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1. Introduction

Throughout the present paper, we assume that all rings are commutative noetherian
local rings and all modules are finitely generated modules.

Dutta [10] proved the following theorem in his research into the homological conjec-
tures:

Theorem 1.1 (Dutta). Let (R, m, k) be a local ring. Suppose that the nth syzygy
module of k has a non-zero direct summand of finite projective dimension for some
n ≥ 0. Then R is regular.

Since G-dimension is similar to projective dimension, this theorem naturally leads
us to the following question:

Question 1.2. Let (R, m, k) be a local ring. Suppose that the nth syzygy module of
k has a non-zero direct summand of finite G-dimension for some n ≥ 0. Then is R
Gorenstein?

It is obviously seen from the indecomposability of k that this question is true if
n = 0. Hence this question is worth considering just in the case where n ≥ 1.

We are able to answer in this paper that the above question is true if n ≤ 2. Fur-
thermore, we can even determine the structure of a ring satisfying the assumption of
the above question for n = 1, 2.

2. Main results

For a local ring R, we denote by mod R the category of finitely generated R-modules.
First of all, we recall the definition of G-dimension.

Definition 2.1. (1) We denote by G(R) the full subcategory of mod R consisting
of all R-modules M satisfying the following three conditions:
(i) M is reflexive,
(ii) Exti

R(M,R) = 0 for every i > 0,
(iii) Exti

R(M∗, R) = 0 for every i > 0.

The final version of this paper has been submitted for publication elsewhere.
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(2) Let M be an R-module. If n is a non-negative integer such that there is an
exact sequence

0 → Gn → Gn−1 → · · · → G1 → G0 → M → 0

of R-modules with Gi ∈ G(R) for every i, then we say that M has G-dimension
at most n, and write G-dimRM ≤ n. If such an integer n does not exist, then
we say that M has infinite G-dimension, and write G-dimRM = ∞.

For properties of G-dimension, we refer to [3] or [9].

Proposition 2.2. Let (R, m, k) be a local ring. Suppose that there is a direct sum
decomposition m = I ⊕ J where I, J are non-zero ideals of R. Let M be a non-free
indecomposable module in G(R). Then there exist elements x, y ∈ m such that

(1) I = (x) and J = (y),
(2) (0 : x) = (y) and (0 : y) = (x),
(3) M is isomorphic to either (x) or (y).

Hence the minimal free resolution of k is as follows:

· · ·
“

y 0
0 x

”

−−−−→ R2

“
x 0
0 y

”

−−−−→ R2

“
y 0
0 x

”

−−−−→ R2 ( x y )−−−→ R −−−→ k −−−→ 0.

Proof. The modules M∗ and ΩM are also non-free indecomposable modules in G(R).
There are isomorphisms

M∗ ∼= HomR(M, m)
= HomR(M, I ⊕ J)
∼= HomR(M, I)⊕ HomR(M,J).

The indecomposability of M∗ implies that either HomR(M, I) = 0 or HomR(M,J) = 0.
We may assume that

(2.2.1) HomR(M,J) = 0.

There is an exact sequence

(2.2.2) 0 → ΩM → Rn → M → 0.

Dualizing this by J , we obtain another exact sequence

HomR(M,J) → Jn → HomR(ΩM,J).

We have HomR(ΩM,J) 6= 0 by (2.2.1). Applying the above argument to the module
ΩM yields

(2.2.3) HomR(ΩM, I) = 0.

Also, dualizing (2.2.2) by I, we get an exact sequence

0 → HomR(M, I) → In → HomR(ΩM, I),

and hence M∗ ∼= HomR(M, I) ∼= In. The indecomposability of M∗ implies that n = 1
(i.e. M is cyclic), and M∗ ∼= I.

We also have
M ∼= M∗∗

∼= HomR(M∗, m)
∼= HomR(M∗, I)⊕ HomR(M∗, J).
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Note that HomR(M∗, I) is isomorphic to HomR(I, I), which contains the identity map
of I. Hence HomR(M∗, I) 6= 0 and therefore

HomR(M∗, J) = 0.

