NAKAYAMA ISOMORPHISMS FOR THE MAXIMAL QUOTIENT RING
OF A LEFT HARADA RING

KAZUAKI NONOMURA

ABSTRACT. From several results of Kado and Oshiro, we see that if the maximal
quotient ring of a given left Harada ring R of type (%) has a Nakayama automorphism,
then R has a Nakayama isomorphism. This result poses a question whether if the
maximal quotient ring of a given left Harada ring R has a Nakayama isomorphism, then
R has a Nakayama isomorphism. In this paper, we shall show that a basic ring of the
maximal quotient ring of a given Harada ring has a Nakayama isomorphism if and only
if its Harada ring has a Nakayama isomorphism.

INTRODUCTION

Let R be a basic left Harada ring. Then we have a complete set

{6117 <o €In()y -+ Emly - - - 76mn(m)}
of primitive idempotents for R such that for each ¢ =1,... ,m

(a) e;1 R is injective as a right R-module;
(b) J(eix—1R) = ey R for each k = 2,...,n(i).

We call R aring of type () if there exists an unique g; in {e;,;) }i~, foreachi =1,...,m
such that the socle of e;; R is isomorphic to g;R/J(g;R) and the socle of Rg; is isomorphic
to Re;1/J(Req).

Oshiro [10] showed the following;

Result A ([10, Theorem 2]). Suppose that R is a left Harada ring which is not of type
(x). Then there exists a series of left Harada rings and surjective ring homomorphisms:

o] ¢ Pn—1 bn
Ty > Ty > T, > R

such that

(1) Ty is of type (), and
(2) Ker ¢; is a simple ideal of T; for any i € {1,...,n}.

Kado and Oshiro [7] showed the following results;

Result B ([7, Proposition 5.3]). If every basic QF rings has a Nakayama automorphism,
then every basic left Harada ring of type (x) has a Nakayama isomorphism.

The detailed version of this paper will be submitted for publication elsewhere.
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Result C ([7, Proposition 5.4]). Let S be a two-sided ideal of R that is simple as a left
ideal and as a right ideal. If R has a Nakayama isomorphism, then R/S has a Nakayama
isomorphism.

Moreover Kado showed the following;

Result D ([6, Corollary|). The maximal quotient ring of a left Harada ring of type (x) is
a QF ring.

Using these four results, we see that if the maximal quotient ring of a given left Harada
ring R of type () has a Nakayama automorphism, then R has a Nakayama isomorphism.
So this result poses a question whether if the maximal quotient ring of a given left Harada
ring R has a Nakayama isomorphism, then R has a Nakayama isomorphism. In this paper,
we shall show that the maximal quotient ring of a given left Harada ring R has a Nakayama
isomorphism iff R has a Nakayama isomorphism.

Throughout this paper, we assume that all rings are associative rings with identity and
all modules are unitary. By Mpg (resp. gM), we means that M is a right (resp. left)
R-module, respectively. We denote the set of primitive idempotents of R by Pi(R), and
denote a complete set of primitive idempotents of R by pi(R).

We call a one-sided artinian ring R right (resp. left) QF-3 ring if E(Rpg) (resp. E(gR))
is projective, respectively.

We denote the maximal left (resp. right) quotient ring of R by Q,(R) (resp. Q.(R)),
respectively, and denote the maximal left and maximal right quotient ring of R by Q(R).
If a ring is QF-3, its maximal left quotient ring and its right quotient ring coincide by [16,
Theorem 1.4].

1. MAXIMAL QUOTIENT RING

We list some basic results, which several authors showed, for our main result in this
paper. Recall that for e, f € Pi(R), we say that the pair (eR : Rf) is an i-pair if S(eR)
= fR/J(fR) and S(Rf) = Re/J(Re).

Lemma 1 ([5]). Let R be a one-sided artinian ring, and let e € Pi(R). Then the following
conditions are equivalent:

(1) eR is injective.

(2) There exists some f € Pi(R) such that (eR : Rf) is an i-pair.
In this case, Rf is also injective.

Let R be a left perfect ring. Then R has a primitive idempotent e with S(Rg)e # 0. If
R is QF-3, then the primitive idempotent e with S(Rg)e # 0 are characterized as follows;

Lemma 2 ([4, Theorem 2.1)). Let R be a one-sided artinian QF-3 ring, and let e € Pi(R).
Then rRe is injective if and only if S(Rg)e # 0.

