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Kiriko Kato

Abstract. We answer a question posed by Auslander and Bridger. Every homomor-
phism of modules is projective-stably equivalent to an epimorphism but is not always to
a monomorphism. We prove that a map is projective-stably equivalent to a monomor-
phism if and only if its kernel is torsionless, that is, a first syzygy. If it occurs although,
there can be various monomorphisms that are projective-stably equivalent to a given
map. But in this case there uniquely exists a ”perfect” monomorphism to which a given
map is projective-stably equivalent.

1 Introduction

Let R be a commutative noetherian ring. Linear maps f : A → B and f ′ : A′ → B′

of finite R-modules are said to be projective-stably equivalent (pse for short) if the
following diagram is commutative

A⊕ P ′
( f

t
s
u)→ B ⊕Q′y∼=

y∼=

A′ ⊕ P

(
f ′
t′

s′
u′

)

→ B′ ⊕Q

with some projective modules P,Q, P ′, Q′ and R-linear maps s, t, u, s′, t′, u′. We say
a morphism f is represented by monomorphisms (”rbm” for short) if there exists a
monomorphism that is pse to f .

For any homomorphism f : A → B of R-modules, ( f ρB ) : A ⊕ PB → B is
surjective with a projective cover ρB : PB → B. Thus every morphism is represented
by epimorphisms. The choice of epimorphism is unique; if an epimorphism f ′ is pse to

f , then two sequences 0 → Ker f ′ → A′
f ′→ B′ → 0 and 0 → Ker(f ρB) → A⊕PB (f ρB)→

B → 0 becomes isomorphic after splitting off common projective summands.
The formal analogy to the representations by monomorphisms fails both in existence

and in uniqueness. Every morphism is not always represented by monomorphisms
(Example 1). Even if a morphism f is rbm, the choice of monomorphism is not unique;

1The detailed version of this paper has been submitted for publication elsewhere.
2000 Mathematics Subjects Classification: 13D02, 13D25, 16D90
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there may be two monomorphisms f ′ and f ′′ both pse to f and that 0 → A′
f ′→ B′ →

Cok f ′ → 0 and 0 → A′′
f ′′→ B′′ → Cok f ′′ → 0 are not isomorphic by splitting off

common projective summands (Example 2).
The purpose of the paper is finding a condition of a given map to be rbm. Roughly

speaking, our problem is to know when an exact sequence of modules

0 → A→ B
g→ C → 0

can be modified into an exact sequence

0 → B
f→ C → A′ → 0.

Of course the projective stabilization modR of modR is not triangulated in general.
So the obstruction for a given map to be rbm should be the obstruction for modR to
be triangulated. Our first focus is an analogy to the homotopy category K(modR) of
R-complexes. In [5, Theorem 2.6], the author showed a category equivalence between
modR

and a subcategory of K(modR). Due to this equivalence, we describe the obstruc-
tion of being rbm with a homology of a complex associated to the given map.

The problem was originally posed by Auslander and Bridger [1]. They proved that
a map is rbm if and only if it is pse to a ”perfect” monomorphism. An exact sequence
of R-modules is called perfect if its R-dual is also exact. A perfect monomorphism
refers to a monomorphism whose R-dual is an epimorphism. This is our next focal
point. In the case that a map is rbm, the choice of a monomorphism is not unique,
but then a perfect monomorphism pse to the given map is uniquely determined up to
direct sum of projective modules. (Theorem 3.6.)

Looking at Theorem 3.6, we see that when a morphism is rbm, its pseudo-kernel is
always the first syzygy of its pseudo-cokernel. So it is tempting to ask if the equivalent
condition of rbm property is that the kernel is a submodule of a free module. This
is our third point. Actually, we need to assume the total ring of fractions Q(R) is
Gorenstein: the condition is satisfied for instance if R is a domain.

