
ON THE ZD∞ CATEGORY 1

Michel Van den Bergh

Abstract In this paper we give a direct proof of the properties of the ZD∞ category
which was introduced in the classification of noetherian, hereditary categories with Serre
duality by Idun Reiten and the author.

1. Introduction

Below k is a field. All categories will be k-linear. An abelian or triangulated category
A is Ext-finite if for all objects A,B ∈ A one has that ⊕i Exti(A,B) is finite dimensional.
If A is triangulated and Ext-finite then we say that A satisfies Serre duality [1] if there
exists an auto-equivalence F of A together with isomorphisms

HomA(A,B) → HomA(B, FA)∗

natural in A, B (where (−)∗ is the k-dual). If A is abelian and Ext-finite then we say
that A satisfies Serre duality if this is the case for Db(A). The following result can be
extracted from [5, Ch. 1].

Theorem 1.1. Assume that C is an Ext-finite hereditary category without injectives or
projectives. Then the following are equivalent

(1) C has almost split sequences.
(2) C satisfies Serre duality.
(3) There is an auto-equivalence V : C → C together with natural isomorphisms

(1.1) HomC(A,B) → Ext1
C(B, V A)∗

Furthermore the functor V coincides with the Auslander-Reiten translate τ when evaluated
on objects.

In the classification of noetherian Ext-finite hereditary categories with Serre duality in
[5] we considered a category C defined by the following pullback diagram

(1.2)

mod(k)⊕mod(k) −−−→ mod(k)x
x

C −−−→ gr(k[x])

where the horizontal map sends (V1, V2) to V1 ⊕ V2 and the vertical map is localizing at
x followed by restricting to degree zero. It was shown by a rather indirect argument that
C is a noetherian, Ext-finite, hereditary abelian category without injectives or projectives

1The paper is in a final form and no version of it will be submitted for publication elsewhere.
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which satisfies Serre duality. It was also shown that the AR-quiver of C has two compo-
nents, one equal to ZA∞ (a “wing”) and the other equal to ZD∞. For this reason C was
called the “ZD∞-category”.

The aim of this paper is to give a direct proof of the above facts. In addition we will
also establish a link with one-dimensional An singularities.

2. Elementary properties

It is easy to see that C, as defined in the introduction is a noetherian abelian category. It
will be convenient to consider the locally noetherian Grothendieck category C̃ associated
to C. It follows for example by [3, Prop. 2.14] that Db(C) and Db

C(C̃) are equivalent. Hence

the Ext-groups between objects in C may be computed in C̃.
The objects of C̃ are quadruples (M,V0, V1, φ) where M is a graded k[x]-module, V0, V1

are k-vector spaces and φ is an isomorphism of k[x] modules Mx → (V0⊕V1)⊗k k[x, x−1].
Objects in C are given by the quadruples (M,V0, V1, φ) in which M is finitely generated.

Sending (M,V0, V1, φ) to M defines an faithful exact functor C̃ → Gr(k[x]) which we
call the restriction functor and which we denote by (−)k[x].

We write M(n) = (M(n), V0, V1, φ) where we have identified M(n)x with Mx through
multiplication with xn. Furthermore we define σ(M) = (M,V1, V0, φ).

We define T̃ ⊂ C̃ and F̃ ⊂ C̃ respectively as the inverse images of the x-torsion and
x-torsion free modules in Gr(k[x]). T and F are defined similarly, but starting from C.

By C̃x we denote the full subcategory of C̃ with objects the quadruples (M,V0, V1, φ) in
which x acts invertibly on M .

We denote by (−)x the functor C̃ → C̃x which sends (M,V0, V1, φ) to (Mx, V0, V1, φ).
Clearly if M ∈ C̃ and N ∈ C̃x then the canonical maps

(2.1) HomC̃(M,N) → HomC̃x
(M,N) → HomC̃x

(Mx, N)

are isomorphisms. We list a few other obvious facts.

(O1) (T̃ , F̃) forms a torsion pair in C̃. That is Hom(T̃ , F̃) = 0 and for any M ∈ C̃ there
exists an exact sequence (necessarily unique)

0 → T → M → F → 0

with T ∈ T̃ and F ∈ F̃ .
(O2) If T ∈ T̃ and M ∈ C̃ then

HomC̃(T, M) = Homk[x](T, M)

HomC̃(M,T ) = Homk[x](M,T )

(O3) The restriction functor defines an equivalence between T̃ and Tors(k[x]) where
Tors(k[x]) denotes the x-torsion modules is Gr(k[x]).