We call e € Pi(R) right (resp. left) S-primitive if S(Rg)e # 0 (resp. eS(grR) # 0),
respectively.
The following statement, which Storrer [15, Proposition 4.8] showed, is helpful in this

paper.
Lemma 3 ([15, Proposition 4.8]). Let R and Q = Q(R) be left perfect. Then
(1) If e is a right S-primitive idempotent for R, then so is it for Q.
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(2) if e1,eq are right S-primitive idempotents for R, then e;R = exR if and only if

e1l) = e20).
(3) If e is a right S-primitive idempotent for Q, then there exists a right S-primitive
idempotent € € R such that eQ = €'Q).

A ring R is called a left Harada ring if it is left artinian and its complete set pi(R) of
orthogonal primitive idempotents is arranged as follows:

pi(RR) = U{eij}?g,
=1

where

(a) each e;; Rg is an injective module for each i = 1,2,... ,m.
(b) eix—1Rr = e R, or J(e;,—1Rr) = e;x R for each i and each k = 2,3,...,n(i).
(c) eixR # e R for i # j.

Remark 1. Let R be a left Harada ring. Then Q(R) is also a left Harada ring (See [6,
Theorem 4]) and a complete set pi(Q) of orthogonal primitive idempotents for ) coincides
with pi(R) (See [6, p.248]).

Using Remark 1, Kado showed the following;

Proposition 4 ([6, Proposition 2]). Let R be a left Harada ring, and let (eR : Rf) be an
i-pair for e, f € pi(R). Then (eQ(R) : Q(R)f) is an i-pair .

Recall the following notation [6, p.249]. Let 6 : fR — eR be an R-monomorphism such
that Im 6 = J(eR), where e, f € Pi(R). Then by [15, Proposition 4.3], # can be uniquely
extended to a Q,(R)-homomorphism 6* : fQ,(R) — eQ.(R).

We shall need the following results.

Lemma 5 ([6, Proposition 3]). Let R be a basic and left Harada ring, and Q@ = Q(R) and
0 as above. Then the following hold.
(1) If e is not right S-primitive, then the extension 0% : fQ — eQ is an isomorphism.
(2) If e is right S-primitive, then the extension 0% : fQ — eQ is a monomorphism

such that Tm 6* = J(eQ).

Remark 2 (cf. [15, Lemma 4.2]). Let {¢;} U {f;} be a complete set of orthogonal
primitive idempotents for R, where the g; are right S-primitive and the f; are not right
S-primitive. We denote go by go = >_ ¢;- Then Q(R)go = Rgo and Q(R)g = Rg for every
right S-primitive idempotent g of R.

Let R be a basic left artinian ring, and let {ej,es,... , e,} be a complete set of
orthogonal primitive idempotents for R and let

S = Endgr(®},E(Re;/J(Re;)))

be the endomorphism ring of a minimal injective cogenerator for R-mod. Let f; be the
primitive idempotent for S corresponding to the projection

@ E(Re;/J(Re;)) — E(Re;/J(Re;)).

Then we call a ring isomorphism 7 : R — S a Nakayama isomorphism if 7(e;) = f; for each
i=1,2,...,n. By [3, p.42], the existence of a Nakayama isomorphism does not depend on
the choice of the complete set {e1,es,...,e,} of orthogonal primitive idempotents. (See
|7, Remark on p.387].)
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It is important whether the maximal quotient ring of a basic artinian ring is basic since
a Nakayama isomorphism is defined on a basic ring. Here we shall study the case that
the maximal quotient ring of a given left Harada ring is basic.

Theorem 6 (cf. [2, Corollary 22]). Let R be a basic and left Harada ring and Q = Q(R).
Then Q is a basic ring if and only if R either is QF or satisfies the following; n(i) = 1
or 2 and Re; is injective for any i. In this case R = Q.

