talks are mostly expository as was requested by the organizers. Our goal
is to study algebras which are intimately related to quantum groups and algebraic
groups of classical type. Birman-Wenzl and Murakami’s algebras, Hecke algebras,
their affine versions and degenerate versions are examples. We also have Yangians,
Hecke-Clifford algebras etc. An interesting feature of the study is that we have
variety of methods to study the algebras: we sometimes have geometric realizations,
relationship with Kashiwara’s crystal etc.

In the first talk, I introduce these algebras. In the second talk, I select several
results on these algebras and explain them. Perhaps Nazarov’s and Suzuki’s results
will be included. Stress is on the affine versions, and truncation to finite dimensional
algebras is often useful. In the third talk, I explain the quasihereditary/cellular
algebra framework, which is suitable for the study of the truncated algebras. I end
with a recent result of mine which is a joint work with Andrew Mathas and Hebing
Rui.

Kyoto University
Email: ariki@kurims.kyoto-u.ac.jp



ii

Orthogonality of subcategories
(Joint with I. Reiten and Y. Yoshino)

Osamu Iyama (伊山 修)

Let G be a finite small subgroup of SLd(k) and S := k[[x1, ..., xd]]. We will
discuss (i)—(iv) below.

(i) maximal (d − 2)-orthogonal subcategories of CMSG,
(ii) non-commutative crepant resolutions of SG,
(iii) tilting S ∗ G-modules,
(iv) Fomin-Zelevinsky mutation.
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Broué’s abelian defect group conjecture

Shigeo Koshitani (越谷 (こしたに)重夫)

I am going to give a (hopefully new) example and direct calculations for Broué’s
abelian defect group conjecture, which is on modular representation theory of finite
groups, and which is due to Michel Broué.
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Integral group algebras and cyclotomic polynomials

Kaoru Motose

Let ZG be the group algebra of a finite abelian group G over the ring Z of rational
integers. It is well known that the units of finite order in ZG have the form ±g for
some g ∈ G (see [1]). However, units of infinite order in ZG are not so many found
just as transcendental numbers, even if G is cyclic.

Z. Marciniak and S.K. Sehgal [3] construct many units of infinite order using
cyclotomic polynomials. These units cover the alternative units, the Hoechsmann
units, the Bass cyclic units [3], and Yamauchi’s results [4].

I talk about the Euclidean Algorithm for cyclotomic polynomials in Z[x], and
easy applications to some their results in [3].
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LINKAGE AND DUALITY OF MODULES

Kenji Nishida

The theory of linkage, devised by Peskine and Szpiro[4], is recently generalized
to module theoretic version by Martsinkovsky and Strooker in [3]. They generalize
the theory for wide class of rings, including non-commutative semiperfect Noether-
ian rings. The use of composition of two sort of functors, syzygy and transpose,
enables them to extend the definition of linkage. These functors are fundamental
for homological theory of Noetherian rings. There appears a relation to the duality
theory introduced and studied by Auslander and Bridger[1] and Iyama[4].

We shall apply this relation to Gorenstein dimension and Cohen-Macaulayness
of modues, mainly over commutative Gorenstein local ring, and obtain characteri-
zation of these notions by linkage. Then we see an invariance of them under linkage.
A duality studied by Iyama[4] can be applicable to the full subcategory of Cohen-
Macaulay modules of codimension k > 0 over a Gorenstein local ring. We decide
the image of this subcategory and give a characterization of a Cohen-Macaulay
module of codimension k > 0.

Let Λ be a left and right Noetherian ring. Let modΛ (respectively, modΛop) be
the category of all finitely generated left (respectively, right) Λ-modules. Through-
out, all modules are finitely generated and left modules and right modules are con-
sidered as Λop-modules. We denote the stable category by modΛ, the syzygy functor
by Ω : modΛ → modΛ, and the transpose functor by Tr : modΛ → modΛop. Recall

the definition of the functor Tr ([1], Chapter two, section 1). Let P1
f→ P0 → M → 0

be a projective resolution of a module M ∈ modΛ. Then the transpose of M ,
TrM ∈ modΛop, is equal to Cokf ∗, where (−)∗ : modΛ → modΛop is defined by
M ∗ := HomΛ(M, Λ).