Theorem 4.8 : Suppose the total ring of fractions Q(R) of a ring R is
Gorenstein. A morphism f is rbm if and only if Ker f is a submodule of a
free module.

Let us give easy examples:
Example 1 Set R = k[[X,Y ]]/(XY ) with any field k, g : R2/(X

Y )R→ R/(X)⊕R/(Y )

with g(
(
a
b

)
mod (X

Y )R) = (amod(X), bmod(Y )). Since Ker g ∼= R/(X,Y ) is not a first
syzygy, g is not rbm due to Theorem 4.8.
Example 2 Set R = k[[X,Y ]]/(XY ) with any field k, f : R2/(X

Y )R → R2/(X2

Y 2)R

with f(
(
a
b

)
mod (X

Y )R) =
(
Xa
Y b

)
mod (X2

Y 2)R. The map f is not a monomorphism; Ker f ∼=
R/(X)⊕R/(Y ) is a first syzygy. By Theorem 4.8, f is rbm. In fact, let f ′ : R2/(X

Y )R→
R2/(X2

Y 2)R ⊕ R2 be defined as f ′(
(
a
b

)
mod (X

Y )R) = (
(
Xa
Y b

)
mod (X2

Y 2)R,
(
Y a
Xb

)
). Obviously f ′
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is a monomorphism that is pse to f . On the other hand, f ′′ : R2/(X
Y )R→ R2/(X2

Y 2)R⊕R2

with f ′′(
(
a
b

)
mod (X

Y )R) = (
(
Xa
Y b

)
mod (X2

Y 2)R,
(
Y 2a
X2b

)
) is also a monomorphism and pse to

f . We have two exact sequences

θf : 0 → R2/(X
Y )R

f ′→ R2/(X2

Y 2)R⊕R2 → R2/(X
Y )R⊕R2/(Y

X)R→ 0,

and
σ : 0 → R2/(X

Y )R
f ′′→ R2/(X2

Y 2)R⊕R2 → R2/( X
Y 2)R⊕R2/( Y

X2)R→ 0,

that are not isomorphic. We see θf is perfect but σ is not.

2 Stable module category and homotopy category

Throughout the paper, R is a commutative noetherian ring, By an ”R-module” we
mean a finitely generated R-module. For an R-module M , ρM : PM → M denotes a
projective cover of M .

Definition 2.1 The projective stabilization modR is defined as follows.

• Each object of modR is an object of mod R.

• For objects A,B of modR, a set of morphisms from A to B is
HomR(A,B) = HomR(A,B)/P(A,B) where P(A,B) := {f ∈ HomR(A,B) |
f factors through some projective module}. Each element is denoted as f =
f modP(A,B).

A morphism modR is called a stable isomorphism if f is an isomorphism in modR.
If two R-modules A and A′ are isomorphic in modR, we say A and A′ are stably

isomorphic and write A
st∼= A′.

Definition 2.2 Morphisms f : A → B and f ′ : A′ → B′ in modR are said to be

projective-stably equivalent (pse for short) and denoted as f
st∼= f ′ if if there exist stable

isomorphisms α : A→ A′ and β : B → B′ such that β ◦ f = f ′ ◦ α.

Let L be a full subcategory of K(modR) defined as

L = {F • ∈ K(projR) | Hi(F •) = 0 (i < 0), Hj(F
∗•) = 0 (j ≥ 0)}.

Lemma 2.3 ( [5] Proposition 2.3, Proposition 2.4 )

1) For A ∈ modR, there exists FA
• ∈ L that satisfies

H0(τ≤0FA
•)

st∼= A.

Such an FA
• is uniquely determined by A up to isomorphisms. We fix the notation

FA
• and call this a standard resolution of A.
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2) For f ∈ HomR(A,B), there exists f • ∈ HomK(projR)(FA
•, FB

•) that satisfies

H0(τ≤0f
•) ∼= f.