Applying the above argument to the module M∗, we see that M∗ is also cyclic and
M ∼= M∗∗ ∼= I. Thus, we have shown that M ∼= M∗ ∼= I and these modules are
cyclic. Noting (2.2.3) and applying the above argument to the module ΩM , we see
that ΩM ∼= (ΩM)∗ ∼= J and these modules are cyclic.

Now, writing I = (x) and J = (y), we can prove (x) = (0 : y) and (0 : x) = (y).
Thus we obtain the minimal free resolutions of (x) and (y):{

· · · y→ R
x→ R

y→ R → (x) → 0,

· · · x→ R
y→ R

x→ R → (y) → 0.

Taking the direct sum of these exact sequence, we get

· · ·
“

y 0
0 x

”

−−−−→ R2

“
x 0
0 y

”

−−−−→ R2

“
y 0
0 x

”

−−−−→ R2 −−−→ m −−−→ 0.
Joining this to the natural exact sequence 0 → m → R → k → 0 constructs the
minimal free resolution of k in the assertion. ¤

We denote by edim R the embedding dimension of a local ring R. When a homo-
morphic image of a regular local ring is given, we can choose a minimal presentation
of the ring in the following sense:

Proposition 2.3. Let R be a homomorphic image of a regular local ring. Then there
exist a regular local ring (S, n) and an ideal I of S contained in n2 such that R ∼= S/I.

Here we introduce a famous result due to Tate [17, Theorem 6]. See also [5, Remarks
8.1.1(3)].

Lemma 2.4 (Tate). Let (S, n, k) be a regular local ring, I an ideal of S contained in
n2, and R = S/I a residue class ring. Suppose that the complexity of k over R is
at most one. (In other words, the set of all the Betti numbers of the R-module k is
bounded.) Then I is a principal ideal.

We denote by βR
i (M) the ith Betti number of a module M over a local ring R.

Handling the above results, we can determine the structure of a local ring with decom-
posable maximal ideal having a non-free module of G-dimension zero, as follows:

Theorem 2.5. Let (S, n, k) be a regular local ring, I an ideal of S contained in n2, and
R = S/I a residue class ring. Suppose that there exists a non-free R-module in G(R).
Then the following conditions are equivalent:

(1) The maximal ideal of R is decomposable;
(2) dim S = 2 and I = (xy) for some regular system of parameter x, y of S.

Proof. Let m = n/I be the maximal ideal of R.
(2) ⇒ (1): It is easy to see that m = xR⊕ yR and that xR, yR are non-zero.
(1) ⇒ (2): First of all, note from the condition (1) that R is not an integral domain,

hence is not a regular local ring.
Proposition 2.2 says that m = xR⊕yR for some x, y ∈ n, and that βR

i (k) = 2 for every
i ≥ 2. It follows from Lemma 2.4 that I is a principal ideal. Hence R is a hypersurface.
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We write I = (f) for some f ∈ n2. Since m is decomposable, the local ring R is not
artinian. (Over an artinian Gorenstein local ring, the intersection of non-zero ideals is
also non-zero; cf. [8, Exercise 3.2.15].) Hence we have 0 < dim R < edim R = 2, which
says that dim R = 1 and dim S = 2.

Note that n = (x, y, f). Because edim S = dim S = 2, one of the elements x, y, f
belongs to the ideal generated by the other two elements. Noting that the images of
elements x, y in m form a minimal system of generators of m, we see that f ∈ (x, y),
and hence x, y is a regular system of parameters of S.

On the other hand, noting xR ∩ yR = 0, we get xy ∈ I = (f). Write xy = cf for
some c ∈ S. Since the associated graded ring grn(S) is a polynomial ring over k in
two variables x, y ∈ n/n2, we especially have xy 6= 0 in n2/n3, namely, xy 6∈ n3. It
follows that c 6∈ n because f ∈ n2. Therefore the element c is a unit of S, and thus
I = (xy). ¤

Using Theorem 2.5 and Cohen’s structure theorem, we obtain the following corollary.