Put the functors Tk := TrΩk−1 for k > 0 and λ := ΩTr. Using the operator λ,
Martsinkovsky and Strooker defined the notion of linkage of modules [3].

Definition. A finitely generated Λ-module M and a Λop-module N are said to
be horizontally linked if M ∼= λN and N ∼= λM , in other words, M is horizontally
linked (to λM) if and only if M ∼= λ2M .

In this talk, we shall study linkage of modules.
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Stable equivalences related with syzygy functors

Yosuke OHNUKI

Let Λ and Λ′ be finite dimensional self-injective algebras over a fixed field K .
We denote by mod Λ and mod Λ′ the stable categories of the categories of finite
dimensional left Λ-modules and Λ′-modules, respectively. Happel proved in [1]
that the stable category of a self-injective algebra is a triangulated category whose
translation is the inverse of the syzygy functor. I study whether a stable equivalence
is an equivalence as triangulated categories. Let A, A′ be triangulated categories,
and T, T ′ be translations of A, A′, respectively. An additive functor Φ : A → A′ is

called a triangle functor if it preserves any triangle, that is, ΦX
Φf
→ ΦY

Φg
→ ΦZ

Φh→
ΦT X ' T ′ΦX is a triangle in A′ for each triangle X

f
→ Y

g
→ Z

h→ T X in A.

Theorem 1. Assume that there is an equivalence Φ : mod Λ
∼→ mod Λ′ for self-

injective algebras Λ and Λ′. Then the following conditions are equivalent.

(1) Φ is a triangle functor.
(2) Ω′Φ ' ΦΩ, where Ω and Ω′ are the sygyzy functors of Λ and Λ′, respectively.

A derived equivalence induces a stable equivalence of Morita type. The symmetry
is invariant under a derived equivalence for self-injective algebras. However, it is
not invariant under a stable equivalence. By the Theorem 2, we can construct the
example which is the stable equivalence for the symmetric algebra and the non-
symmetric self-injective algebra. In this example, K is not algebraically closed.
We can show that if K is an algebraically closed field, then the symmetry is the
invariant under a stable equivalence constructed in Theorem 2.

Theorem 2 ([2]). Let Λ and Λ′ be socle equivalent self-injective algebras, that is,

there is an algebra isomorphism p : Λ/ soc Λ
∼→ Λ′/ soc Λ′. Assume that there are

non-degenerate K-linear maps λ : Λ → K and λ′ : Λ′ → K such that λ(ab) =
λ′(a′b′) for all a, b ∈ rad Λ and a′, b′ ∈ rad Λ′ with ā′ = p(ā) and b̄′ = p(b̄). Then
the stable categories mod Λ and mod Λ′ are equivalent.
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Hochschild Cohomology of Stratified Algebras

Hiroshi Nagase

When studying Hochschild cohomology it is natural to try relating cohomology
H(B) of an algebra B to H(A) of an ’easier’ or ’smaller’ algebra A. In the case that
B is a one-point extension of A, two long exact sequences with terms of H(B) and
H(A) have been studied by Happel [2]. Happel’s long exact sequences have been
generalized to triangular matrix algebras, for example by Michelena and Platzeck
[3].

We would like to try generalizing these results. We consider the case that B
has an ideal I which gives a fully faithful functor from derived category of B/I
to that of B. Such an ideal is called a stratifying ideal by Cline, Parshall and
Scott[1]. Heredity ideals are examples of stratifying ideals. By a characterization
of stratifying ideals, it is not difficult to show that any triangular matrix algebra
has a stratifying ideal.

It is known that stratifying ideals are idempotent ideals, namely any stratifying
ideal of B has the form of BeB for some idempotent e in B. By using of this
idempotent e , we get the following two long exact sequences, which are our main
results.

· · · → Extn
Be(B, BeB) → Hn(B) → Hn(A) → Extn+1

Be (B, BeB) → · · · , and

· · · → Extn
Be(A, BeB) → Hn(B) → Hn(A) ⊕ Hn(eBe) → Extn+1

Be (A, BeB) → · · · ,

where A = B/BeB and Be = B ⊗ Bop.
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Broué’s conjecture: methods and results (I) (II) (III)

Raphaël Rouquier

We will explain the recent approaches to the abelian defect conjecture, following
work of several mathematicians. That conjecture predicts what the derived category
of a block of a finite group should be, under certain assumptions.