(O4) The functor C̃x → Mod(k) ⊕Mod(k) which sends (M,V0, V1, φ) to V0 ⊕ V1 is an
equivalence of categories.

Combining (O4) with (2.1) yields in particular

(O5) If N ∈ C̃x then HomC(−, N) is exact. Hence the objects in C̃x are injective in C̃.

We now describe the indecomposable injectives in C̃. For n ∈ Z let En be the graded
injective k[x]-module given by k[x, x−1]/xn+1k[x]. Since En ∈ Tors(k[x]) there exists by
(O3) a corresponding object in T̃ which we denote by the same symbol. From (O2) it
follows that Hom(−, En) is exact and hence En is injective in C̃.
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To construct other injectives we note that by (O5) we know that the objects in C̃x are
injective in C̃. Since by (O4) C̃x is equivalent to Mod(k) ⊕ Mod(k) there must be two
corresponding indecomposable injectives in C̃. They are given by

E0 = (k[x, x−1], k, 0, idk[x,x−1])

E1 = (k[x, x−1], 0, k, idk[x,x−1])

Proposition 2.1. (1) (En)n, E
0, E1 forms a complete list of indecomposable injectives

in C̃.
(2) Every object in C̃ has injective dimension one (and hence C̃ and C are hereditary

[5, Prop. A.3]).
(3) C is Ext-finite.

Proof. Since the listed injectives are clearly indecomposable (1) follows if we can show
that any indecomposable object can be embedded in a direct sum of them [4].

We prove (1) and (2) together by showing that every object M ∈ C̃ has a resolution of
length at most two whose terms consist of direct sums of the injectives given in (1). By
(O1) it is clearly sufficient to prove this claim separately in the cases M ∈ T̃ and M ∈ F̃ .

Assume first that M ∈ T̃ . Then M has an injective resolution

(2.2) 0 → M → I0 → I1 → 0

in Tors(k[x]). By (O3) this resolution corresponds to one in C̃. Furthermore by the
structure of the injectives in Gr(k[x]) the Ii are direct sums of the En in Gr(k[x]). Again
by (O3) the same is true in C̃.

Now assume that M ∈ F̃ . Consider the short exact sequence

(2.3) 0 → M → Mx → Mx/M → 0

Mx lies in C̃x and hence by (O4) is a direct sum of copies of E0 and E1. Mx/M is x-
divisible and lies in T̃ and so by (O3) Mx/M is a direct sum of copies of En. Whence
(2.3) is the kind of resolution we were looking for.

To prove (3) we note that if E, F are indecomposable injectives as in (1) then dim HomC̃(E, F ) ≤
1. Thus it suffices to show that every M ∈ C has an injective resolution consisting in
every degree of a finite number of indecomposable injectives. This follows easily from the
construction. ¤
Proposition 2.2. If F ∈ F̃ and T ∈ T̃ then Ext1

C̃(F, T ) = 0. In particular every object
in C is of the form F ⊕ T with F ∈ F and T ∈ T .

Proof. It follows from (O2) that Hom(F,−) is exact on T . Since by the proof of the
previous proposition T has a C̃ injective resolution inside T̃ , we are done. ¤

Now we describe the Ext-groups between objects in F̃ .

Lemma 2.3. Assume that F = (F, V0, V1, φ), F ′ = (F ′, V ′
0 , V

′
1 , φ

′) are objects in F̃ . Then
there exists an exact sequence of the form
(2.4)
0 → HomC̃(F, F ′) → Homk[x](F, F ′) → Homk(V0, V

′
1)⊕ Homk(V1, V

′
0) → Ext1

C̃(F, F ′) → 0

Proof. We start with the short exact sequence

0 → F ′ → F ′
x → F ′

x/F
′ → 0
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which according to the proof of lemma 2.1 is an injective resolution of F ′, both in C̃ and
in Gr(k[x]).

Applying HomC(F,−), HomGr(k[x])(F,−) and comparing yields a commutative diagram
with exact rows and columns.

