REMARKS ON TRANSITIVITY OF EXCEPTIONAL SEQUENCES ¹

Tokuji Araya

ABSTRACT. Let k be an algebraically closed field of characteristic 0. We denote by \mathcal{C} the abelian k-category which has enough projectives (or enough injectives), and by $\mathcal{D}^b(\mathcal{C})$ the bounded derived category of \mathcal{C} .

A complex $E^{\bullet} \in \mathcal{D}^b$ is called *exceptional* if $RHom(E^{\bullet}, E^{\bullet}) \cong k$, and a sequence $\epsilon = (\cdots, E_i^{\bullet}, E_{i+1}^{\bullet}, \cdots)$ of exceptional complexes is called an *exceptional sequence* if $RHom(E_i^{\bullet}, E_j^{\bullet}) = 0$ for all i > j.

Let \mathcal{C} be a category $\operatorname{mod} A$ of finitely generated modules of a hereditary k-algebra A, or a category $\operatorname{coh}(\mathbf{X})$ of coherent sheaves of a weighted projective line \mathbf{X} over k. In this case, for any exceptional sequence ϵ , the length of ϵ is smaller than or equal to the rank n of Grothendieck group of \mathcal{C} . An exceptional sequence ϵ is called complete if the length of ϵ is equal to n. It is shown by W. Crawley-Boevey (in the case of $\mathcal{C} = \operatorname{mod} A$) and by H. Meltzer (in the case of $\mathcal{C} = \operatorname{coh}(\mathbf{X})$) that the braid group B_n on n strings acts transitively on the set of complete exceptional sequences.

In this talk, we consider exceptional sequences on a translation quiver Γ .

1. Preliminaries

この講演を通じて $\Gamma = \mathbb{Z}\mathbf{A}_n$ を translation quiver とし、 Γ_0 を Γ の頂点集合、 τ を translation とする。

定義 1.1 $X,Y \in \Gamma_0$ とする。

- 1. X から $Y \land \text{arrow}$ があるとき、 $X \lessdot Y$ と表す。
- 2. X から $Y \land path$ があるとき、X < Y と表す。

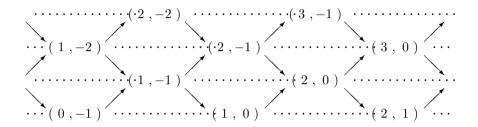
定義 1.2 頂点集合 Γ_0 を以下のようにして、 $\{(p,q) \mid 1 \le p-q \le n\}$ と同一視する。

¹The detailed version of this paper will be submitted for publication elsewhere.

- 1. 一番下の τ -orbit 上の頂点を、 \cdots , (p,p-1), (p+1,p), (p+2,p+1), \cdots とする。
- 2. $X \in \Gamma_0$ に対し、 $X \lessdot (p,q), X \neq (p-1,q)$ のとき、X = (p,q-1) と定義する。

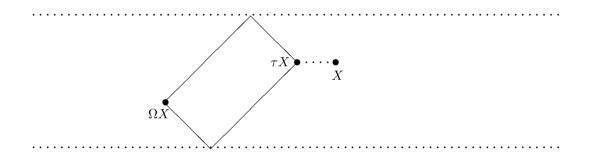
 $X=(p,q), Y=(p',q')\in\Gamma_0$ に対し、X と Y が同じ τ -orbit にあるための必要十分条件は p-q=p'-q' であることに注意する。

例 1.3 $\Gamma = \mathbb{Z}\mathbf{A}_4$ のとき、次のようになる。



定義 1.4 syzygy functor $\Omega: \Gamma_0 \to \Gamma_0$ を、 $\Omega(p,q) = (q,p-n-1)$ と定義する。

例 1.5 各 $X \in \Gamma_0$ に対し、 τX , ΩX は以下のような位置関係にあることに注意する。



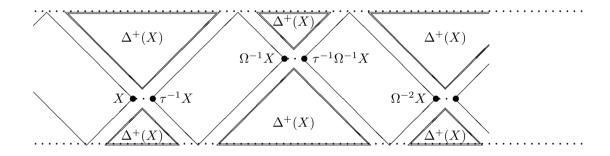
k を標数 0 の代数的閉体とし、n を正の偶数とする。 $R=k[x,y]/(y^2-x^{n+1})$ を 1-次元次数付き環とし、 $\mathrm{mod}R$ を有限生成次数付き R-加群のなす圏で射は次数を保つものとする。さらに $\mathrm{CM}R$ を極大 CM 加群全体のなす充満部分圏とする。このとき、 $\mathrm{CM}R$ の Auslander-Reiten quiver の射影加群でない極大 CM 加群全体から得られる full subquiver を Γ とおくと、 $\Gamma=\mathbb{Z}\mathbf{A}_n$ である (c.f. [1])。定義 1.4 で定義している Ω は、この状況での syzygy 加群に対応している。