Such an f • is uniquely determined by f up to isomorphisms, so we use the nota-
tion f • to describe a chain map with this property for given f .

Theorem 2.4 ( [5] Theorem 2.6) The mapping A 7→ FA
• gives a functor from

modR to K(modR), and this gives a category equivalence between modR and L.

For f ∈ HomR(A,B), there exists a triangle

C(f)•−1 nf
•

→ FA
• f•→ FB

• cf •→ C(f)•. (2.1)

In general, C(f)• does not belong to L but it satisfies the following:

Hi(C(f)•) = 0 (i < −1), Hj(C(f)∗•) = 0 (j > −1).

Definition and Lemma 2.5 ([5], Definition and Lemma 3.1) As objects of
modR, Ker f := H−1(τ≤−1C(f)•) and Cok f := H0(τ≤0C(f)•) are uniquely de-
termined by f , up to isomorphisms. We call these the pseudo-kernel and the
pseudo-cokernel of f .

For a given map f : A→ B, from (2.1), we have an exact sequence

0 → Ker f → A⊕ P
(f ρ)→ B → 0 (2.2)

with some projective module P . This characterizes the pseudo-kernel.

Lemma 2.6 For a given f ∈ HomR(A,B), suppose A ⊕ P ′
(f p′)→ B is epimorphism

with projective module P ′. Then Ker (f p′)
st∼= Kerf and the sequence

0 → Ker (f p′) → A⊕ P ′
(f p′)→ B → 0

is isomorphic to 2.2 after splitting off some aplit exact sequence of projective modules.

Lemma 2.7 ([5] Lemma 3.6)

1) There is an exact sequence

0 → Ker f → Ker f → Ω1
R(Cok f) → 0.

2) There is an exact sequence

0 → L→ Cok f → Cok f → 0

such that Ω1
R(L) is the surjective image of Ker f .
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3 Representation by monomorphisms and perfect

exact sequences

Definition 3.1 A morphism f : A → B in modR is said to be represented by
monomorphisms (rbm for short) if some monomorphism f ′ : A′ → B′ in modR is
pse to f , that is, there exist stable isomorphisms α : A→ A′ and β : B → B′ such that
β ◦ f = f ′ ◦ α.

Each morphism is not always rbm. It was Auslander and Bridger who first defined
and studied ”represented by monomorphisms” property.

Theorem 3.2 (Auslander-Bridger) The following are equivalent for a morphism
f : A→ B in modR.

1) There exists a monomorphism f ′ : A→ B⊕P with a projective module P such
that f = s ◦ f ′ via some split epimorphism s : B ⊕ P → B.

2) There exists a monomorphism f ′ : A → B ⊕ P with a projective module P
such that f = s ◦ f ′ via some split epimorphism s : B ⊕ P → B, and f ′∗ is an
epimorphism.

3) HomR(B, I) → HomR(A, I) is surjective if I is an injective module.

The condition 1) of Theorem 3.2 turns out to be equivalent to the rbm condition.

Lemma 3.3 For a morphism f : A→ B in modR, f is rbm if and only if there exists
a monomorphism f ′ : A→ B ⊕ P with a projective module P such that f = s ◦ f ′ via
some split epimorphism s : B ⊕ P → B.

The most remarkable point in Auslander-Bridger’s Theorem is that being rbm is
equivalent to being represented by ”perfect monomorphisms” whose R-dual is an epi-
morphism.

Definition 3.4 An exact sequence 0 → A → B → C → 0 of R-modules is called
a perfect exact sequence or to be perfectly exact if its R-dual 0 → HomR(C,R) →
HomR(B,R) → HomR(A,R) → 0 is also exact. A monomorphism f is called a perfect
monomorphism if HomR(f,R) is an epimorphism.

Proposition 3.5 ( [5] Lemma 2.7) The following are equivalent for an exact se-
quence

θ : 0 → A
f→ B

g→ C → 0.

1) θ is perfectly exact.