Proof. Note that both R and @) are artinian QF-3. Let pi(R) = |J;~,{ei; }72 be a complete
set of orthogonal primitive idempotent for R satisfying the following conditions:

(a) e; Rp is injective for each i = 1,2,...,m,
(b) 6i,j+1RR = J(ezRR) for j = 1, 2, ce ,n(z) — 1.
We have a complete set {Rgs,..., Rgn} of pairwise non-isomorphic indecomposable
injective projective left R-modules, such that the (e; R : Rg;) are i-pair for each i =
1,...,m since R is basic and artinian QF-3.

Assume that @ is basic. Let e; j1+1, e € {e”}yg Then we have an R-monomorphism
Oi © eixr1R — e R such that Im@ = J(e;xR). If ey is not right S-primitive, then
eir1Q = e; Q) by Lemma 5. This contradicts that @) is basic. Hence e;;, is right S-primitive
for k =1,2,...,n(i) — 1. Since the Re;, are injective for each k = 1,2,...,n(i) — 1 by
Lemma 2, there exists some Rg in {Rg,..., Rgn,} such that Rey = Rg. However R is
basic, so we see that n(i) < 2 and e;; is right S-primitive.

In case n(i) = 1 for every i = 1,...,m, then R is QF.

In case n(i) = 2 for some i € {1,...,m}. If e;(;) is right S-primitive, then rRe;, ) is
injective by Lemma 2. Hence e;,(;) is not right S-primitive since gRe;; is injective and so
{Rgl, ce ,Rgm} = {RGH, ceey Reml}.

Conversely, first, assume that R is QF. Since gRe is injective for any e € pi(R), e is
right S-primitive by Lemma 2. Thus, eQ 2 f@ for any e, f € pi(R) = pi(Q) by Lemma 3.
Therefore () is basic. Next, assume that R satisfies n(i) = 1 or 2 and Re;; is injective for
any 7. Then e;; is left S-primitive and so eQ) = eR by Remark 2. Hence J(eQ) = J(eR).
Therefore it is also clear to see that R = Q). O

Example 1. We shall give a basic left Harada ring R with J(R)®> = 0, which is not QF.
Let R be an algebra over a field K defined by the following quiver;

1,
VAR
3 4
ENY
with the relations v6 = v/, ay8 = 0, and F'ay = 0.

The composition diagrams of the Loewy factors of the indecomposable projective mod-
ules of Ry is the following.

eR/eJ 1 2
2 A
eJ/ed 2 3 4
eJ?/eJ® 3 4 \1/
eJ? \1

D — = — W
W—D— = —
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Then R is a left Harada ring which is not QF since ey Ry, e3Rr and esRp are injective
and esRp = J(e1R). Moreover ey, es, eq are right S-primitive. Hence e;Q(R) = e R,
esQ(R) = e3R and e4Q(R) = e4R are injective and esQ(R) = J(e1Q(R)). Therefore
R=Q(R).

Example 2. We shall give a basic Harada ring R with J(R)® = 0, but Q(R) is not basic.
Let R be an algebra over a field K defined by the following quiver;

1 /
SN
3 « 4
ENY
with the relations 0 = fBavyf = fay'f = fay = Fay/, and v = /. Then the

composition diagrams of the Loewy factors of the indecomposable projective modules of
Rp is the following.

eiR/e;J 1 2 3 4

7 N S

e J?e;Jd 3 4 1/ ‘2 2‘

e;J  e; J° 1 é 4‘1 i‘%
e;J° 2‘

Then since e Rg, esRr and ey Rr are injective and esRp = J(e1R), R is a left Harada
ring which is not QF. Hence e2Q(R) = e;Q(R) since e; is not right S-primitive. Therefore
Q(R) is not basic.

2. NAKAYAMA ISOMORPHISM

In this section, we study the Nakayama isomorphisms for the representative matrix ring
of a basic left Harada ring and its maximal quotient ring. Let R be a basic left Harada
ring, and let pi(R) = J" {e;; }jﬁ} be a complete set of orthogonal primitive idempotents
as in Theorem 6. Furthermore, let R* be the representative matrix ring of R. R* is
represented as block matrices as follows:

Ry - Ry,
R* = e ,
Ry o B
where Rj; = Pj; for j # o(i) and R, ;) = Py, (See [7, Section 4]).