0

²²
0 // HomC̃(F, F ′) //

²²

Homk(V0, V ′0)⊕Homk(V1, V ′1) //

²²

HomC̃(F, F ′x/F ′) // Ext1C̃(F, F ′) // 0

0 // HomGr(k[x])(F, F ′) // Homk(V0 ⊕ V1, V ′0 ⊕ V ′1) //

²²

HomGr(k[x])(F, F ′x/F ′) // 0

Hom(V0, V ′1)⊕Hom(V1, V ′0)

²²
0

(2.4) now follows from the previous diagram through an easy diagram chase. ¤

Proposition 2.4. C has neither injectives nor projectives.

Proof. Since T is equivalent to the x-torsion modules in gr(k[x]), it is easy to see that T
does not contain any injective or projectives.

If 0 6= (F, V0, V1, φ) in F then by considering the faithful restriction functor to gr(k[x])
we see that HomC(F, σF (−n)) = 0 for n À 0. On the other hand V0 or V1 6= 0. It follows
from the previous lemma that Ext1

C(F, σF (−n)) 6= 0 for n À 0. Hence F is not projective.
A similar argument shows that F is not injective. ¤

Remark 2.5. The reason why we called this section “Elementary properties” is that the
stated results hold in greater generality. For example, suitably adapted versions would be
valid for the pullback of

mod(k)⊕m −−−→ mod(k)x
gr(k[x])

for any m. By contrast, the results in the next section require m = 2.

3. Serre duality

§ Our next aim is to prove that C satisfies Serre duality. First we construct a Serre
functor on F . Put V M = σ(M)(−1).

The first step in proving Serre duality is constructing a “trace map” ηM : Ext1
C(M,V M) →

k for M ∈ F which should corresponds to the identity map in HomC(M,M) under the
isomorphism (1.1).

We now use (2.4) to construct the trace map ηF for F = (F, V0, V1, φ) ∈ F . In this case
V F = (F (−1), V1, V0, φ) and we have an exact sequence

Homk[x](F, V F ) → Homk(V0, V0)⊕ Homk(V1, V1) → Ext1
C(F, V F ) → 0
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Lemma 3.1. The composition

(3.1) Homk[x](F, V F ) → Homk(V0, V0)⊕ Homk(V1, V1)
TrV0

+TrV1−−−−−−→ k

is the zero map.

Proof. To see this note that Homk[x](F, V F ) = Hom(F, F (−1)) and furthermore that (3.1)
can be extended to a commutative diagram.

Homk[x](F, F (−1)) // Homk(V0 ⊕ V1, V0 ⊕ V1) //

Tr

²²

Homk(V0, V0)⊕ Homk(V1, V1)

TrV0
+TrV1

ssggggggggggggggggggggggggg

k

By choosing a basis for F as graded k[x]-module one easily sees that every element of
Hom(F, F (−1)) ⊂ Hom(F, F ) is nilpotent. Since nilpotent elements have zero trace it
follows that the composition

Homk[x](F, F (−1)) → Homk(V0 ⊕ V1, V0 ⊕ V1)
Tr−→ k

is zero. This proves what we want. ¤

From lemma 3.1 together with (2.4) there exists a unique map ηF : Ext1
C(F, V F ) → k

which makes the following diagram commutative.

Homk[x](F, V F ) // Hom(V0, V0)⊕ Hom(V1, V1) //

TrV0
+TrV1

**UUUUUUUUUUUUUUUUUUUUU
Ext1

C(F, V F ) //

ηF

²²

0

k

To continue it will be convenient to use the Yoneda multiplication on Ext∗C(−,−). In
order to have compatibility with the notation for compositions of maps we will write the
Yoneda multiplication as a pairing

Ext∗C(B, C)× Ext∗C(A,B) → Ext∗C(A,C)

We extend ηF to a map Ext∗(F, V F ) → k by letting it act trivially on Hom(F, V F ).

Lemma 3.2. Let F,G ∈ F and assume that f ∈ Ext∗C(F,G) and g ∈ Ext∗C(G, V F ). Then
we have ηF (gf) = ηG(V (f)g).

Proof. We may assume that f and g are homogeneous. Furthermore the cases where f ,g
are both of degree 0 or of degree 1 are trivial. Hence we may assume that (deg f, deg g) =
(0, 1) or (deg f, deg g) = (1, 0).