Locals methods have provided gluing possibilities which essentially reduce the
problem to lifting stable equivalences of Morita type to derived equivalences, a
problem in the realm of representations of algebras.

We will discuss the use of categorification in the work with Joe Chuang on
symmetric groups.

We will also survey some methods specific to finite groups of Lie type and those
used for special situations.
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QF Rings and QF Associated Graded Rings

Hiroyuki Tachikawa (太刀川弘幸)

For an Artinian ring R having the Jacobson radical J with Jn+1 = 0, the series
R ⊃ J ⊃ J2 ⊃ · · · ⊃ Jn ⊃ Jn+1 = 0 is called the upper Loewy series of RR
(resp. RR). If we put Ai = J i/J i+1, we can naturally define the multiplication of
elements a + J i+1 ∈ Ai and b + J j+1 ∈ Aj to be ab + J i+j+1 ∈ Ai+j . Then by
using this multiplication we make the (formal) direct sum A0 ⊕ A1 ⊕ · · · ⊕ An into
a ring RG. Clearly this ring RG is positive Z−graded and A1 generates the radical
of RG. RG is called the associated graded ring of R. Cf.[3]. R and RG may be not
isomorphic to each other.

By Morita equivalence [8] we can assume without loss of generality that rings are
basic. Let e be a primitive idempotent of ring R. Then e + J ∈ A0 is a primitive
idemotent of RG which we shall denote by eG for short. If we denote the right (resp.
left) annihilator of a subset M of R by r(M ) (resp. l(M )), then Soc (Re) = r(J)e
(resp. Soc (eR) = e l(J)). At first we have

Proposition 3. If RG
Soc(RGeG) is simple for a primitive idempotent eG, then

the RSoc(Re) is simple. And if Soc(RGeG) ' RGfG/Rad(RG)fG for a primitive
idempotent f , then Soc(Re) ' Rf/Jf .

QF rings [9] are same with Noetherian selfinjective rings. It holds the duality
between categories of finitely generated left modules and right modules over them
[5,7,8]. From Proposition 1 and the duality over RG we have

Theorem 4. If RG is QF , then R is QF .

Now it seems of interest to give a characterization of QF ring R which has QF
associated graded ring RG.

We say that the series Re = r(Jρ+1)e ⊃ r(Jρ)e ⊃ r(Jρ−1)e ⊃ · · · ⊃ r(J)e ⊃
r(R)e = 0 is the lower Loewy series of Re.

In their book [2] Artin-Nesbitt-Thrall proved that subquotient modules Jke/jk+1e
and r(Jρ+1−ke/r(Jρ−k)e have non-zero isomorhic constituents for every 0 � k � ρ.
Which kind of rings do satisfy the coincidence of the above subquotient modules
themselves ?

A positive Z-graded ring R = A0 ⊕ A1 ⊕ · · · ⊕ An is called to be standard if A1

generates the radical of R. Then we have

Proposition 5. If R is a normal positive Z-graded QF ring, then the upper Loewy
series of Re coincides with the lower Loewy series of Re for any primitive idempo-
tent e.

Again by the duality for QF rings and Proposition 2 it follows

Theorem 6. The following conditions (i), (ii) and (iii) are equivalent to each other:
(i) The associated graded ring RG is QF ,
(ii) R is QF and for any primitive idempotent e the upper Loewy series of Re is

coincident with the lower Loewy series of Re,
(iii) R is QF and for any primitive idempotent ei and integer 0 � k � ρi it

holds that RJkei/Jk+1ei ' RHomR(eiJ
ρ−k/eiJ

ρ−k+1
R, RRR), where Jρiei 6= 0 but

Jρi+1ei = 0.