Here, adding one row and one column to R*, we make an extended matrix ring W;(R)

of R as follows:

* * *
Ry - Ry, Yy Rl,i+1 T Ry,
* * * *
Ry - e R Y; Ri,z’Jrl T R,
X4 e Xy X; Q Xiy1 T Xm )
* * * *
Ri+1,1 T T Ri—f—Li Yin Ri-i—l,i-i-l U Rz’+1,m
* * * *
le Rmi Ym Rm,i+1 o Rmm

f76f



where Xy is the last row of R, (k = 1,...,m, k # i), Yy is the last column of Rj,
(k=1,...,m), Xi = (Pitz(i),il s ‘P;L(i),in(i)flJ<‘F)i>:L(i),in(i)))7 and @ = P;L(i),m(i)'

Then W;(R) naturally becomes a ring by operations of R*. We call this the i-th extended
ring of R.

Proposition 7 ([7, Proposition 5.11]). If W;(R) has a Nakayama isomorphism, then R
also has a Nakayama isomorphism.

Let R be a basic and left Harada ring, and let
pi(R) = | J{e 14
i=1

be a complete set of orthogonal primitive idempotents of R satisfying the following;

(1) e; Rp is injective for each i = 1,2,...,m.

(2) e;jR = J(e;;—1R) for each j =2,...,n(i).
Then (See [7, p.388)]), for any e;; in pi(R), there exists some g; in pi(R) with Ry, injective
such that E(Re;;/J(Rei;)) = Rg;/S;—1(Ryg;), where S;(Ryg;) is the j-th socle of Rg;. We
denote the generator g; + 5;_1(Ryg;) of Rg;/S;—1(Rg;) by g;j for each i =1,2,...,m,j =
1,2,...,n(i). Then by [7, Proposition 3.2], a minimal injective cogenerator G = @; ; Rg;;
is finitely generated. Therefore we note that R is left Morita dual to Endg(G) by 1,
Theorem 30.4]. We call this End(gG) the dual ring of R. We denote the dual ring of R
by T(R).

For the proof of proposition 8 below, we denote

0 0
0 -0 R; 0--- 0| CR’
0 0
by [R};] and
0 0
0 -0 R 0--- 0] CWi(R)
0 0
bY[R;‘kj}w-

By using the result that Kado and Oshiro [7, Proposition 5,11 showed, we shall show
the following proposition. The proposition is essential in this paper.

Proposition 8. W;(R) has a Nakayama isomorphism if and only if so does R.

Proof. (=). By Proposition 7 ([7, Proposition 5,11]). («). As [7, Proposition 5.11], let
e;; be the matrix of R* such that the (i, 7j)-component is the unity and other components
are zero, and let w;; be the matrix of W;(R) such that the (ij,ij)-component is the unity
and other components are zero. Note that the size of the columns in W;(R) is n(i) + 1.
Let ¥ be the natural embedding homomorphism;

Ry, - Ry,
IR
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* * * *
Rll o t Rli 0 Rl,i—‘rl s le

Ry - - Ry 0 R, - Ry
0 ... 0 0 0 0 ... 0 ,
Rz:-l,l oo R;':rl,i 0 R;‘k-l-l,i-i-l T R?H,m
R:ﬂ I R:ni 0 R:n,z'ﬂ T R;m
ot
14+ 1

where R;; — R} are identity maps for all 7, j. Moreover let h;; be the matrix of T'(R) such
that the (¢j,7j)-component is the unity and other components are zero, and let v;; be the
matrix of W;(T'(R)) such that the (ij,ij)-component is the unity and other components

are zero. Note that the size of the columns in W;(T(R)) is n(i) + 1. Let
T(R)u -+ T(R)im
T(R)m -+ T(R)mm

be the representative matrix ring T'(R)* of T'(R), and let T'(W;(R)) be the dual ring of
W;(R) as follows;

T(R)u - TR Y1 TRy - T(R)im
T(R)y -+ T(R)u Y, T(R)ijs1 -+ T(R)im
¢! e ¢ ‘Q "Xin e "X
T(R)it11 - T(R)it1i Yier T(R)iq1i41 - T(R)isim