2) 0 → FA
• f•→ FB

• g•→ FC
• → 0　 is exact.
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3) FC
•−1 → FA

• f•→ FB
• g•→ FC

• is a distinguished triangle in K (modR).

For a morphism f : A → B, A ⊕ PB
(f ρB)−→ B is an epimorphism with a projective

cover ρB : PB → B. Thus each morphism is represented by epimorphisms. And
the choice of the representing epimorphism is unique up to direct sum of projective
modules, as we have seen in Lemma 2.6.

Unlikely, we already know an example of a morphism that is not rbm. And more-
over, even if a given map is represented by a monomorphism, there would be another
representing monomorphism. (Example 1 and Example 2.)

However, uniqueness theorem is obtained in this way. Due to Theorem 3.2, a
morphism is rbm if and only if it is represented by a perfect monomorphism. And if
this is the case, the representing perfect monomorphism is uniquely determined up to
direct sum of projective modules.

Theorem 3.6 Let f : A→ B be a morphism in modR. Then f is rbm if and only if
H−1(C(f)•) vanishes. If this is the case, we have the following:

1) We have a perfect exact sequence

θf : 0 → A
(f

ε)→ B ⊕ FA
1 (cf π)→ Cokf → 0.

2) For any exact sequence of the form

σ : 0 → A
( f

q )→ B ⊕ P ′
(g p)→ C → 0

with some projective module P ′, there is a commutative diagram

θf : 0 → A
( f

ε )→ B ⊕ FA
1 (cf π)→ Cokf → 0yα

yβ
yγ

σ : 0 → A
( f

q )→ B ⊕ P ′
(g p)→ C → 0

where α and β are stable isomorphisms.

3) There is an exact sequence with some projective module Q and Q′

0 → Q′ → Cokf ⊕Q
(γ ρ)→ C → 0.

In other words, Kerγ is projective.

4) If σ is also perfectly exact, then σ is isomorphic to θf up to direct sum of split
exact sequences of projective modules.
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proof. We have a triangle

FA
• f•→ FB

• → C(f)•
nf
•+1

→ FA
•+1 (3.3)

which induces a term-wise exact sequence of complexes in C(projR)

0 → FA
• → C(nf )

• → C(f)• → 0 (3.4)

Applying τ≤0 to the diagram above and taking homology, we get the following exact
sequence of modules:

θf : 0 → H−1(C(f)•) → A
(f

ε)→ B ⊕ FA
1 (cf π)→ Cokf → 0 (3.5)

Suppose that H−1(C(f)•) = 0. Then C(f)• ∼= FCokf , and the exact sequence 3.4
shows that θf is perfectly exact.

Conversely, suppose that f is rbm; there is an exact sequence

σ : 0 → A
( f

q )→ B ⊕ P ′
(g p)→ C → 0.

The maps f̃ =
(
f
q

)
and g̃ = (g p) produce the similar diagram as (3.3) :

FA
• f̃•→ FB⊕P ′

• → C(f̃)
• → FA

•+1
yα̃• ‖

yγ̃•
yα̃•+1

C(g̃)•−1 → FB⊕P ′
• g̃•→ FC

• → C(g̃)•
(3.6)

Since A
st∼= Kerg̃, τ≤0α̃

• = 0 is an isomorphism, equivalently τ≤−1C(α̃)• = 0 hence
τ≤−2C(γ̃)• = 0. From the long exact sequence of homology groups H−2(C(γ̃)•) →
H−1(C(f̃)

•
) → H−1(FC

•), we get H−1(C(f̃)
•
) = 0. Obviously, H−1(C(f̃)

•
) ∼=

H−1(C(f)•) hence H−1(C(f)•) = 0. Now it remains to prove 2) - 4) in the case
H−1(C(f)•) = 0.