Corollary 2.6. Let (R, m) be a complete local ring. The following conditions are
equivalent:

(1) There is a non-free module in G(R), and m is decomposable;
(2) R is Gorenstein, and m is decomposable;
(3) There are a complete regular local ring S of dimension two and a regular system

of parameters x, y of S such that R ∼= S/(xy).

The finiteness of G-dimension is independent of completion. Thus, Corollary 2.6 not
only gives birth to a generalization of [15, Proposition 2.3] but also guarantees that
Question 1.2 is true if n = 1.

As far as here, we have observed a local ring whose maximal ideal is decomposable.
From here to the end of this paper, we will observe a local ring such that the second
syzygy module of the residue class field is decomposable. We begin with the following
theorem, which implies that Question 1.2 is true if n = 2.

Theorem 2.7. Let (R, m, k) be a local ring. Suppose that m is indecomposable and
that Ω2

Rk has a non-zero proper direct summand of finite G-dimension. Then R is a
Gorenstein ring of dimension two.

Proof. Replacing R with its m-adic completion, we may assume that R is a complete
local ring. In particular, note that R is Henselian.

We have Ω2
Rk = M⊕N for some non-zero R-modules M and N with G-dimRM < ∞.

There is an exact sequence

0 −→ M ⊕N
(f,g)−→ Re −→ m −→ 0

of R-modules, where e = edim R. Setting A = Coker f and B = Coker g, we get exact
sequences

(2.7.1)

{
0 → M

f→ Re α→ A → 0,

0 → N
g→ Re β→ B → 0.

It is easily observed that there are exact sequences

(2.7.2) 0 −→ Re
(α

β)−→ A⊕B −→ m −→ 0
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and

(2.7.3)

{
0 −→ M

βf−→ B −→ m −→ 0,

0 −→ N
αg−→ A −→ m −→ 0.

Using (2.7.1), (2.7.2) and (2.7.3), we can prove that Ext2R(k, R) 6= 0. (Hence
depth R ≤ 2.)

Fix a non-free indecomposable module X ∈ G(R). Applying the functor HomR(X,−)
to (2.7.2) gives an exact sequence

0 → (X∗)e → HomR(X,A)⊕ HomR(X,B) → HomR(X, m) → 0

and an isomorphism

(2.7.4) Ext1
R(X,A)⊕ Ext1

R(X,B) ∼= Ext1
R(X, m).

We have (X∗)e ∈ G(R) and HomR(X, m) ∈ G(R), hence

HomR(X,A) ∈ G(R).

Take the first syzygy module of X; we have an exact sequence

0 → ΩX → Rn → X → 0.

Dualizing this sequence by A, we obtain an exact sequence

0 → HomR(X,A) → An → HomR(ΩX,A) → Ext1
R(X,A) → 0.

Divide this into two short exact sequences

(2.7.5)

{
0 → HomR(X,A) → An → C → 0,

0 → C → HomR(ΩX,A) → Ext1
R(X,A) → 0

of R-modules. Since ΩX is also a non-free indecomposable module in G(R), applying
the above argument to ΩX instead of X shows that the module HomR(ΩX,A) also
belongs to G(R). We have G-dimR(An) < ∞ by the first sequence in (2.7.1). Hence it
follows from (2.7.5) that G-dimRC < ∞, and

(2.7.6) G-dimR(Ext1
R(X,A)) < ∞.

On the other hand, applying the functor HomR(X,−) to the natural exact sequence
0 → m → R → k → 0, we get an exact sequence

0 → HomR(X, m) → X∗ → HomR(X, k) → Ext1
R(X, m) → 0.

There is an isomorphism HomR(X, k) ∼= Ext1
R(X, m), hence Ext1

R(X, m) is a k-vector
space. Since Ext1

R(X,A) is contained in Ext1
R(X, m) by (2.7.4),

(2.7.7) Ext1
R(X,A) is a k-vector space.