Let us consider the first possibility. We check that ηF (−f) = ηG(V (f)−) as maps
Ext1(G, V F ) → k. This amounts to the commutativity of

(3.2)

Ext1(G, V F ) −−−→ Ext1(G, V G)y ηG

y
Ext1(F, V F )

ηF−−−→ k
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Assume that F = (F, V0, V1, φ), G = (G,W0,W1, θ). Then f induces maps f0 : V0 → W0

and f1 : V1 → W1. Elementary linear algebra yields that we have a commutative diagram

Hom(W0, V0)⊕ Hom(W1, V1) −−−→ Hom(W0,W0)⊕ Hom(W1,W1)y TrW0
+TrW1

y

Hom(V0, V0)⊕ Hom(V1, V1)
TrV0

+ TrV1−−−−−−−→ k

This diagram, together with the definition of η yields the commutativity of (3.2).
Now we consider the possibility (deg f, deg g) = (1, 0). Since we trivially have

(3.3) ηV X ◦ V = ηX

it is sufficient to prove that ηV F (V (g)V (f)) = ηG(V (f)g). Replacing (V f, g) by (g, f)
this reduces to the previous case. ¤

We are now in a position to prove Serre duality for objects in F . We will show that
the pairing

(3.4) HomC(F,G)× Ext1
C(G, V F ) → Ext1(F, V F )

ηF−→ k : (f, g) 7→ ηF (gf)

is non-degenerate. By lemma 3.2 the non-degeneracy of (3.4) for all F,G is equivalent to
the non-degeneracy of the pairing

(3.5) Ext1
C(F,G)× HomC(G, V F ) → Ext1(F, V F )

ηF−→ k : (f, g) → ηF (gf)

for all F,G. It follows also easily from lemma 3.2 that (3.4) and (3.5) are natural in F
and G.

Lemma 3.3. If we have and exact sequence

(3.6) 0 → F1 → F → F2 → 0

in F and if we have non-degeneracy of (3.4) and (3.5) for two out of the three pairs
(F1, G), (F,G), (F2, G) then we also have it for the third one. A similar statement holds
for an exact sequence

(3.7) 0 → G1 → G → G2 → 0

Proof. Assume that we have an exact sequence of the form (3.6). We claim that the
following diagram with exact rows is commutative.

0 // Hom(F2, G) //
α2²²

Hom(F, G) //

α²²

Hom(F1, G) //
α1²²

Ext1(F2, G) //

β2²²

Ext1(F, G) //

β²²

Ext1(F1, G) //

β1²²

0

0 // Ext1(G, V F2)∗ // Ext1(G, V F )∗ // Ext1(G, V F1)∗ // Hom(G, V F2)∗ // Hom(G, V F )∗ // Hom(G, V F1)∗ // 0

Here the maps labeled by α are obtained from (3.4) whereas those labeled by β are
obtained from (3.5).

The commutativity of this diagram follows easily from lemma 3.2 together with the
observation that all horizontal arrows are obtained by Yoneda multiplying with elements
of suitable Ext-groups. For example the connecting maps are obtained from multiplying
with the element of Ext1(F2, F1) representing the exact sequence (3.6).

If we now have non-degeneracy for two out of the three pairs (F1, G), (F,G), (F2, G)
then we also have it for the third pair because of the five-lemma.

The case where we have an exact sequence as in (3.7) is treated similarly. ¤
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To continue we define a some canonical objects in F . Let a ∈ N. Then we write

F 0
0a = (x−ak[x], k, 0, idk[x,x−1])

F 1
0a = (x−ak[x], 0, k, idk[x,x−1])

(the reason for this notation will become clear in Section §5).

Lemma 3.4. Every object F in F has a finite filtration 0 = F0 ⊂ · · · ⊂ Fn = F such
that the corresponding subquotients are among the F i

0a.

Proof. By the structure of Cx there must be a surjective map φ : Fx → Ei where i = 0 or
i = 1. Hence im φ is a non-trivial quotient. Since it is easy to see that the subobjects of
Ei in C are of the form F i

0a we are done. ¤
Using (2.4) we can compute the Hom and Ext-groups between the F i

0a. The results are
given in the next lemma.

Lemma 3.5. One has

Hom(F i
0a, F

j
0b) =

{
k if i = j and a ≤ b

0 otherwise

Ext1(F i
0a, F

j
0b) =

{
k if i = 1− j and a > b

0 otherwise

Proof. The claim for Hom is trivial, so we concentrate on Ext.
We use (2.4). This immediately yields that Ext1(F i

0a, F
j
0b) = 0 if j 6= 1− i. If j = 1− i

then we have the following exact sequence.