Letting W gy be the natural embedding homomorphism;
T(R)1 T(R)im
T(R)ml T(R)mm
1 Ur(r)
T(R)n T(R)u 0 T(R)iin T(R)im
T(R)y - - T(R)y 0 T(R)isp - T(R)im
0 0 0 0 0 .. 0 :
T(R)it1.1  T(R)iy1: 0 T(R)iyri1 - T(R)ixim
~ =
1+ 1

where T'(R);; — T(R);; are identity maps for all ¢, j. We note that T(W;(R)) = W;(T(R))
(See [7, Proposition 5.11]).
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Assume that ¢ : R* — T(R)* is a Nakayama isomorphism with ¢(e;;) = hyj. (ie.,
o([ri]) € [T'(R)w] for any [ry] € [R};], where (k,[)-componentwise of Rj; corresponds to
(k,l)-componentwise of T'(R);;.) We consider the following diagram;

Wi(R) Wi(T(R))
\IIT /!\‘I’T(R)
R* —= T(R).
Here we define a map ¢ : W;(R) —

Wi(T
(a) P(frwl*) = lp(frul)]” € [T(R)u]”

(R)) as follows;

for any [r|* € [Ry]";1 <k <m,1<[<m;
(b) @([x]") € [ Xx]* for any [z]" € [Xy];k=1,...,m;
(c) o([y]*) € [V for any [y]" € [V)]*;l=1,...,m;
(d) o([q]") € QI for any [g]" € [Q]".

Since ¢(e;;) = hij, ¢ is well-defined. Moreover it is satisfied @(w; ,(i)+1) = fin@)+1- Then
we can easily check that ¢ is a Nakayama isomorphism. 0

Remark 3. We shall define a special case of an extended ring for a given ring R. Let
{e1,€a,...,€e,} be a complete set of orthogonal primitive idempotents for R. Then for
primitive idempotent e; in R, we define R, as follows;

€1R61 tee €1R€Z' }/1 61R62‘+1 tee €1R€n
€iR61 cee €Z‘R€i Y; eiReiH cee €Z‘R€n
X, o X, U X o X |,
eipiler -+ ejiRe; Yy eiReiy -+ e Rey
enRey -+ e, Re; Y, e,Rei1 -+ eyRe,

where the X; are e;Re; for j =1,...,i —1,i+1,...,n, X; is J(e;Re;), the Y}, are e, Re;
for k=1,...,n and U is e;Re;. Then R, is a ring by usual matrix operations.

Remark 4. Proposition 8 says that a basic left Harada rmg R has a Nakayama isomor-
phism if and only if so does R, for e € pi(R) = ;" {e Zj}

We denote a basic ring of Q(R) by Q°(R).

Remark 5. If R is a one-sided artinian QF-3 ring, the number of right S-primitive
idempotents for R coincides with that of left S-primitive idempotents for R.

Theorem 9. Let R be a basic and left Harada ring and let Q = Q(R). Then @ has a
Nakayama isomorphism if and only if so does R.

Proof. It () is basic, then R = Q by Theorem 6. Hence we may assume that @) is not
basic. Let pi(R) = Ul_l{ew} ) be a Complete set of primitive idempotents for R as given

in the proof of Theorem 6. Then if {e”} ) has no rlght S-primitive idempotents, then
en@ = e;Q for j =2,...,n(i) by Lemma 5. If {ezj} ) has only one right S-primitive
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idempotent, say e;, then

e“Q%eijQ fOI‘jZQ,...,k;
eir1@Q = J(epQ) and
ei,k—l—lQ = eijQ for ] =k+ 2, < ,TL(Z)

Moreover, if {e;; T-LS) has two right S-primitive idempotents, say, e;r, e (k < t), then
7J5=1 g p p Y.

([ enQ = e;Q for j =2,...,k;
eipr1Q = J(ex@) and

< 6i,k+1Qr£€ijQ forj:k—i-Q,,t,
eirr1Q = J(exQ)  and
(€10 = e;Q for j=t+4+2,...,n(7).

Repeating the same argument and Remark 5, we have the following sequences for ¢ =
1,...,m;

en®@ > enJ(Q)

01
eik+1Q > J(€ip+1Q)
0T
ez‘,k2+1Q Tt

where ey, is right S-primitive. Hence the complete set of the primitive idempotents pi(Qb)
for Q¥ is U™ {eir, €inr1tes1 C Pi(R) = pi(Q) and e;; Q° is injective. Since e;; is left S-
primitive, e;; R = ¢;1Q) by Remark 2 and so e;1 Re;; = e;1Qe;1. Hence we have a ring
isomorphism from Q° to a subring of R.