定義 1.6 各頂点 $X \in \Gamma_0$ に対し、 $S^+(X)$, $S^-(X)$, $S^{'+}(X)$, $S^{'-}(X)$, $\Delta(X)$, $\Delta^+(X)$, $\Delta^-(X)$ を以下のように定義する。

1. $S^+(X)$ is slice \tilde{c} \tilde{b} \tilde{b} , $Y \in S^+(X)$ is \tilde{b} if $X \leq Y$ \tilde{c} \tilde{b} \tilde{b} .

- 2. $S^-(X)$ は slice であり、 $Y \in S^-(X)$ ならば $Y \leq X$ である。
- 4. $\Delta(X) = \{ Y \in \Gamma_0 \mid X \nsim Y \}$ とする。
- 5. $\Delta^{+}(X) = \bigcup_{\ell > 0} (\Delta(\Omega^{-\ell}X) \cup S'^{+}(\Omega^{-\ell}X))$ とする。
- 6. $\Delta^-(X) = \bigcup_{\ell \leq 0} (\Delta(\Omega^{-\ell}X) \cup S^{'-}(\Omega^{-\ell}X))$ とする。

各 $X \in \Gamma_0$ に対し、 $\Delta^+(X)$ は以下のような位置関係にあることに注意する。



先程も述べたが、 Γ は、1 次元次数付き環 $R=k[x,y]/(y^2-x^{n+1})$ 上の極大 CM 加群 のなす圏 CMR の Auslander-Reiten quiver の full subquiver を意識している。R-上での exceptional sequence の定義は以下の通りである。

定義 1.7 $R = \bigoplus_{i \geq 0} R_i$ を次数付き環で、 $R_0 = k$ を標数 0 の代数的閉体とする。このとき、

- 1. 有限生成 R-加群 E が exceptional であるとは、 $\left\{\begin{array}{l} \operatorname{Hom}(E,E)\cong k \\ \operatorname{Ext}^{\ell}(E,E)=0 \ (\ell>0) \end{array}\right.$ をみた すことである。
- 2. exceptional 加群の列 $\epsilon = (\cdots, E_i, E_{i+1}, \cdots)$ が exceptional sequence であるとは、 $\operatorname{Ext}^{\ell}(E_i, E_j) = 0 \ (i > j, \ell \geq 0)$ をみたすことである。

 $R = k[x,y]/(y^2 - x^{n+1})$ (n は正の偶数) のときには次のことがわかっている (c.f.[1],[2])。

補題 1.8 $R = k[x,y]/(y^2 - x^{n+1})$ (n は正の偶数) とし、 Γ を CMR の Auslander-Reiten quiver の射影加群でない極大 CM 加群全体から得られる full subquiver とする。このとき、

- 1. 任意の直既約極大 CM 加群は exceptional である。
- 2. (射影加群でない) 直既約極大 CM 加群 X,Y に対し、 $\operatorname{Hom}(X,Y) \neq 0$ であるための必要十分条件は X < Y (in Γ) である。
- 3. (射影加群でない) 直既約極大 CM 加群 X,Y と正の整数 ℓ に対し、次は同値である。
 - (a) $\operatorname{Ext}^{\ell}(X,Y) \neq 0$
 - (b) $\Omega^{\ell}X \leq Y \leq \tau \Omega^{\ell-1}X$ (in Γ)
 - (c) $\tau^{-1}\Omega^{-\ell+1}Y < X < \Omega^{-\ell}Y$ (in Γ)

注意 1.9 R, Γ を補題 1.8 の通りとし、X, Y を射影加群でない直既約極大 CM 加群とする。このとき、次は同値である。

- 1. すべての整数 ℓ に対し、 $\operatorname{Ext}^{\ell}(X,Y)=0$ である。
- 2. $X \in \Delta^+(Y)$ である。
- 3. $Y \in \Delta^{-}(X)$ である。

これらのことから、一般の translation quiver $\Gamma = \mathbb{Z}\mathbf{A}_n$ に対し、exceptional sequence を以下のように定義する。