(3.8) Homk[x](x
−ak[x], x−bk[x]) → k → Ext1

C(F
i
0a, F

j
0b) → 0

This yields that Ext1
C(F

i
0a, F

j
0b) = k if and only if Homk[x](x

−ak[x], x−bk[x]) = 0, i.e. if and
only if a > b. ¤

We are now in a position to prove the main result of this section.

Theorem 3.6. C satisfies Serre duality.

Proof. We show first that C satisfies Serre duality for objects F,G in F . We will show the
non-degeneracy of (3.4) and (3.5) by induction of rkk[x](F ), rkk[x](G). This reduces us to

the case where F = F i
0a, G = F j

0b. So we need to check the non-degeneracy of

HomC(F i
0a, F

j
0b)× Ext1

C(F
j
0b, F

i′
0,a−1) → Ext1

C(F
i
0a, F

i′
0,a−1) −→k(3.9)

Ext1
C(F

i
0a, F

j
0b)× HomC(F

j
0b, F

i′
0,a−1) → Ext1

C(F
i
0a, F

i′
0,a−1) −→k(3.10)

where i′ = 1 − i. We will concentrate ourselves on (3.10). (3.9) is similar. By (3.5) the
only non-trivial case is given by j = 1−i and a > b. In that case all vector spaces involved
are equal to k and what we want to prove follows from inspecting (3.8).

Now we show that C has almost split sequences. By Theorem 1.1 this implies that C
satisfies Serre duality.

By Proposition 2.2 it is clearly sufficient to construct almost split sequences ending
in indecomposable objects in F and T . First let F ∈ F be indecomposable. Since
Ext1

C(F, V F ) ∼= HomC(F, F )∗, Ext1
C(F, V F ) has a simple socle as (left or right) HomC(F, F )
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module. Let ζ be a non-zero element this socle. It is well-known, and easy to see that ζ
defines the almost split sequence in F ending in F .

0 → V F → M → F → 0

But this is also an almost split sequence in C since if T ∈ T then Hom(T, F ) = 0.
Now let T ∈ T . Then there exists an almost split sequence in T

(3.11) 0 → T ′′ → T ′ → T → 0

(since T is equivalent to the category of x-torsion modules over k[x]).
We have to prove that any pullback for C → T of (3.11) with C indecomposable is split.

Clearly we only have to consider the case C ∈ F . But then it follows from Proposition
2.2 that the pullback is split. This finishes the proof. ¤

4. Relation with one-dimensional graded type An-singularities

Let C be the hereditary category which was described in the previous section. We will
now show that C can be considered as a limit of certain graded simple singularities.

If m ∈ N then the graded simple A2m−1-singularity of dimension one is by definition
the graded subring Rm of k[x]⊕ k[x] generated by u = (x, x) and v = (xm, 0). It is easy
to see that R ∼= k[u, v]/(umv−u2m) and hence this is equivalent to the classical definition
(see for example [2]). We put Cm = mod(Rm).

Let us consider k[x] as being diagonally embedded in k[x]⊕ k[x]. That is we identify x
with (x, x). Clearly we have

(Rm)x = k[x, x−1]⊕ k[x, x−1]

Hence if M ∈ Mod(Rm) then Mx is canonically a sum of two k[x, x−1]-modules which we
denote by M0

x and M1
x respectively. This allows us to define the following functor.

Um : Cm → C : M 7→ (M, (M0
x)0, (M

1
x)0, id)

Clearly Um is faithful. We have inclusions

k[x] ⊂ · · · ⊂ Rm+1 ⊂ Rm ⊂ · · ·R0 = k[x]⊕ k[x]

Dualizing these yield restriction functors

C0 → · · · → Cm → Cm+1 → · · · → mod(k[x])

It is clear that these restriction functors are compatible with the functors (Um)m. Define
C∞ as the 2-direct limit of the Cm. That is the objects in C∞ are the objects in

∐
m Cm

and we put
HomC∞(M,N) = inj lim HomCm(M,N)

The functors (Um)m define a functor U∞ : C∞ → C.

Proposition 4.1. The functor U∞ defined above is an equivalence.

Proof. From the definition it is clear that U∞ is faithful. So we only have to show that it
is full and essentially surjective.