(i) We choose {ehl}Zgll) C pi(R) with epyn) right S-primitive. We put e, = ep + -+ +
€hn(h)- Then by Lemma 3 and Lemma 5, we e, R = e,Q. (ii) We choose {ehl}’;ff C pi(R)
without right S-primitive. By Remark 3, Qghl is isomorphism to a ring with the complete
set U#h{eﬂ, €ik+1 t>1U{en1, ena} of primitive idempotents. Similarly repeating n(h) — 2
times, we can make an extended ring with the complete set U, zp{€1, € 5,11 }i>1U{en; };ﬂ)
of primitive idempotents.
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Letting,

en1 Reqy

ep1 Reqy
b _ | epiRepy

€h1

For two submodules

A= hl > eh1R611

enep *
en1 Rehl €h1 Reml
€m1 R€h1 *
e Repy e Repy
€n1 Rehl €n1 Rehl

J(€h1 Rem) en1 Repy

emillenr  emiRen
eniRent  emRep
J(ehl Rehl) en1 Rep

of Q° | J(A) = B by [13, Theorem 1].

€h1’

f81f

en1 Remi
en1 Remi

en1 Remi

en1 Rem




Hence as a ring isomorphism,

* 611R6h1 611R6h2 *
ethen Ce ethehl ethehg Ce etheml
eh2R611 e ehQRehl eh2R6h2 . etheml
* emlRehl BmlRBhQ *
(o
* 611R€h1 611R6h1 *
6h1R611 e ethehl ethehl e Gtheml
€h1R611 ce J(ethehl) 6h1R€h1 Ce €h1R6m1
* €m1R€h1 emlRehl *

by [13, Theorem 1] again.
(iii) We choose {ehl}z(:hl) C pi(R) with some right S-primitive idempotents. Then we
denote a right S-primitive idempotent of {ehl}z(:hl) by enk,. We reset

{ehl}z(:hl) = {ehl, co 3 Chkyy ooy Chkgy - - }

Then the complete set pi(Q°) of Q° is U~ {ein; €ips1}es1. First by the same argu-
ment above for e;,€;,+1, we have a ring isomorphic to a ring with the complete set
{€i,.. . €ir+1}r C pi(R). Next, by [13, Theorem 1], repeating the same argument
like (ii), for €; x,+1,€ix,+1, We have a ring isomorphism to a ring with the complete set

{€i1s -+ Cikys Ciky 1y - - - s Cikys Ciknt1 - Hence the suitable extended ring of Q" is isomorphic
to R. Therefore, by Proposition 8, Q” has a Nakayama isomorphism if and only if so does
R. O

3. ANOTHER QUESTION

Oshiro’s result(Result A) in the introduction also poses another question whether there
exist surjective ring homomorphisms:

¢ ¢ ¢n_—1 ¢’IL
QM) = Q) = ... 5% Q) > QR
V V V V
o % on 2. o % R

However K. Koike informed the author the following examples;

Example 3. Let @ be a local serial ring, and J(Q) # 0, J(Q)* = 0. Then J(Q) = S(Q).

We put
_(Q Q 0 J
(586 7))
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where J = J(Q). Then R is a serial ring of an admissible sequence (3,2) and so we see

that R = Q(R). Also
Q @ Q Q\,(0 J
-(50) »=( 800

Q(Tl):(g g), Q(Ty) = Ty,

s

J J
ring homomorphism Q(77) to Q(T3).

J J\ . . e . —
( is a unique non-trivial ideal of Q(T}). Hence there does not exist a surjective

Example 4. We put

K K K 0 0 K
T=10 K K|.71=[00 0],
0 0 K 0 0 O
where K is a field, and R = T/I. Then R is a serial ring of an admissible sequence (2,2,1)

and we have a natural map

T=1, — R.
However the maximal quotient ring Q(7") of T is the full matrix algebra with degree 3
over a field K and Q(R) = R. Since Q(T) is semisimple, there does not exist a surjective
ring homomorphism Q(T') to Q(R).
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