
HIGHER DIMENSIONAL AUSLANDER-REITEN THEORY ON
MAXIMAL ORTHOGONAL SUBCATEGORIES1

Osamu Iyama

Abstract. Auslander-Reiten theory, especially the concept of almost split sequences and
their existence theorem, is fundamental to study categories which appear in representa-
tion theory, for example, modules over artin algebras [ARS][GR][R], their functorially finite
subcategories [AS][S], their derived categories [H], Cohen-Macaulay modules over Cohen-
Macaulay rings [Y], lattices over orders [A2,3][RS], and coherent sheaves on projective curves
[AR][GL]. In these Auslander-Reiten theory, the number ‘2’ is quite symbolic. For one
thing, almost split sequences give minimal projective resolutions of simple objects of pro-
jective dimension ‘2’ in functor categories. For another, Cohen-Macaulay rings and orders
of Krull-dimension ‘2’ have fundamental sequences and provide us one of the most beautiful
situation in representation theory [A4][E][RV][Y], which is closely related to McKay’s obser-
vation on simple singularities [M]. In this sense, usual Auslander-Reiten theory should be
‘2-dimensional’ theory, and it would have natural importance to search a domain of higher
Auslander-Reiten theory from the viewpoint of representation theory and non-commutative
algebraic geometry (e.g. [V1,2][Ar][GL]). In this paper, we introduce (n − 1)-orthogonal
subcategories as a natural domain of ‘(n + 1)-dimensional’ Auslander-Reiten theory. We
show that higher Auslander-Reiten translation and higher Auslander-Reiten duality can be
defined quite naturally for such categories. Using them, we show that our categories have
n-almost split sequences, which are completely new generalization of usual almost split se-
quences and give minimal projective resolutions of simple objects of projective dimension
‘n + 1’ in functor categories. We also show the existence of higher dimensional analogy
of fundamental sequences for Cohen-Macaulay rings and orders of Krull-dimension ‘n + 1’.
We show that an invariant subring (of Krull-dimension ‘n + 1’) corresponding to a finite
subgroup G of GLn+1(k) has a natural maximal (n− 1)-orthogonal subcategory.

1 From Auslander-Reiten theory

1.1 Let us recall M. Auslander’s classical theorem [A1] below, which introduced a
completely new insight to representation theory of algebras (see 2.3 for dom.dim Γ).

Theorem A (Auslander correspondence) There exists a bijection between the set of
Morita-equivalence classes of representation-finite finite-dimensional algebras Λ and that
of finite-dimensional algebras Γ with gl.dim Γ ≤ 2 and dom.dim Γ ≥ 2. It is given by
Λ 7→ Γ := EndΛ(M) for an additive generator M of mod Λ.

In this really surprising theorem, the representation theory of Λ is encoded in the
structure of the homologically nice algebra Γ called an Auslander algebra. Since the
category mod Γ is equivalent to the functor category on mod Λ, Auslander correspondence

1The detailed version [I2,3] of this paper have been submitted for publication elsewhere.
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gave us a prototype of the use of functor categories in representation theory. In this sense,
Auslander correspondence was a starting point of later Auslander-Reiten theory [ARS]
historically. Theoretically, Auslander correspondence gives a direct connection between
two completely different concepts, i.e. a representation theoretic property ‘representation-
finiteness’ and a homological property ‘gl.dim Γ ≤ 2 and dom.dim Γ ≥ 2’. It is a quite
interesting project to find correspondence between representation theoretic properties and
homological properties (e.g. [I1]).

1.2 Let R be a complete regular local ring of dimension d and Λ a module-finite
R-algebra. We call Λ an isolated singularity [A3] if gl.dim Λ ⊗R Rp = ht p holds for any
non-maximal prime ideal p of R. We call a left Λ-module M Cohen-Macaulay if it is a
projective R-module. We denote by CM Λ the category of Cohen-Macaulay Λ-modules.
Then Dd := HomR( , R) gives a duality CM Λ ↔ CM Λop. We call Λ an R-order (or Cohen-
Macaulay R-algebra) if Λ ∈ CM Λ [A2,3]. In this case, let CMΛ := (CM Λ)/[Λ] be the
stable category and CMΛ := (CM Λ)/[DdΛ] the costable category. A typical example of an
order is a commutative complete local Cohen-Macaulay ring Λ containing a field since such
Λ contains a complete regular local subring R [Ma]. Let E : 0 → R → E0 → · · · → Ed → 0
be a minimal injective resolution of the R-module R. We denote by D := HomR( , Ed)
the Matlis dual. Let us recall the fundamental theorems [A2,3][Y] below, where we will
give the definition of (pseudo) almost split sequences in 2.5 (put n := 1 there).