We will first show that U∞ is full. Let M,N ∈ Cm and let f : M → N be a homo-
morphism in C. So f is in fact a k[x]-linear homomorphism f : M → N such that the
localization fx is k[x, x−1]⊕ k[x, x−1]-linear.

Let y = (x, 0). Then yn ∈ Rm for n ≥ m and Rn as subring of Rm is generated by
x and yn. To prove fullness of U∞ it is sufficient that f is yn-linear for n À 0. Let
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T be the torsion submodule of N and consider the k[x] linear map M → N given by
f (n) = f(yn−) − ynf(−). Since after localizing at x, f is y linear, it follows that the
image of f (n) lies in T . Since T is rightbounded it is clear that f (n) must be zero if n À 0.
This proves what we want.

Now we prove essential surjectivity. First let F ∈ F . Then we claim that F ⊂ Fx is
stable under multiplication by yn for n À 0. First note that yF is a finitely generated
k[x]-submodule of Fx. Hence xnyF ⊂ F . Since xny = yn+1 this proves what we want.

Now let T ∈ T . Then as graded k[x]-module T has right bounded grading and since
k[x]<m = (Rn)<m for n ≥ m it follows that for n À 0 we may consider T as a graded
Rn-module. This proves what we want. ¤

5. Representation theory

In section we construct the AR-quiver of C. From the above discussion it follows that
the components of the AR-quiver of C lie either in T or in F . Since T is equivalent to
the x-torsion modules in gr(k[x]) it has a unique component which is ZA∞. So the main
difficulty is represented by the component(s) in F .

We now describe the indecomposable torsion free objects in C as well as the associated
Auslander-Reiten quiver (see [5]). Using Proposition 4.1 this could be easily obtained
by using a graded version of the results in [2]. However for completeness we give an
independent proof here.

For m > 0 denote by Fma the unique indecomposable projective Rm-module in with
grading starting in degree −a (thus Fma = Fm0(a)). For m = 0 we let F 0

00, F 1
00 be the two

indecomposable R0 modules whose gradings starts exactly at 0. We also put F i
0a = F i

00(a)
(as in Section §3).

Finally to simplify the notation we will write F i
ma (i = ∅, if m 6= 0) for Um(F i

ma).

Proposition 5.1. The indecomposable objects in F are given by F i
ma. Furthermore the

associated Auslander-Reiten quiver is given by Figure 1

Proof. By Serre duality it follows that Ext1
C(F

i
ma, V F i

ma) is one dimensional. Therefore its
unique (up to scalar multiplication) non-zero element represents the almost split sequence
ending in F i

ma.
Let us now explicitly construct non-split extensions between F i

ma and V F i
ma. First note

V Fma = Fm,a−1

where for simplicity we have written F0a = F 0
0a ⊕ F 1

1a, and

V F i
0a = F 1−i

0a−1

To construct the extension associated to Fm,a we note that Fm−1,a−1 and Fm+1,a are
naturally submodules of Fm,a whose sum is Fm,a and whose intersection is Fm,a−1. Hence
the exact sequence

(5.1) 0 → Fm,a−1 → Fm−1,a−1 ⊕ Fm+1,a → Fm,a → 0

yields the sought extension.
To construct the extension associated to F i

0a we note that F1a maps surjectively to F i
0a

with kernel F 1−i
0a−1. Thus in this case the sought extension is

(5.2) 0 → F 1−i
0,a−1 → F1a ⊕ F i

0a → Fm,a → 0
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Figure 1. The Auslander-Reiten quiver of F

It is now easy to assemble the almost split sequences given by (5.1) and (5.2) into the
translation quiver given by Figure 1.

To show that Figure 1 is the entire AR-quiver of F (and not just a component) we have
to show that there are no other indecomposable objects.

So assume that F is an indecomposable object in F , not occurring among the F i
ma. By

lemma 3.4 there exist a non-zero map F i
0a → F for some i, a. Using the defining property

of AR-sequences we may use this to construct a non-zero map F i
mb for some i (possibly

∅) and m, and for b arbitrarily large.
Now note that the only non-trivial torsion free quotients of F i

mb are F i
mb itself and F 0,1

0b

(if m 6= 0). Since all these quotients possess a non-trivial element in degree −b it follows
that HomC(F i

mb, F ) = 0 for b À 0. This finishes the proof. ¤
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