2) Applying τ≤0 to the diagram (3.6) and taking homology, we get the following
diagram with exact rows:

θf̃ : 0 → A

(
f
q
ε

)

→ B ⊕ P ′ ⊕ FA
1 → Cok

(
f
q

)
→ 0

yα̃′
yβ̃′

yγ̃′

σg̃ : 0 → Ker(g p) → B ⊕ P ′ ⊕ PC
(g p ρC)→ C → 0.

Notice that α̃′ and β̃′ are stable isomorphisms. The upper row is a direct sum of θf
and a trivial complex, and the lower row is that of σ and a trivial complex. Splitting
off trivial complexes we get a desired diagram:

0 → A
( f

ε )→ B ⊕ FA
1 (cf π)→ Cokf → 0yα′

yβ′
yγ

0 → A
( f

q )→ B ⊕ P ′
(g p)→ C → 0

– 37 –



3) As we see above, γ̃• : C(f̃)
•

= FCokf̃
• → FC

• has τ≤−2C(γ̃)• = 0. We may

consider γ̃• as γ̃i = id (i ≤ −1) hence Q′ = Kerγ̃ is projective;

0 → Q′ → Cokf̃ ⊕ PC
(γ̃′ ρC)→ C → 0.

Since Cokf̃
st∼= Cokf and γ̃′

st∼= γ, the above sequence is the desired sequence 0 → Q′ →
Cokf ⊕Q→ C → 0 with some projective module Q.

4) Suppose σ is perfect. From Proposition 3.5, FC
•−1 → FA

• f•→ FB
• g•→ FC

• is a
distinguished triangle, and FC

• ∼= C(f)•, hence the induced sequence σ is isomorphic
to θf . (q.e.d.)

4 Representation by monomorphisms and torsion-

less modules.

In the previous section, we see that a given map f is represented by monomorphisms
if and only if H−1(C(f)•) = 0. If this is the case, Kerf = Cok dC(f)

−2 is the first

syzygy of Cokf = Cok dC(f)
−1. So it is natural to ask the converse: Is a given map f

represented by monomorphisms if Kerf is a first sygyzy? This section deals with the
problem. As a conclusion, the answer is yes if the total ring of fractions Q(R) of R is
Gorenstein. What is more, if Q(R) is Gorenstein, instead of a pseudo-kernel, we can
use a (usual) kernel to describe rbm condition.

The next is well known. See [1] and [4] for the proof.

Definition and Lemma 4.1 The following are equivalent for an R-module M .

1) The natural map φ : M →M∗∗ is a monomorphism.

2) Ext1
R(TrM,R) = 0

3) M is a first syzygy; there exists a monomorphism from M to a projective mod-
ule.

If M satisfies these conditions, M is said to be torsionless. 1

To solve our problem, the special kind of maps is a key. For M ∈ mod R,
consider a module J2M = Tr Ω1

R Tr Ω1
RM . Since Tr J2M is a first sygyzy, we have

Ext1
R(J2M,R) = 0, which means H−1(FJ2M

∗
•) = 0 and τ≥−2FJ2M

∗
•is a projective res-

olution of Tr Ω1
RM = Cok (dFJ2M

−2)
∗

= Cok (dFM

−2)
∗
. The identity map on Tr Ω1

RM
induces a chain map (FM)∗• → (FJ2M)∗• and its R-dual ψM

• : FJ2M
• → FM

• subse-
quently.

Lemma 4.2 The map ψM : J2M → M is rbm if and only if an R-module M has
(Ext1

R(M,R))
∗

= 0.