Theorem B (1) (Auslander-Reiten translation) There exists an equivalence τ : CMΛ →
CMΛ.

(2) (Auslander-Reiten duality) There exist functorial isomorphisms HomΛ(Y, τX) '
D Ext1

Λ(X,Y ) ' HomΛ(τ−1Y, X) for any X,Y ∈ CM Λ.

Theorem C (1) CM Λ has almost split sequences.
(2) If d = 2, then CM Λ has pseudo almost split sequeces.

Consequently, almost all simple objects in the functor category mod(CM Λ) have pro-
jective dimension 2. If d = 2, then all simple objects in the functor category mod(CM Λ)
have projective dimension 2. In this sense, we can say that Auslander-Reiten theory for
the case d = 2 is very nice. Using (pseudo) almost split sequences, we can define the
Auslander-Reiten quiver A(Λ) of Λ (see 2.6 and put n := 1 there).

1.3 Let us recall Auslander’s contribution [A4][Y] to McKay correspondence [M]. Let
k be a field of characteristic zero and G a finite subgroup of GLd(k) with d ≥ 2. Recall
that the McKay quiver M(G) of G [M] is defined as follows: The set of vertices is the set
irr G of isoclasses of irreducible representations of G. Let V be the representation of G
acting on kd through GLd(k). For X,Y ∈ irr G, we denote by dXY the multiplicity of X
in V ⊗k Y , and draw dXY arrows from X to Y .

Theorem D Let G be a finite subgroup of GL2(C), Ω := C[[x, y]] and Λ := ΩG the
invariant subring. Assume that G does not contain pseudo-reflection except the identity.
Then Λ is representation-finite with CM Λ = addΛ Ω, and the Auslander-Reiten quiver
A(Λ) of Λ coincides with the McKay quiver M(G) of G.

1.4 Aim We observed that Auslander-Reiten theory is 2-dimensional-like. Now we
can state the aim of this paper. For each n ≥ 1, find a domain of (n + 1)-dimensional
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Auslander-Reiten theory. Namely, find natural categories C such that Theorems above
replaced ‘2’ and CM Λ by ‘n + 1’ and C respectively hold.

2 Main results

2.1 Definition Let A be an abelian category, B a full subcategory of A and n ≥ 0.
For a functorially finite [AS] full subcategory C of B, we put

C⊥n := {X ∈ B | Exti
A(C, X) = 0 for any i (0 < i ≤ n)},

⊥n C := {X ∈ B | Exti
A(X, C) = 0 for any i (0 < i ≤ n)}.

We call C a maximal n-orthogonal subcategory of B if

C = C⊥n = ⊥n C
holds. By definition, B is a unique maximal 0-orthogonal subcategory of B.

2.2 Example Let Λ be a simple singularity of type ∆ and dimension d = 2, A :=
modZ Λ the category of graded Λ-modules and B := CMZ Λ the category of graded Cohen-
Macaulay Λ-modules. Then the number of maximal 1-orthogonal subcategories of B is
given as follows:

∆ Am Bm, Cm Dm E6 E7 E8 F4 G2

number 1
m+2

(
2m+2
m+1

) (
2m
m

)
3m−2

m

(
2m−2
m−1

)
833 4160 25080 105 8

This is obtained by showing that maximal 1-orthogonal subcategories of B correspond
bijectively to clusters of the cluster algebra of type ∆ [I2,3]. See Fomin-Zelevinsky [FZ1,2]
and Buan-Marsh-Reineke-Reiten-Todorov [BMRRT]. See also Geiss-Leclerc-Schröer [GLS].

2.3 For a finite-dimensional algebra Γ, we denote by 0 → Γ → I0 → I1 → · · · a
minimal injective resolution of the Γ-module Γ. Put dom.dim Γ := inf{i ≥ 0 | Ii is not
projective} [T]. The following theorem gives a higher dimensional version of Theorem A.

Theorem A′ ((n + 1)-dimensional Auslander correspondence) For any n ≥ 1, there
exists a bijection between the set of equivalence classes of maximal (n − 1)-orthogonal
subcategories C of mod Λ with additive generators M and finite-dimensional algebras Λ,
and the set of Morita-equivalence classes of finite-dimensional algebras Γ with gl.dim Γ ≤
n + 1 and dom.dim Γ ≥ n + 1. It is given by C 7→ Γ := EndΛ(M).