Let π be a Nakayama permutation of QF ring R on the set of all non isomorphic
primitive idempotents ei, i = 1, 2, · · · , n. Then it holds that RReπ(j)/Jeπ(j) '
RHomR(ejR/ejJR, RRR)

Corollary 7. RG is QF if and only if R is QF and for any primitive idempotent ei

it holds that RJkei/Jk+1ei ' ⊕n
j ni,j ×Reπ(j)/Jeπ(j) for a direct sum decomposition



x

eiJ
ρ−k/eiJ

ρ−k+1
R ' ⊕n

j ni,j ×ejR/ejJ , where ni,j ×ejR/ejJ means the direct sum
of ni,j copies of ejR/ejJ.

As indecomposable commutative algebras are local, Nakayama permutation is
always identity. Corollary 5 is reported as symmetry of Hilbert function.

Theorem 4 seems to be a generalization of Iarrobino’s result [4; Proposition 1.7]
for a commutative local algebra. But this is strictly not because from the beginning
he assumes that R is local Gorenstein.

Even for commutative algebras we can use Theorem 2 to check whether they are
QF (= 0-Gorenstein). We introduce the following Example 6.

Example 8. Let Λ be a quotient ring K[x0, x1, · · · , xn]/I such that the ideal I are
generated by n + 1 polynomials xt

i − 1
xi

∏n
j=0 xj , i = 0, 1, · · · , n, for the pairs (n, t).

In case of t 6= n, for min{n, t} � |t − n|s < max{n, t} there is an idempotent

f ≡
∏n

i=0 x
|t−n|s
i mod I and Γ = (1 − e)Λ is an Artinian local algebra and Γ 6= ΓG.

Our problem is whether Γ is QF . Using Gröbner bases [1] of (
∏n

i=0 x
(t−n)s
i , I)

we can prove that ΓG (in place of Γ) is QF. For the detail Cf. [11] and Kikumasa-
Yoshimura [6].

We can extend our consideration for Λ to the case of n = t. Then Λ has no
proper idempotent and a local Noetherian ring of Krull dim Λ = 1. As for all cases
where t 6= n Λ is 0-Gorenstein we expect that Λ is Gorenstein. However we are
disappointed by the next example which provides a negative answer. Y.Yoshino
was so kind to comment this possibility before.

Example 9. Let t = n = 2. Then {f2 = x0x1 −x2
2, f0 = x1x2 −x2

0, f1 = x2x0 −x2
1}

generates I which defines an intersection of quadratic cones. By using the Buch-
berger’s algorithm we obtain the reduced Gröbner bases {f0, f1, f2, f3 = S(f0, f1) =
−x3

0 − x3
1} of I with respect to the degree- lexicographical order x0 < x1 < x2.

Cf. [1]. Thus the Poincar
,
e seriesF (Λ, λ) = 1 +

∞∑

n=1

3λn =
3

1 − λ
− 2 =

2λ + 1

1 − λ
.

Hence there is no ρ which satisfies (−1)1λρF (Λ, λ) = (−1)λρ 2λ + 1

(1 − λ)
==

λ + 2

(λ − 1)
=

2 1
λ + 1

1 + 1
λ

= F (Λ,
1

λ
).

Therefore by Macauley’s Theorem Λ is not Gorenstein. Cf.[10]
Further we want to remark in case of t = n = 3, Λ is neither Cohen-Macauley

nor toric [11], because it contains a polynomial ring K[
−
x0] and there exists γ( 6=

0) ∈ Λ such that γ
−
x0= 0. Of course Λ is not Gorenstein for this case too.

References

1. W. W. Adams and P. Loustaunau, An introduction to Gröbner bases, Graduate Studies in
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A generalization of n-torsionfree modules
Ryo Takahashi

Throughout this talk, we assume that R is a commutative noetherian ring, and
that all R-modules are finitely generated. Recall that an R-module M is called
n-torsionfree if Exti

R(TrM, R) = 0 for any 1 � i � n. Auslander and Bridger [1]
proved the following theorem.

Theorem A (Auslander-Bridger). The following are equivalent for an R-module
M :

(1) ΩnM is n-torsionfree;
(2) There exists an exact sequence 0 → Y → X → M → 0 of R-modules such

that Exti
R(X, R) = 0 for any 1 � i � n and pdR Y < n.

On the other hand, Auslander and Buchweitz [2] proved the following theorem.