定義 1.10 頂点 $E_1, E_2, \dots, E_r \in \Gamma_0$ に対し、列 $\epsilon = (E_1, E_2, \dots, E_r)$ が exceptional sequence であるとは、次の条件をみたすことである。

$$E_i \in \bigcap_{j < i} \Delta^+(E_j) \ (1 < i \le r)$$

この条件は次の条件と同値である。

$$E_i \in \bigcap_{j>i} \Delta^-(E_j) \ (1 \le i < r)$$

2. Main results

主結果を述べるためにもう少し準備をする。

定義 2.1 $\epsilon = (E_1, E_2, \dots, E_r)$ を exceptional sequence とする。 E_i, E_j が次の二条件をみたすとき、 $E_i \leq_{\epsilon} E_j$ と表す。

- 1. $E_i \in S^{'-}(E_j)$ である。

exceptional sequence の定義より次のことが成立していることが容易に確かめられる。

補題 2.2 $\epsilon = (E_1, E_2, \dots, E_r)$ を exceptional sequence とする。このとき、次のどの列も exceptional sequence になる。

1.
$$E_{i-1} \sim E_i$$
 のとき、 $(E_1, E_2, \dots, E_{i-2}, E_i, E_{i-1}, E_{i+1}, \dots, E_r)$

2.
$$E_i \notin S^{'-}(E_i) \ (\forall i) \ \mathcal{O} \ \xi \ \xi \ (E_1, E_2, \dots, E_{i-1}, \Omega E_i, E_{i+1}, \dots, E_r)$$

3.
$$E_i \notin S'^+(E_i)$$
 (∀j) のとき、 $(E_1, E_2, \dots, E_{i-1}, \Omega^{-1}E_i, E_{i+1}, \dots, E_r)$

4.
$$E_i = (p,q), E_j \leqslant_{\epsilon} E_i$$
 ならば $j = i - 1$ のとき、

$$(E_1, E_2, \cdots, E_{i-2}, E'_i, E_{i-1}, E_{i+1}, \cdots, E_r)$$

但し、
$$E_i' = \begin{cases} (q,q') & (E_{i-1} = (p,q') \text{ の } とき) \\ (p',p-n-1) & (E_{i-1} = (p',q) \text{ の } とき) \end{cases}$$

5. $E_i = (p, q), E_i \leqslant_{\epsilon} E_j$ ならば j = i + 1 のとき、

$$(E_1, E_2, \cdots, E_{i-2}, E'_i, E_{i-1}, E_{i+1}, \cdots, E_r)$$

但し、
$$E'_i = \begin{cases} (q+n+1,q') & (E_{i+1} = (p,q') の とき) \\ (p',p) & (E_{i+1} = (p',q) の とき) \end{cases}$$

6. $E_{i-2}=(p,q'), E_{i-1}=(p',q), E_i=(p,q)$ のとぎ、

$$(E_1, E_2, \cdots, E_{i-3}, E'_i, E_{i-2}, E_{i-1}, E_{i+1}, \cdots, E_r)$$

但し、
$$E_i'=(p',q')$$

7.
$$E_i = (p,q), E_{i+1} = (p',q), E_{i+2} = (p,q')$$
 のとき、

$$(E_1, E_2, \cdots, E_{i-1}, E_{i+1}, E_{i+2}, E'_i, E_{i+3}, \cdots, E_r)$$

但し、
$$E'_i = (p', q')$$

定義 2.3 ϵ , ϵ' を exceptional sequence とする。 ϵ に補題 2.2 の変形を有限回行って ϵ' になるとき、 $\epsilon \sim \epsilon'$ と表す。

定理 2.4 ϵ を exceptional sequence とする。このとき、exceptional sequence ϵ' と slice S で、 $\epsilon \sim \epsilon'$, ϵ' は S に埋め込めるものが存在する。

証明 二段階に分けて証明する。

Step 1. $\epsilon = (E_1, E_2, \dots, E_r)$ とおくとき、 $\epsilon' = (E_1', E_2', \dots, E_r')$ で、 $\epsilon \sim \epsilon'$, $E_1' = E_1$, $E_i' \in S^-(E_1') \cup \Delta(E_1') \cup S^+(E_1')$ ($\forall i$) をみたすものが存在する。

各 i に対し、 ℓ_i を $E_i \in \Delta(\Omega^{-\ell_i}E_1) \cup S^+(\Omega^{-\ell_i}E_1)$ をみたす数として定義する。 exceptional sequence の定義より、 $\ell_i \geq 0$ であるので、 $\ell = \sum_{i=1}^r \ell_i$ に関する帰納法で示す。 $\ell = 0$ ならば $\epsilon' = \epsilon$ ととればいい。 $\ell > 0$ のとき、 $i = \min\{j \mid \ell_j > 0\}$ とおく。