1In [1], Auslander and Bridger use the term ”1-torsion free” for ”torsionless”. Usually a module
M is called torsion-free if the natural map M → M ⊗Q(R) is injective.
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proof. From Theorem 3.6, ψM is rbm if and only if H−1(C(ψM)•) = 0. By definition,
ψ−1
M and ψ−2

M are identity maps hence ψiM are identity maps for i ≤ −1. We may as-
sume τ≤−2C(ψM)• = 0, which implies H−1(C(ψM)•) = Ker dC(ψM )

−1. As τ≥−1C(ψM)•
∗

is a projective resolution of Cok (dψM

−1)
∗ ∼= H−1(C(ψM)∗•), we get H−1(C(ψM)•) ∼=

(H−1(C(ψM)∗•))
∗
. A triangle FJ2M

• ψM
•→ FM

• → C(ψM)• → FJ2M
•+1 induces an R-dual

triangle FJ2M
∗
•+1 → C(ψM)∗• → FM

∗
• → FJ2M

∗
• which produces an exact sequence of

modules
0 → H−1(C(ψM)∗•) → H−1(FM

∗
•) → H−1(FJ2M

∗
•) → 0.

As we see in the discussion above, H−1(FJ2M
∗
•) = 0. Hence H−1(C(ψM)∗•)

∼=
H−1(FM

∗
•) = Ext1

R(M,R), and we get H−1(C(ψM)•) ∼= (Ext1
R(M,R))

∗
. (q.e.d.)

The above result is generalized as follows:

Lemma 4.3 Let f : A→ B be a morphism in modR. Suppose (Ext1
R(B,R))

∗
= 0. If

Kerf is projective, then f is rbm.

proof. We may assume τ≤−2C(f)• = 0. Similarly as in the proof of Lemma 4.2,
we have H−1(C(f)•) ∼= (H−1(C(f)∗•))

∗
. Since Kerf is projective, f induces a stable

isomorphism J2A
st∼= J2B, and via this stable isomorphism, ψB is projective stably

equivalent to f ◦ ψA, equivalently ψB
• ∼= f • ◦ ψA• in K(modR). We have a triangle

C(ψA)• → C(ψB)• → C(f)• → C(ψA)•+1

and its R-dual
C(ψA)∗•+1 → C(f)∗• → C(ψB)∗• → C(ψA)∗•

which induce an exact sequence of modules

0 → H−1(C(f)∗•) → H−1(C(ψB)∗•)

Note that H−1(C(ψB)∗)•) = Ext1
R(B,R). The assumption (Ext1

R(B,R))
∗

= 0 equiva-
lently says Ext1

R(B,R)p = 0 for any associated prime ideal p of R. A submodule has

the same property; H−1(C(f)∗•)p = 0 for any associated prime ideal p of R therefore

(H−1(C(f)∗•))
∗

= 0. (q.e.d.)

Proposition 4.4 Let f : A→ B a morphism of modR. Suppose (Ext1
R(B,R))

∗
= 0.

Then f is rbm if and only if Kerf is torsionless.

proof. We already get the ”only if ” part and have only to show the ”if” part. Adding
a projective cover of B to f , we get an exact sequence

σf : 0 → Kerf
(nf

q )→ A⊕ PB
(f ρB)→ B → 0.
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Due to Theorem 3.6, we have a perfect exact sequence θnf , because nf is rbm:

θnf : 0 → Kerf
(nf

ε )→ A⊕ F 1
Kerf

(
cn

f
π

)

→ Cok nf → 0yst∼=
yst∼=

yωf

σf 0 → Kerf
(nf

q )→ A⊕ PB
(f ρB)→ B → 0.

From Theorem 3.6 3), we know Kerωf is projective. With the assumption

(Ext1
R(B,R))

∗
= 0, we can apply Lemma 4.3 and get that ωf is rbm. From the

equation f = ωf ◦ cnf
, f is rbm if cn

f
is rbm. Since

FKerf
• nf •→ FA

• cn
f •

→ C(nf )
• → FKerf

•+1

is a triangle, C(cn
f
)• ∼= F •+1

Kerf ; H−1(C(cn
f
)
•
) ∼= H0(FKerf

•) ∼= Ext1
R(Tr Kerf,R). Hence

cn
f

is rbm if and only if Kerf is torsionless. (q.e.d.)