2.4 In the rest of this section, let R be a complete regular local ring of dimension d,
Λ an R-order which is an isolated singularity, A := mod Λ and B := CM Λ. For n ≥ 1,
we define functors τn and τ−n by

τn := τ ◦ Ωn−1 : CMΛ → CMΛ and τ−n := τ− ◦ Ω−(n−1) : CMΛ → CMΛ,

where Ω : CMΛ → CMΛ is the syzygy functor and Ω− : CMΛ → CMΛ is the cosyzygy
functor. For a subcategory C of CM Λ, we denote by C and C the corresponding subcate-
gories of CMΛ and CMΛ respectively.

Theorem B′ Let C be a maximal (n− 1)-orthogonal subcategory of CM Λ (n ≥ 1).
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(1) (n-Auslander-Reiten translation) For any X ∈ C, τnX ∈ C and τ−n X ∈ C hold.
Thus τn : C → C and τ−n : C → C are mutually quasi-inverse equivalences.

(2) (n-Auslander-Reiten duality) There exist functorial isomorphisms C(Y, τnX) '
D Extn

Λ(X,Y ) ' C(τ−n Y, X) for any X,Y ∈ C.
2.5 Definition Let C be a full subcategory of CM Λ and JC the Jacobson radical of

C. We call an exact sequence

0 → Y
fn→ Cn−1

fn−1→ · · · f1→ C0
f0→ X → 0

(resp. 0 → Y
fn→ Cn−1

fn−1→ · · · f1→ C0
f0→ X)

with terms in C an n-almost split sequence (resp. pseudo n-almost split sequence) if fi ∈ JC
holds for any i and the following sequences are exact.

0 → C( , Y )
·fn→ C( , Cn−1)

·fn−1→ · · · ·f1→ C( , C0)
·f0→ JC( , X) → 0

0 → C(X, )
f0·→ C(C0, )

f1·→ · · · fn−1·→ C(Cn−1, )
fn·→ JC(Y, ) → 0

We call f0 : C0 → X a sink map and fn : Y → Cn−1 a source map. We say that

C has n-almost split sequences if, for any non-projective X ∈ ind C (resp. non-injective
Y ∈ ind C), there exists an n-almost split sequence 0 → Y → Cn−1 → · · · → C0 → X → 0.
Similarly, we say that C has pseudo n-almost split sequences if, for any projective X ∈ C
(resp. injective Y ∈ C), there exists a pseudo n-almost split sequence 0 → Y → Cn−1 →
· · · → C0 → X.

Theorem C′ Let C be a maximal (n− 1)-orthogonal subcategory of CM Λ (n ≥ 1).
(1) C has n-almost split sequences.
(2) If d = n + 1, then C has pseudo n-almost split sequeces.

Consequently, almost all simple objects in the functor category mod C have projective
dimension n + 1. If d = n + 1, then all simple objects in the functor category mod C
have projective dimension n + 1. In this sense, we can say that (n + 1)-dimensional
Auslander-Reiten theory for the case d = n + 1 is very nice.

2.6 We will define the Auslander-Reiten quiver A(C) of C. For simplicity, we assume
that the residue field k of R is algebraically closed. The set of vertices of A(C) is ind C. For
X,Y ∈ ind C, we denote by dXY be the multiplicity of X in C for the sink map C → Y ,
which equals to the multiplicity of Y in C ′ for the source map X → C ′. Draw dXY arrows
from X to Y .

Theorem D′ Let G be a finite subgroup of GLd(C), Ω := C[[x1, · · · , xd]] and Λ :=
ΩG the invariant subring. Assume that G does not contain pseudo-reflection except the
identity, and that Λ is an isolated singularity. Then C := addΛ Ω is a maximal (d −
2)-orthogonal subcategory of CM Λ. Moreover, the Auslander-Reiten quiver A(C) of C
coincides with the McKay quiver M(G) of G, i.e. there exists a bijection H : irr G → ind C
such that dXY = dH(X),H(Y ) for any X,Y ∈ irr G.