 $E_j \notin S^{'-}(E_i) \ (\forall j)$ のとき、 $\epsilon'' = (E_1, E_2, \cdots, E_{i-1}, \Omega E_i, E_{i+1}, \cdots, E_r)$ とおく。このとき、補題 2.2.2 より、 $\epsilon \sim \epsilon''$ であり、 $\Omega E_i \in \Delta(\Omega^{-(\ell_i-1)}E_1) \cup S^+(\Omega^{-(\ell_i-1)}E_1)$ なので、帰納法の仮定より条件をみたす ϵ' をとることができる。

 $E_j \in S^{'-}(E_i)$ なる j が存在するとき、 $E_j \lessdot_{\epsilon} E_i$ とする。このとき、 E_j の取り方より、(必要ならば補題 2.2.1 を使うことで) j=i-1 としてよい。 $E_j \lessdot_{\epsilon} E_i$ をみたす j が i-1 のときのみの場合には、 ϵ'' を補題 2.2.4 のようにとる。 $j \neq i-1$ なる j で $E_j \lessdot_{\epsilon} E_i$ をみたすものが存在するとき、(必要ならば補題 2.2.1 を使うことで) j=i-2 とできる。そして、 ϵ'' を補題 2.2.6 のようにとる。いずれの場合でも $\epsilon \sim \epsilon''$ である。ここで、i の取り方から $\ell_{i-1}=0$ であり、 $E_i' \lessdot_{i-1}$ より $E_i' \in \Delta(E_1) \cup S^+(E_1)$ である。よってこの場合も帰納法の仮定より条件をみたす ϵ' をとることができる。

Step 2. ϵ' を step 1. のようにとると、 ϵ' はある slice S に埋め込むことができる。

 $\epsilon'=(E'_1,E'_2,\cdots,E'_r)$ とおく。exceptional sequence の定義より、任意の $i\neq j$ に対し $E'_i\in S^{'-}(E'_j)\cup\Delta(E'_j)\cup S^{'+}(E'_j)$ をみたすことに注意する。さらに、 $i\neq j$ ならば、 E'_i と E'_j は 異なる τ -orbit にあることに注意する。 $E'_i=(p_i,q_i)$ とおき、 $p_i-q_i=t_i$ とおく。このとき、S を次のようにとる。すべての E'_i は S に属しているとする。 $1\leq t\leq r,t\notin\{t_1,t_2,\cdots t_r\}$ に 対し、 $t_i=\max\{t_i\mid t_i< t\},t_j=\min\{t_j\mid t_j>t\}$ をとる。さらに、 $Y\in S^{'+}(E'_i)\cap S^{'+}(E'_j)$ をとる。そして、X=(p,q) を $p-q=t,X\in S^{-}(Y)\cap (S^{'+}(E'_i)\cup S^{'+}(E'_j))$ ととり、この X が S に属するとすると、S は slice である。 \Box

系 2.5 $\epsilon = (E_1, E_2, \dots, E_r)$ を exceptional sequence とすると、 $r \leq n$ である。

系 2.6 長さ n の任意の exceptional sequence ϵ, ϵ' に対し、 $\epsilon \sim \epsilon'$ である。

参考文献

- [1] T. Araya, Exceptional sequences over graded Cohen-Macaulay rings, Math. J. Okayama Univ. vol.41, 81-102 (1999).
- [2] T. Araya, A characterization of one dimensional N-graded Gorenstein rings of finite Cohen-Macaulay representation type, Math. J. Okayama Univ. vol.42, pp 61-66 (2000).
- [3] W. Crawley-Boevey Exceptional sequences of representations of quivers, Representation of algebras, Sixth International Conference, Ottawa 1992, CMS Conf. Proc. 14 (1993), 117-124
- [4] H. Meltzer Exceptional vector bundles, tilting sheaves and tilting complexes on weighted projective lines, preprint
- [5] Y. Yoshino, Cohen-Macaulay Modules over Cohen-Macaulay Rings, London Math. Soc., Lecture Note Series vol.146, Cambridge U.P.(1990)

GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY OKAYAMA UNIVERSITY, OKAYAMA 700-8530 JAPAN

E-mail address: araya@math.okayama-u.ac.jp