Lemma 4.5 Let the sequence of R-modules 0 → A
f→ B

g→ C → 0 be exact. Suppose
(Ext1

R(C,R))
∗

= 0. If A and C are torsionless, then so is B.

proof. From the assumption, A ∼= Kerg is torsionless. Due to Proposition 4.4, g is
rbm; there exists an exact sequence

θg : 0 → B
(g

ε)→ C ⊕Q→ Cokg → 0

with a projective module Q and a map ε : B → Q. Since C is a submodule of some
projective module, so is B. (q.e.d.)

Proposition 4.6 The following are equivalent for a noetherian ring R.

1) Q(R) is Gorenstein.

2) Q(R) is Gorenstein of dimension zero.

3) (Ext1
R(M,R))

∗
= 0 for each M ∈ modR.

4) ΨM is rbm for each M ∈ modR.

If R is a local ring with the maximal ideal m, the above conditions are also equivalent
to the following.

5) ΨR/m is rbm.
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proof. As Q(R) is always of dimension zero, we get 1) ⇔ 2).
3) ⇔ 4) is already shown in Lemma 4.2.
4) ⇒ 5) is obvious.
5)⇒ 1). The condition 5) is equivalent to Ext1

R(R/m, R)⊗Q(R) ∼= Ext1
Q(R)(R/m⊗

Q(R), Q(R)) = 0, which means Q(R) is Gorenstein. (q.e.d.)

In the case Q(R) is Gorenstein, every morphism in modR satisfies the hypotheses
of Proposition 4.4 and Lemma 4.5. Thus with the condition Q(R) is Gorenstein, when
discussing rbm property, we can deal with normal kernel as well as pseudo-kernel.

Proposition 4.7 Suppose Q(R) is Gorenstein. For a given morphism f , Ker f is
torsionless if and only if Kerf is torsionless.

proof. From Lemma 2.7, there is an exact sequence 0 → Ker f → Ker f →
Ω1
R(Cok f) → 0. So the ”if” part is obvious, and the ”only if” part comes from

Lemma 4.5. (q.e.d.)

Theorem 4.8 Suppose Q(R) is Gorenstein. The following are equivalent for a mor-
phism f : A→ B in modR.

1) f is rbm.

2) Ker f is torsionless.

3) Kerf is torsionless.

4) H−1(C(f)•) = 0.

5) Ω1
R(Cokf)

st∼= Kerf .

6) There exists f ′ such that f ′
st∼= f and Ker f ′ is torsionless.

7) For any f ′ with f ′
st∼= f , Ker f ′ is torsionless.

proof. Implications 5) ⇒ 3), 7) ⇒ 2) and 7) ⇒ 6) are obvious. We already showed
1) ⇔ 4) in Theorem 3.6, 1) ⇔ 3) in Proposition ??, and 3)⇔ 2) in Corollary
4.7. Implications 3) ⇒ 7) and 6) ⇒ 3) are obtained from ”if” and ”only if ” part of
Corollary 4.7 respectively.

4) ⇒ 5). It comes directly from Cok dC(f)
0 = Kerf and Cok dC(f)

−1 = Cokf .
(q.e.d.)

Remark 4.9 Takashima gives an easy proof for Theorem 4.8 using the torsion theory
[7].

Corollary 4.10 The following are equivalent for a noetherian ring R.

1) Q(R) is Gorenstein.
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2) Every morphism with torsionless kernel is rbm.

proof.
1) ⇒ 2). It comes directly from Theorem 4.8.
2) ⇒ 1). For every M ∈ modR, KerψM is torsionless. Because KerψM is projective

and KerψM is a submodule of KerψM from Lemma 2.7 1). So if 2) holds, ψM is rbm
for any M ∈ modR, which implies 1) from Proposition 4.6. (q.e.d.)
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rbm should be given in terms of the kernel not only by the pseudo-kernel. I also thank
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