Using (2.7.6) and (2.7.7), we can prove that the local ring R is Gorenstein.
Since the only number i such that Exti

R(k, R) 6= 0 is the Krull dimension of R if R
is Gorenstein, it follows from the above two claims that R is a Gorenstein local ring of
dimension two, which completes the proof of the theorem. ¤
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The above theorem interests us in the observation of a Gorenstein local ring of dimen-
sion two such that the second syzygy module of the residue class field is decomposable.
We introduce here a related result due to Yoshino and Kawamoto.

A homomorphic image of a convergent power series ring over a field k is called an
analytic ring over k. Any complete local ring containing a field is an analytic ring over
its coefficient field, and it is known that any analytic local ring is Henselian; see [14,
Chapter VII]. Yoshino and Kawamoto observed the decomposability of the fundamental
module of an analytic normal domain.

Theorem 2.8 (Yoshino-Kawamoto). Let R be an analytic normal local domain of
dimension two. Suppose that the residue class field of R is algebraically closed and has
characteristic zero. Then the following conditions are equivalent:

(1) The fundamental module of R is decomposable;
(2) R is an invariant subring of a regular local ring by a cyclic group. (In other

words, R is a cyclic quotient singularity.)

For the details of this theorem, see [21, Theorem (2.1)] or [19, Theorem (11.12)].
With the notation of the above theorem, suppose in addition that R is a complete

Gorenstein ring such that Ω2
Rk is decomposable. Then R satisfies the condition (1)

in the above theorem. Hence the proof of the above theorem shows that R is of
finite Cohen-Macaulay representation type (i.e. there exist only finitely many non-
isomorphic maximal Cohen-Macaulay R-modules); see [21] or [19]. Therefore it follows
from a theorem of Herzog [12] that R is a hypersurface. Thus the local ring R is a
rational double point of type (An) for some n ≥ 1 by [21, Proposition (4.1)], namely,
R is isomorphic to

k[[X,Y, Z]]/(XY − Zn+1).

From a more general viewpoint, we can give a characterization as follows:

Theorem 2.9. Let (S, n, k) be a regular local ring, I an ideal of S contained in n2,
and R = S/I a residue class ring. Suppose that R is a Henselian Gorenstein ring of
dimension two. Then the following conditions are equivalent:

(1) Ω2
Rk is decomposable;

(2) dim S = 3 and I = (xy − zf) for some regular system of parameters x, y, z of
S and f ∈ n.

It is necessary to prepare three elementary lemmas to prove this theorem. The first
one is both well-known and easy to check, and we omit the proof.

Lemma 2.10. Let (S, n, k) be a regular local ring of dimension three and R = S/(f)
a hypersurface with f ∈ n2. Then f = xfx + yfy + zfz for some fx, fy, fz ∈ n, and the
minimal free resolution of k over R is as follows:

· · · C−→ R4 D−→ R4 C−→ R4 D−→ R4 C−→ R4 B−→ R3 A−→ R −→ k −→ 0,

where

A = ( x y z ) , B =

(
0 −z y fx

z 0 −x fy

−y x 0 fz

)
,

C =

(
0 −fz fy x
fz 0 −fx y
−fy fx 0 z
−x −y −z 0

)
, D =

(
0 −z y fx

z 0 −x fy

−y x 0 fz

−fx −fy −fz 0

)
.
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Lemma 2.11. Let (R, m, k) be a local ring and x ∈ m − m2 an R-regular element.
Then we have a split exact sequence

0 → k
θ→ m/xm

π→ m/xR → 0,

where θ is defined by θ(a) = xa for a ∈ R/m = k and π is the natural surjection.