Theorem B (Auslander-Buchweitz). Let R be a Cohen-Macaulay local ring with
a canonical module. Then for every R-module M there exists an exact sequence
0 → Y → X → M → 0 of R-modules such that X is maximal Cohen-Macaulay and
idR Y < ∞.

Such an exact sequence as in Theorem B is called a (maximal) Cohen-Macaulay
approximation of M .

Definition. Let C be an R-module and set (−)† = HomR(−, C). For an R-module
M , let λM denote the natural homomorphism M → M ††.
(1) We say that M is 1-C-torsionfree if λM is injective. We say that M is n-C-
torsionfree, where n ≥ 2, if λM is bijective and Exti

R(M †, C) = 0 for all 1 � i �
n − 2.
(2) We say that C is 1-semidualizing if λR is injective and Ext1

R(C, C) = 0. We say
that C is n-semidualizing, where n ≥ 2, if λR is bijective and Exti

R(C, C) = 0 for
all 1 � i � n.

For an R-module M , we denote by CdimR M the infimum of nonnegative integers
n such that there exists an exact sequence 0 → Cn → Cn−1 → · · · → C0 → M → 0
with each Ci being in addR C. The main result of this talk is the following.

Theorem. Let C be an n-semidualizing R-module. Then the following are equiv-
alent for an R-module M :

(1) ΩnM is n-C-torsionfree;
(2) There exists an exact sequence 0 → Y → X → M → 0 of R-modules such

that Exti
R(X, C) = 0 for any 1 � i � n and CdimR Y < n.

This theorem implies both Theorems A and Theorem B as corollaries. We will
consider in this talk what module M satisfies the condition that ΩnM is n-C-
torsionfree.
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Castelnuovo-Mumford regularity for complexes
and weakly Koszul modules

Kohji Yanagawa (柳川浩二)

Let A :=
⊕

i≥0 Ai be a noetherian AS regular Koszul quiver algebra over a field

k (if A is commutative, it is essentially a polynomial ring), Gr A (resp. Gr Aop)
the category of graded left (resp. right) A-modules, and gr A (resp. gr Aop) its
full subcategory consisting of finitely generated modules. Set m :=

⊕
i≥1 Ai. We

have the left exact functor Γm : Gr A → Gr A defined by Γm(M ) = { x ∈ M |
mnx = 0 for n À 0 }. We denote the ith right derived functor of Γm by H i

m(−).
We have a dualizing complex D• ∈ Db(Gr A) (and ∈ Db(Gr Aop)) which gives a

duality between Db(gr A) and Db(gr Aop) and admits “local duality theorem”

RHomA(−, D•) ∼= RΓm(−)∨.

This is a quiver algebra version of [6].
By virtue of this duality, we can generalize a well-know result in [2] concerning

graded modules over a polynomial ring to our Db(gr A) (see also [3] for another
“non-commutative + complex” version). Set βi,j(M •) := dimk Ext−i

A (M •, A/m)−j

for M • ∈ Db(gr A). βi,j(−) measures the “size” of a minimal projective resolution.

Definition-Theorem. For M• ∈ Db(gr A), we have

sup{ i + j | H i
m(M •)j 6= 0 } = sup{ i + j | βi,j(M•) 6= 0 } < ∞.

We call this value the “Castelnuovo-Mumford regularity” of M•, and denote it by
reg(M •).

Let A! be the quadratic dual ring of A. Then A! is finite dimensional and
self-injective. It is well-known that the Koszul duality functor DG : Db(gr A) →
Db(gr A!) gives an equivalence Db(gr A) ∼= Db(gr A!) (c.f. [1]). Then we have

reg(M•) = max{ i | H i(DG(M •)) 6= 0 }.

Using these concepts, we interpret/refine results in [4] on weakly Koszul modules
over A!. We say M ∈ gr A! is weakly Koszul, if the submodule M〈n〉 of M generated

by its degree n component Mn satisfies “βi,j(M〈n〉) 6= 0 ⇒ i+j = n” for each n . It

is known that, for any N ∈ gr Aop, the ith syzygy of N is weakly Koszul for i À 0.
As an application, we show that if J is a monomial ideal of an exterior algebra
E =

∧
〈y1, . . . , yd〉, d ≥ 3, then the (d − 2)nd syzygy of E/J is weakly Koszul.
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