3 Non-commutative crepant resolution and representation dimension

3.1 Let us generalize the concept of Van den Bergh’s non-commutative crepant res-
olution [V1,2] of commutative normal Gorenstein domains to our situation.
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Again let Λ be an R-order which is an isolated singularity. We call M ∈ CM Λ a NCC
resolution of Λ if Λ⊕DdΛ ∈ add M and Γ := EndΛ(M) is an R-order with gl.dim Γ = d.
Our definition is slightly stronger than original non-commutative crepant resolutions in
[V2] where M is assumed to be reflexive (not Cohen-Macaulay) and Λ⊕DdΛ ∈ add M is
not assumed. But all examples of non-commutative crepant resolutions in [V1,2] satisfy
our condition. For the case d ≥ 2, we have the remarkable relationship below between
NCC resolutions and maximal (d− 2)-orthogonal subcategories.

Theorem Let d ≥ 2. Then M ∈ CM Λ is a NCC resolution of Λ if and only if add M
is maximal (d− 2)-orthogonal subcategory of CM Λ.

3.2 Conjecture It is interesting to study relationship among all maximal (n − 1)-
orthogonal subcategories of CM Λ. Especially, we conjecture that their endomorphism
rings are derived equivalent. It is suggestive to relate this conjecture to Van den Bergh’s
generalization [V2] of Bondal-Orlov conjecture [BO], which asserts that all (commutative
or non-commutative) crepant resolutions of a normal Gorenstein domain have the same
derived category. Since maximal (n − 1)-orthogonal subcategories are analogy of non-
commutative crepant resolutions from the viewpoint of 3.1, our conjecture is an analogy
of Bondal-Orlov-Van den Bergh conjecture. We have the following partial solution.

Theorem (1) Let Ci = add Mi be a maximal 1-orthogonal subcategory of CM Λ and
Γi := EndΛ(Mi) (i = 1, 2). Then Γ1 and Γ2 are derived equivalent. In particular,
# ind C1 = # ind C2 holds.

(2) If d ≤ 3, then all NCC resolutions of Λ have the same derived category.

3.3 Let us generalize the concept of Auslander’s representation dimension [A1] to
relate it to non-commutative crepant resolutios. For n ≥ 1, define the n-th representation
dimension rep.dimn Λ of an R-order Λ which is an isolated singularity by

rep.dimn Λ := inf{gl.dim EndΛ(M) | M ∈ CM Λ, Λ⊕DdΛ ∈ add M, M ⊥n−1 M}.

Obviously d ≤ rep.dimn Λ ≤ rep.dimn′ Λ holds for any n ≤ n′. For the case d =
0, rep.dim1 Λ coincides with the representation dimension defined in [A1]. We call Λ
representation-finite if # ind(CM Λ) < ∞. In the sense of (2) below, rep.dim1 Λ measures
how far Λ is from being representation-finite.

Theorem (1) Assume d ≤ n + 1. Then CM Λ has a maximal (n − 1)-orthogonal
subcategory C with # ind C < ∞ if and only if rep.dimn Λ ≤ n + 1.

(2) Assume d ≤ 2. Then Λ is representation-finite if and only if rep.dim1 Λ ≤ 2.
(3) Λ has a NCC resolution if and only if rep.dimmax{1,d−1} Λ = d.

3.4 Conjecture It seems that no example of a maximal (n−1)-orthogonal subcategory

C of CM Λ with # ind C = ∞ is known. This suggests us to study

o(CM Λ) := sup
C⊆CMΛ, C⊥1C

# ind C .

We conjecture that o(CM Λ) is always finite. If Λ is a preprojective algebra of Dynkin
type ∆, then Geiss-Schröer [GS] proved that o(mod Λ) equals to the number of positive
roots of ∆. It would be interesting to find a geometric interpretation of o(CM Λ) for more
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general CM Λ. For some classes of CM Λ, one can calculate o(CM Λ) by using the theorem
below. Especially, (1) seems to be interesting in the connection with known results for
algebras with representation dimension at most 3 [IT][EHIS].

Theorem (1) rep.dim1 Λ ≤ 3 implies o(CM Λ) < ∞.
(2) If CM Λ has a maximal 1-orthogonal subcategory C, then o(CM Λ) = # ind C.
3.5 Concerning our conjecture, let us recall the well-known proposition below which

follows by a geometric argument due to Voigt’s lemma ([P;4.2]). It is interesting to ask
whether it is true without the restriction on R. If it is true, then any 1-orthogonal sub-
category of CM Λ is ‘discrete’, and our conjecture asserts that it is finite. It is interesting
to study the discrete structure of 1-orthogonal objects in CM Λ and the relationship to
whole structure of CM Λ.

Proposition Assume that R is an algebraically closed field. For any n > 0, there are
only finitely many isoclasses of 1-orthogonal Λ-modules X with dimR X = n.
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