Proof. Let x1, x2, . . . , xn be a minimal system of generators of m with x1 = x. Define
a homomorphism ε : m/xm → k by ε(

∑n
i=1 xiai) = a1. We easily see that the composite

map εθ is the identity map of k, which means that θ is a split-monomorphism. ¤
Lemma 2.12. Let (R, m, k) be a Cohen-Macaulay local ring of dimension one. Then
the following conditions are equivalent:

(1) R is a discrete valuation ring;
(2) m∗ is a cyclic R-module.

Proof. (1) ⇒ (2): This implication is obvious since the maximal ideal m is a free
R-module of rank one.

(2) ⇒ (1): We have m∗ ∼= R/I for some ideal I of R. Dualizing the natural exact
sequence 0 → m → R → k → 0, we obtain an exact sequence

HomR(k, R) → R → m∗.

Since HomR(k, R) = 0 by the assumption that R is Cohen-Macaulay, there is an
injective homomorphism R → R/I. We easily observe that I = 0, equivalently, m∗ ∼=
R. This implies the condition (1). ¤

Let R be a local ring and I an ideal of R. We recall that the grade of I is defined
to be the infimum of the integers n such that Extn

R(R/I, R) 6= 0, and is denoted by
grade I. As is well-known, it coincides with the length of any maximal R-sequence in
I. Now let us prove Theorem 2.9.

Proof of Theorem 2.9. (2) ⇒ (1): We have xy − zf = x · 0 + y · x + z · (−f).
Lemma 2.10 gives a finite free presentation

R4 C−→ R4 −→ Ω2
Rk −→ 0

of the R-module Ω2
Rk, where C =

( 0 f x x
−f 0 0 y
−x 0 0 z
−x −y −z 0

)
. Putting P =

(
1 0 0 0
0 0 1 −1
0 0 1 0
0 1 0 0

)
and Q =

(
0 0 −1 0
0 1 0 0
1 0 0 −1
0 0 0 1

)
, we obtain

PCQ =

(
U 0
0 tU

)

where U =
(

x f
z y

)
. It is easily seen that the matrices P,Q are invertible. Denoting by

M (resp. N) the cokernel of the homomorphism defined by the matrix U (resp. tU),
we get an isomorphism Ω2

Rk ∼= M ⊕N .
(1) ⇒ (2): First of all, note that the local ring R is not regular. We denote by m

the maximal ideal n/I of R.
We can choose an element z ∈ n − n2 whose image in m is an R-regular element

and that the module m/zR is decomposable. Put (−) = (−)⊗S S/(z). Note that S is
also a regular local ring because z is a minimal generator of the maximal ideal n of S
(see the proof of Proposition 2.3). Since the maximal ideal mR of R is decomposable,
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we can apply Theorem 2.5 and see that dim S = 2 and IS = xyS for some x, y ∈ n
whose images in S form a regular system of parameter of S. Hence R = S/xyS is a
hypersurface, in particular a complete intersection, of dimension one. Therefore R is a
complete intersection of dimension two by [8, Theorem 2.3.4(a)]. Since S is a regular
local ring of dimension three with regular system of parameter x, y, z, the ideal I is
generated by an S-sequence by [8, Theorem 2.3.3(c)]. Noting ht I = dim S−dim R = 1,
we see that I is a principal ideal. Write I = (l) for some l ∈ I. There is an element
f ∈ S such that l = xy − zf . Assume that f 6∈ n. Then f is a unit of S, and we see
that zR ⊆ xyR. Hence m = (x, y)R, and edim R = dim R = 2. This implies that R is
regular, which is a contradiction. It follows that f ∈ n. ¤

Combining Theorem 2.7 with Theorem 2.9 gives birth to the following corollary.
Compare it with Corollary 2.6.

Corollary 2.13. Let (R, m, k) be a complete local ring. Suppose that m is indecompos-
able. Then the following conditions are equivalent:

(1) Ω2
Rk has a non-zero proper direct summand of finite G-dimension;

(2) R is Gorenstein, and Ω2
Rk is decomposable;

(3) There are a complete regular local ring (S, n) of dimension three, a regular
system of parameters x, y, z of S, and f ∈ n such that R ∼= S/(xy − zf).
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